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Abstract

This paper investigates the effects of the quadry@ed octupolar mass momgptof the secondary on
the triangular points, s in the elliptic restricted three-body problem (ER3BP). pbsitions and stability
of the triangular points are affected by the perturbatiorihe shape of the smaller primary (oblateness
up toJ,) and the elliptic nature of the orbits. An applicatiorth@# results to double white dwarf binaries,
reveals that the triangular points of the binaries are biestiue to the mass ratiofalling outside the|
stability ranged < p < [ ; where [1<1/2).

Keywords: Celestial mechanics; triangular points; ER3BP.

1 Introduction

One of the most important achievements of mankingae activity; it makes possible communications,
exploration of Earth resources, weather forecast, accposiéioning and other tasks that are part of our
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lives today. Space dynamics plays a very importantirothese developments and has been made possible
by the restricted three-body problem (R3BP). The R3BPritbescthe motion of an infinitesimal mass
moving under the gravitational effects of two finite-spherivalsses, called the primaries, which move in
circular orbits around their common barycenter [1] on accotititeir mutual gravitational attraction with
the infinitesimal mass being influenced but not influencing inotion of the primaries. It has received
attention of researchers especially in the two and thmeerdiional cases and with respect to its five

equilibrium points, i.e. the collinear (or “Eulerian”) poirhts LZ]L3 and the two isosceles triangular (or

“Lagrangian”) pointsL4’L5[2-12]. Also, in general relativity, the3B problem has b#ensubject of several
researches [13-15].

When the orbits of the primaries are elliptic, calleel ER3BP, the smaller primary orbits the larger one in
an elliptical orbit described by the two-body problem. éex non-uniformly rotating-pulsating coordinate
system is commonly used with the property that, the posibrihe primaries are fixed; however, the
Hamiltonian is explicitly time-dependent [16]. In one sutthdg with constant coefficient, [17], the motion
of a dust grain particle under the influence of a damederate primary and luminous secondary in the
ER3BP. In their study using the binary systems Cen Xid BXJ 0450.1-5856 was investigated both
numerically and analytically the existence and stabiftguch systems without taking into consideration the
P-R effect was studied.

In the last decades, many different authors considé&ugperturbing agents such as oblateness, triaxiality,
radiation pressure(s) of the primaries, Coriolis andrifagal forces [5,6,18,19], variation of the masses of
the primaries and the infinitesimal mass [20] in the sofdyie R3BP. Taking into consideration that one or
both of the primaries are oblate spheroid, which affés®kistence and stability of the equilibrium points,
as in the cases of [21,22]; where both primaries ardeobfgheroid, [23]; where only the bigger primary is
an oblate spheroid; the range of stability for the trigaagpbints increases or decreases depending on the
sign of a parameter which depends on the perturbed fuactiBrtension of studies went further on the
increase in degree of oblateness, [10]; where the eftdcbblateness up tq; bof both primaries; together
with gravitational potential from a circular cluster of nmate points on the stability of the triangular
equilibrium points in the CR3BP is studied; [24] extendedwiork of [25] by considering the shape of the
second primary as an oblate spheroid with oblateness depféicup to the second zonal harmonics. [26]
considered the influence of even zonal harmonic parametamsygor both primaries, on the existence of

the libration points and their linear stability as wallaaalyzing the existence of periodic orbits around these
points.

In this paper, using the double white dwarfs NLTT 11748, LFP2D@and J1257+5428, under the assumption
of the sphericity of the primary and oblateness of dwosdary, we show the effect of the octupolar mass
moment (J) of the companion star on the stability of the tridagequilibrium points in the framework of
the ER3BP.

This work is organized as follow: Section 1 gives thoutuction; while Sections 2 and 3 presents the
equation of motion for the problem under consideration and lotdaesiangular equilibrium points; while
Section 4 examines the stability of these equilibrium ppfimally, the conclusions are drawn in Section 5.

2 Equations of Motion

We present the equations of motion of the ER3BP following [10r22 synodic- pulsating dimensionless
coordinate system, with axes that expand and shrink, demirgj the secondary an oblate spheroid, with
oblateness up tq,J as

g —2n'=Q; 0 +28 = Q =0 1)
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where the force function,

1 1 1 (1-w B 3uB
Q=m[g(§z+ﬂ2)+—{—u+i+u—£] @

n2 r1 r; 23 8r3

and the mean motion

1
2 _ (+e?)2
T a(@-e?)

