Zhang, Guoqing and Liu, Tianqi and Ye, Zhonglin (2024) Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification. Remote Sensing, 16 (5). p. 775. ISSN 2072-4292
remotesensing-16-00775-v2.pdf - Published Version
Download (36MB)
Abstract
In contemporary times, owing to the swift advancement of Unmanned Aerial Vehicles (UAVs), there is enormous potential for the use of UAVs to ensure public safety. Most research on capturing images by UAVs mainly focuses on object detection and tracking tasks, but few studies have focused on the UAV object re-identification task. In addition, in the real-world scenarios, objects frequently get together in groups. Therefore, re-identifying UAV objects and groups poses a significant challenge. In this paper, a novel dynamic screening strategy based on feature graphs framework is proposed for UAV object and group re-identification. Specifically, the graph-based feature matching module presented aims to enhance the transmission of group contextual information by using adjacent feature nodes. Additionally, a dynamic screening strategy designed attempts to prune the feature nodes that are not identified as the same group to reduce the impact of noise (other group members but not belonging to this group). Extensive experiments have been conducted on the Road Group, DukeMTMC Group and CUHK-SYSU-Group datasets to validate our framework, revealing superior performance compared to most methods. The Rank-1 on CUHK-SYSU-Group, Road Group and DukeMTMC Group datasets reaches 71.8%, 86.4% and 57.8%, respectively. Meanwhile, our method performance is explored on the UAV datasets of PRAI-1581 and Aerial Image, the infrared datasets of SYSU-MM01 and CM-Group and the NIR dataset of RBG-NIR Scene dataset; the unexpected findings demonstrate the robustness and wide applicability of our method.
Item Type: | Article |
---|---|
Subjects: | OA Open Library > Multidisciplinary |
Depositing User: | Unnamed user with email support@oaopenlibrary.com |
Date Deposited: | 23 Feb 2024 04:18 |
Last Modified: | 23 Feb 2024 04:18 |
URI: | http://archive.sdpublishers.com/id/eprint/2522 |