Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway

Zhu, Min and Lu, En-Qing and Fang, Yong-Xia and Liu, Guo-Wei and Cheng, Yu-Jie and Huang, Ke and Xu, E and Zhang, Yi-Yu and Wang, Xiao-Jing (2024) Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway. Molecules, 29 (4). p. 855. ISSN 1420-3049

[thumbnail of molecules-29-00855.pdf] Text
molecules-29-00855.pdf - Published Version

Download (3MB)

Abstract

Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine intestinal epithelial cells (IPEC-J2 cells) and the underlying mechanism. The results showed that PIC promotes IPEC-J2 cell proliferation in a dose-dependent manner. Moreover, it not only significantly relieved DON-induced decreases in cell viability and proliferation but also reduced intracellular reactive oxygen species (ROS) production. Further studies demonstrated that PIC alleviated DON-induced oxidative stress damage by increasing the protein expression levels of the antioxidant factors NAD(P)H quinone oxidoreductase-1 (NQO1) and glutamate–cysteine ligase modifier subunit (GCLM), and the mRNA expression of catalase (CAT), Superoxide Dismutase 1 (SOD1), peroxiredoxin 3 (PRX3), and glutathione S-transferase alpha 4 (GSTα4). In addition, PIC inhibited the activation of the nuclear factor-B (NF-κB) pathway, downregulated the mRNA expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) to attenuate DON-induced inflammatory responses, and further mitigated DON-induced cellular intestinal barrier injury by regulating the protein expression of Occludin. These findings indicated that PIC had a significant protective effect against DON-induced damage. This study provides more understanding to support PIC as a feed additive for pig production.

Item Type: Article
Subjects: OA Open Library > Multidisciplinary
Depositing User: Unnamed user with email support@oaopenlibrary.com
Date Deposited: 15 Feb 2024 04:52
Last Modified: 15 Feb 2024 04:52
URI: http://archive.sdpublishers.com/id/eprint/2506

Actions (login required)

View Item
View Item