Lactobacillus plantarum CQPC11 Isolated from Sichuan Pickled Cabbages Antagonizes D-galactose-Induced Oxidation and Aging in Mice

Qian, Yu and Zhang, Jing and Zhou, Xianrong and Yi, Ruokun and Mu, Jianfei and Long, Xingyao and Pan, Yanni and Zhao, Xin and Liu, Weiwei (2021) Lactobacillus plantarum CQPC11 Isolated from Sichuan Pickled Cabbages Antagonizes D-galactose-Induced Oxidation and Aging in Mice. B P International. ISBN 978-93-90888-29-0

Full text not available from this repository.

Abstract

Chinese pickled cabbage is a traditional fermented food that contains abundant microbes produced during the process of fermentation. In this study, an in vivo animal study was conducted to investigate the effects of a newly isolated lactic acid bacterium (Lactobacillus plantarum CQPC11, LP-CQPC11) on D-galactose-induced oxidation and aging in mice. Analysis of the serum and tissue samples of these mice using molecular biology approaches showed that LP-CQPC11 suppressed the decrease in thymus, brain, heart, liver, spleen, and kidney indices caused by oxidation and aging. Furthermore, LP-CQPC11 increased the levels of SOD (superoxide dismutase), GSH-Px (glutathione peroxidase), and GSH (glutathione), whereas reduced the levels of NO (nitric oxide) and MDA (malondialdehyde) in the serum, liver, and spleen of oxidation and aging mouse models. Pathological observation indicated that LP-CQPC11 alleviated the damage caused by oxidation and aging on the liver and spleen of mice. qPCR analysis indicated that LP-CQPC11 effectively upregulated the expression of nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase), Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), HO-1 (heme oxygenase-1), Nrf2 (nuclear factor-erythroid 2 related factor 2), ?-GCS (?-glutamylcysteine synthetase), and NQO1 (NAD(P)H dehydrogenase [quinone] 1), but downregulated the expression of iNOS (inducible nitric oxide synthase) in the mouse liver and spleen. Western blot analysis showed that LP-CQPC11 effectively upregulated SOD1 (Cu/Zn-SOD), SOD2 (Mn-SOD), CAT, GSH1 (c-glutamylcysteine synthetase), and GSH2 (glutathione synthetase) protein expression in mouse liver and spleen tissues. These findings suggest that LP-CQPC11 can effectively prevent D-galactose-induced oxidation and aging in mice, and the effect is even better than that of the commonly used LDSB and vitamin C in the industry. Thus, LP-CQPC11 may be potentially employed as a probiotic strain.

Item Type: Book
Subjects: OA Open Library > Social Sciences and Humanities
Depositing User: Unnamed user with email support@oaopenlibrary.com
Date Deposited: 21 Nov 2023 05:09
Last Modified: 21 Nov 2023 05:09
URI: http://archive.sdpublishers.com/id/eprint/1905

Actions (login required)

View Item
View Item