5
(1+ 2B, — 2B)) 3)

The distance of the third body from the primary and secoratary

ri= @G-8+’ + P (=12 with§y = —pué = 1-p (4)
and0 < u = mm+2m < Yis the mass ratio witm,, m, as the masses of the primaries positioned at the
1 2

points(¢; 0,0)i= 1,2;B; & B, are their oblateness and octupolar mass mofigntoefficients, B= JiRZ
(i=1,2) characterize the oblateness of the smaller primfurpean radius fRand quadruple and octupolar
mass moments (Zonal Harmonic Co-efficientadd Jrespectively; whilex ande are respectively the semi-
major axis and eccentricity of the orbits.

3 Positions of Triangular Points

The equilibrium solutions of the problem are obtained by equatihgvelocities and acceleration
components of the dynamical systems to zero. Thathés,equilibrium points are the solutions of the
equations:

1(A=-mwE-¢&) pE-&) 3uB(§—¢&) 15u(—$,)B
{ u 1+.U32+H1 2)  1oH 22}:0

n2 o 75 21y 8ry
1 (= wn  wn  3uBin 15uB;n)
=-S5V = vt 3t 55~ g7 (T
n 4 1 215 8r;
S(Q-w # | 3B 15uBp),
[nz{ 3 + r3 + 2r3 8r] }] =0 ®)

The positions of the triangular points are obtained froenfirst two equations of equation (5) above with
n # 0 and{ = 0. From which;

2

n? = 3By 15B; (6)

1
3 5 7
Ty 21y 8ry

andr? = nl—z when oblateness of the smaller primary is absenBj.e: B, = 0, we have;® = niz (i=1,2),
when the oblateness is considered the valugwvafirchange slightly by, say

=t OF @)

Neglecting second and higher order terme?#,, B,and their product, equation (3) becomes
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1 3 3 15
n2=;[1+zez+ EBI_ ;BZ] (8)
and then the second equations of (6) gives
; 2 B 5
r = (@)"(1- 87_ 71"' 5B2); 9)
From (6), (7) & (8) and neglecting higher order terms, waiabt
— B —%_ uy_ 5 -1 _ %
€= (a a”) 8Bz(a a”) (10)
Substitutinge into (7) as appropriate, we obtain;
, 2 ) 2 5 =+
r,=a3[l—e*+ Bi(a3—1)— ZBZ(‘“ - 1)
and (9), becomes;
2 z 5
ri?=(a)3(1- e*- B + ZBz) (11)

Using4 & 11, we get

1 Bl+5 p
= - —_—— _ 3
¢ 2 u 2 8‘1 2
and
2 9 2 1 2 5 2 9 2
n? = as - —ae? +B, (E—as)—f-ZBz(as—;a 3) (12)

The co-ordinates{( +7) obtained in equation (12) are the triangular libration pointsaae denoted hy 5.
Using equation (12), for various values of oblateBe&sB,, we compute numerically the positions of the
triangular points using the numerical data in Table 1 {@&how the effects d&,& B, (Tables 2, 4 and 6),
eccentricity e and semi-major axis a (Tables 3, 5 and fiese effects are shown graphically in Figs. 1-3.

Table 1. Numerical data

Binary system M M, u

NLTT 11748 0.15 0.71 0.1744
LP40(-22 0.1¢ >0.4¢ 0.283¢
J1257+5428 0.20 >0.95(0.98) 0.16949

Table 2. Effects of B; and B, for e=0.6, a=0.8; B,=-0.00001 and B;=0.1on L P400-22

B ¢ tn B> 4 +n

0.001 0.215893 0.548790 -0.000001 0.166399 0.515129
0.01 0.21139: 0.54581! -0.0000: 0.16639: 0.51512i

0.1 0.166393 0.515126 -0.0001 0.166327 0.515095
0.2 0.116393 0.478724 -0.001 0.165675 0.514787
0.3 0.0663927 0.439317 -0.01 0.159148 0.511701
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Table 3. Effects of eccentricity and semi-major axisfor e=0.6; a=0.8; B;=0.01 and B,=-0.00001 on

L P400-22

e ¢ in A ¢ n
0.9¢ 0.21139: 0.486284 0.9¢ 0.21139: 0.61707!
0.9 0.211393 0.299807i 0.9 0.211393 0.585032
0.8 0.21139: 0.23794. 0.8 0.21139: 0.54581!
0.7 0.211393 0.431142 0.7 0.211392 0.501671
0.6 0.211393 0.545815 0.6 0.211391 0.450742
0.t 0.21139: 0.62666! 0.t 0.21139! 0.38971:
04 0.211393 0.685761 0.4 0.211388 0.311482
0.2 0.21139: 0.72841! 0.2 0.21138! 0.19322
0.2 0.211393 0.757418 0.2 0.211382 0.17184i
0.1 0.211393 0.774296 0.1 0.211371 0.330521i

0.7} \

e
0.6}
< 0.5}
0.4+ a
0.3f
0 0.4 0.6 0.8
era
Fig. 1. Effects of eccentricity and Semi-major axison the triangular points of NL TT 11748

Table 4. Effectsof B, andB,for e=0.8, a=0.7; B,=0.1 and B,=-0.00001 on J1257+5428

B: § in B, § in
0.001 0.33000: 0.18309! -0.00000: 0.28050! 0.070547.
0.01 0.325502 0.175866 -0.00001 0.280502 0.0705350
0.1 0.280502 0.070535 -0.0001 0.280431 0.0704120
0.2 0.23050: 0.154474 -0.001 0.27971 0.069169
0.3 0.180502 0.229564i -0.01 0.272582 0.0552282
o
(0)07
< 0
-0
-0
006
0.274 026 0.278 028

Fig. 2. Effect of B, on L, 5 of J1257+1548 for B,=0.1, e=0.8 and a=0.7



Singh et al.; BJMCS, 16(3): 1-11, 2016; ArticleBdMCS.24539

Tableb5. Effects of eccentricity and semi-major axisfor e=0.8; a=0.7; B;=0.01 and B,=-0.00001 on

J1257+5428
e g +n a tn
0.99 0.325502 0.487029i 0.99 0.325504 0.320401
0.9 0.325502 0.321084i 0.9 0.325503 0.285052
0.8 0.32550: 0.17586I 0.€ 0.32550: 0.23794:
0.7 0.325502 0.386245 0.7 0.325502 0.175866
0.6 0.32550: 0.50167: 0.€ 0.32550: 0.063106!
0.5 0.325502 0.581717 0.5 0.325500 0.156562i
0.4 0.325502 0.639803 0.4 0.325498 0.234491i
0.3 0.32550: 0.68156° 0.2 0.32549i 0.296888
0.2 0.325502 0.709896 0.2 0.325492 0.35396i
0.1 0.32550: 0.72636: 0.1 0.32548: 0.411787
Table 6. Effectsof B; andB,for e=0.3, a=0.7;B,=0.1 and B,=-0.00001 on NLTT 11748.
0.001 0.3256 \/§/ -0.000001 0.320599 0.681569
2

0.01 0.325092 0.683469 -0.00001 0.320592 0.681567
0.1 0.32059: 0.68156° -0.000! 0.32502: 0.68155!
0.2 0.275592 0.662254 -0.001 0.319807 0.681428
0.2 0.22559: 0.64011: -0.01 0.31267. 0.68015:

Table 7. Effects of eccentricity and semi-major axisfor e=0.3; a=0.8; B;=0.01 and B,=-0.00001 on

NLTT11748

e g +n a 4 in
0.9¢ 0.32059: 0.486284 0.9¢ 0.32059: 0.80559!
0.9 0.320593 0.299807i 0.9 0.320593 0.77068
0.8 0.320593 0.237944 0.8 0.320593 0.728418
0.7 0.320593 0.431142 0.7 0.320592 0.681567
0.6 0.320593 0.545815 0.6 0.320591 0.628682
0.5 0.32059: 0.62666! 0.5 0.32059¢ 0.56742:
0.4 0.320593 0.685761 0.4 0.320588 0.493558
0.3 0.320593 0.728418 0.3 0.320586 0.397913
0.2 0.320593 0.757418 0.2 0.320582 0.250619
0.1 0.320593 0.774296 0.1 0.320571 0.225997i

Fig. 3. Surfacerepresentation of the effect of the quadr uple mass moment for e=0.6, a=0.8 and

B,=-0.00001 of L P400-22
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4 Stability of Triangular Libration Points

To examine the linear stability of an infinitesimal bodyrtea triangular poirt, (§;,n,) we displace itto a
position £= £ + a,n=n,+ B, wherea, are small displacements. Substituting these values in the
equations of motion (1) and taking only the linear terms, thiati@nal equations of motion corresponding
to the system are given as: -

&' —2n' = aQg + pQy,

N +28 = aQpe + fQ,

The second order partial derivatives(bérre represented by the subscripts, while the superscinppli®s
that the partial derivatives are to be evaluatedealihation point, (£;,n,)-

Hence, the characteristics equation corresponding to thensyst-
M+ 4-Qp, - Q%) + QEQp, — (Q)* =0 (13)

Neglecting second and higher order termBB,, e?and their products, the values of the partial derivatives
at the triangular point (12) are obtained as

o 1 [3 L3 g {3 N 3u}+ {15 450 154 15#}]
§T (1 en% —e* + Bij— 2 T -3
(1= e 4t 4a3 2a5  4as l6as 160"  16a? 4.3
o 1 s 3 3 o, 3B+B{ 15 15u 154 15 }]
= ——5[3-—5 ——=e*+ —B 2 — - —
(1 et 45 das 433 gas 1647 44 16a”
o n 3 3p ,f 3 3u 3u
= ———wl—= + e y—=— =+t Bi)— =
(1= en® 2a§ Zag Zag a” ' 4a”

1By 15 15 15,u+ 15u
2077 — 7
843 8a3 4a”  16a?

1

By substitutingz = 1 — «, simplifying, and neglecting product and higher order temesobtain,

e? 5u
Qgé-i' Q?m= 3(1+ 7— —2 BZ)
452 3 27u 45 45u
Q)(Q7,) = + Tt 70+ Bt 5B —— B ]
27;12 27u 45 45y 4542 3
2 _ _ - _ 52 _ _",2 —a—3 1-—
(@,)* = [ 4 4 " 16° 2166Jr g ¢+ g3 — o
9 63y 9u 45 225y  315u?
By{— = — —— 4B {—+ ——
* 1{ 2 8 8 }+ 2{32 MY 16

Substituting these values into equation (13) above and neglectingcpeod! higher order terms, we get,

40222 + 4(4-3¥ )2 + 27u(1—p) + 4%, =0 (14)
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Where;
62
llul = 1+ —+ MAZ __BZ
And

45u(1—p) ,  315p(1—w)
e — B

¥, = 3u(1—po+ 9u(l—wB; + 7 16 2

Equation (14) is a quadratic equationAf, which yields;

_ —(4-3¥) £ {(4-3%)% — [27u(1 — p) + 4¥,])"
- 2

/12

Its roots are

+
N

2=t

(15)

N

where the discriminant
A= (4-3¥)%—[27p(1— ) + 4¥,] (16)
From equation (16) above;

315u?

A= (4—-3¥))2—27u+ 27u®— 4¥,] = 27u? + 12p%a + 45u%e? + 36u®B; —
27u — 12ua — 45ue? — 36uB, + 24

4

B, —
B,+1—-3e?2>0 a7

For the stability of the libration points as given in eguaf{16) above, and equating the discriminant to zero
i.e. A = 0 and solving fol, we obtain the critical mass parametgmas:

_ S T VR S S R Bap 5 13
He = Ho [27@]“ [9J6_9]e 9[1+\/6_9]B1 18[1 2\/@]

1 23
i

The value of the critical mass parameter to ten deqpfagks is: -

B,

Where,

fe = 0.0385208965 — 0.0178349412a - 0.1872668826e% — 0.062779565568,
+0.1402286564B, (18)

Sinced > 0, in the interval < u < u., this implies that the roots of equation (15) are pure imagina
numbers, hence the triangular points are stable indlgism. In the interval, < u <%,4 < 0, the real
parts of the two roots (15) are positive, thereforettia@mgular points are unstable. NowuitE u., 4 =0,
the roots in (15) are double roots, hence the instabilithexfe points.

The triangular points are thus stable in the intedval u < u. , where the critical mass parameter depends
on the influence oblateness ugtpthe semi-major axis and eccentricity of the orbits.
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5 Conclusions

The positions and linear stability of the triangular lttma points have been investigated in the ER3BP and
are found to be affected by oblateness:(J,), eccentricity (e) and semi-major axis (a) of the stbithese
effects on the locations are shown numerically (Tables &ad) graphically (Figs. 1-3). It is observed
generally that for the binary systems NLTT 11748, LP400-22 428735428, the effect of increasing
eccentricity is a shift away from the line joining thénparies, and reverse is the case with increase in the
semi-major axis (Tables 3, 5 and 7). The triangular poirge akase to exist as the semi-major axis
approaches unity and in the quasi-parabolic cases. The gleadngoctupolar mass moment on the other
hand, cause a shift towards the origin and away fronlirtegoining the primaries respectively. Our results
in the circular case confirm with [7,27] in the absenceadfation in their problem and with=D in ours.
They also agree with those of [4,5] when the primarplescal and secondary is non-luminous in the latter
cases and [10] without considering oblateness of the biggary as well as neglecting the gravitational
potential from the circular cluster of material pointsder the same conditions in the elliptic case when the
octupolar mass momefy is taken as zero, it verifies the results of [28]. E€ffects of the perturbations in
oblateness (J& J;) and eccentricity of the orbits (18) is a reduction in ike ef the region of stability. As
such, they have destabilizing tendencies. The triangular pmiatstable in the interval < p < pu.. The
mass ratios of the double white dwarf binaries use in thisrgd@péle 1) are outside this range and are as
such unstable.

Competing Interests
Authors have declared that no competing interests exist.

Refer ences

[1]  Alain and Chenciner. The three-body problem. Scholarpedid:; 2DD7.

[2] Sharma RK, Subba Rao PV. Collinear equilibria and theiracieristics exponents in the restricted
three-body problem when the primaries are oblate sphef@édsst. Mech. 1975;12:189-201.

[3] Sharma RK. The linear stability of libration pointéthe photo-gravitational restricted three-body
problem when the smaller primary is an oblate spheroid. plsy0 Space Sci. 1987;135:271-281.

[4] Singh J, Ishwar B. Stability of triangular points in the gatized photogravitational restricted three-
body problem. Bulletin of Astronomy Society of India. 1999;27:418-42

[5] Abdulraheem A, Singh J. Combined effects of perturbationatiadi and oblateness on the stability
of equilibrium points in the restricted three-body probléstron. J. 2006;131:1880-1885.

[6] Abdul Raheem A, Singh J. Combined effects of perturbationsatiai and oblateness on the
periodic orbits in the restricted three-body problem. éystys Space Sci. 2008;317:9-13.
DOI: 10.1007/s10509-008-9841-4

[71  Vishnu Namboori NI, Sudheer Reedy D, Sharma RK. Effeabtdteness and radiation pressure on
angular frequencies at collinear points. Astrophysics apdcé& Science. 2008;31%1-168.
Available: http://dx.doi.org/10.1007/s10509-008-9934-0

[8] Kalantonis VS, Perdios EA, Perdiou AE. The Sitnikov fgmahd the associated families of 3D
periodic orbits in the photogravitational RTBP with oblatsne&strophysics & Space Science.
2008;315:323-334.



Singh et al.; BJMCS, 16(3): 1-11, 2016; ArticleB@MCS.24539

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

Arrendondo JA, Guo J, Stoica C, Tamayo C. On the ctstkithree-body problem with oblate
primaries. Astrophysics and Space Science. 2012;2:315-322.
DOI: 10.1007/s10509-012-1085-7

Singh J, Taura JJ. Effects of zonal harmonics and alaircluster of material points on the stability
of triangular points in the R3BP. Astrophysics and Spacenge. 2013;350:127-132.
DOI: 10.1007/s10509-013-1719-4 ISSN 004-640X

Safiya AB, Sharma RK. On the dichotomy in the Earth-Mogstesn restricted three-body problem.
Astophysics and Space Science. 2012;1-5.
DOI: 10.1007/s10509-012-1103-9. Citeulike: 10704869

Abouelmagd El, EI-Shaboury SM. Periodic orbits under combinfedtsfof Oblateness and radiation
in the restricted problem of three bodies. Astrophysics@pace Science. 2012;341:331-341.

Fokker AD. A consequence of Einstein’s theory of gravitatime geodesic precession.
Nederlandsche Akademie van Wetenschappen Proceedigs. 1927,23(738.

Renzetti G. Exact geodetic precession of the orbit oftiaay gyroscope in geodesic motion about a
third mass. Earth, Moon and Planets. 2012;1:55-59.

lorio L. Orbital motions as gradiometer for Post-Newtoni@al effects. Astron. Space Science;
2014.
Available: http://dx.doi.org/10.3389/fspas.2014.0003

Szebehely VG. Theory of orbit. Academic Press, New Yd8i67. (First Edition)

Singh J, Umar A. Motion in the Photogravitational ellipgstricted three-body problem under an Ob-
late primary. The Astronomical Journal. 2012a;1439.
Available: http://dx.doi.org/10.1088/0004-6256/143/5/109

Umar A, Singh J. Semi-analytic solutions for the trianggaints of double white dwarfs in the
ER3BP: Impact of the body's oblateness and the orbital e@igntAdvances in Space Research;
2015.

Available: http://dx.doi.org/10.1016/j.asr.2015.01.042

Singh J, Balogun EA. Stability of triangular points in thefogravitational CR3BP with Poynting-
Robertson drag and a smaller triaxial primary. AstroplsySigace Sci; 2014.
DOI: 10.1007/s10509-014-2023-7, ISSN 0004-640X

Singh J, Oni L. Effect of oblateness, perturbations, teisand varying masses on the stability
points in the R3BP. Astrophysics and Space Science. 2012; 3146l):
DOI: 10.1007/s/10509-012-1324y

Vidyakin VV. A plane circular task pertaining to three spids. Astronomical Journal. 1974;
51(5):1087-1094.

Singh J, Umar A. Application of binary pulsars to arisyetric bodies in the elliptic R3BP.
Astrophysics and Space Science. 2013;348:393-402.
Available: http://dx.doi.prg/10.1007/s10509-013-1585-0

Sharma RK, Subba Rao PV. Stationary solutions and theiaatRaistic exponents in the restricted
three-body problem when the more massive primary is amteokpheroid. Celest. Mech. 1976;13:
137-149.

10



Singh et al.; BJMCS, 16(3): 1-11, 2016; ArticleB@MCS.24539

[24]

(25]

(26]

(27]

(28]

Singh J, Omale AJ. Effects of perturbations in Corioligl aentrifugal forces on the locations and
stability of libration points in the Robe’s circular resteid three-body problem under an oblate-
triaxial primaries. Advances in Space Research (ImpactctoFa 1.36). 2014;55:1.
DOI: 10.1016/j.asr.2014.08.032

Singh J, Sandah AU. Existence and linear stability of equilibrpoints in the Robe’s restricted
three-body problem with oblateness. Advances in Mathemdhoaics; 2012.
Available: http://dx.doi.org/10.115/2012/679063

Abouelmagd El, Alhouthuali MS, Juan L. G. Guirao, Malaikah HWMe effect of Zonal Harmonic
co-efficient in the framework of the restricted threeyopdoblem. Preprint Submitted to Advances in
Space Research; 2014.

Ishwar B, Elpe A. Secular Solutions of Trianular Equilim poins in the Generalized
Photogravittaional Restricted three-body problem. Astrejsy and Space Science. 2001;277:
437-446.

Available: http://dx.doi.org/10.1023/A:1012528929233

Singh J, Umar A. On the stability of triangular equilibriuning® in the elliptic R3BP under radiating
and oblate primaries. Astrophysics and Space Science. 23123%9-358.
Available: http://dx.doi.org/10.1007/s10509-012-1109-3

© 2016 Singh et al.; This is an Open Access artiitributed under the terms of the Creative Commatisbution License
(http://creativecommons.org/licenses/byj4®@hich permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be asedsere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/14440

11



