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Abstract 
 

This paper investigates the effects of the quadruple �� and octupolar mass moment �� of the secondary on 
the triangular points 	�,
 in the elliptic restricted three-body problem (ER3BP). The positions and stability 
of the triangular points are affected by the perturbations in the shape of the smaller primary (oblateness 
up to ��) and the elliptic nature of the orbits. An application of the results to double white dwarf binaries, 
reveals that the triangular points of the binaries are unstable due to the mass ratio μ falling outside the 
stability range 0 < µ < µc ; where  (µ≤1/2). 
 

 
Keywords: Celestial mechanics; triangular points; ER3BP. 
 

1 Introduction 
 

One of the most important achievements of mankind is space activity; it makes possible communications, 
exploration of Earth resources, weather forecast, accurate positioning and other tasks that are part of our 
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lives today. Space dynamics plays a very important role in these developments and has been made possible 
by the restricted three-body problem (R3BP). The R3BP describes the motion of an infinitesimal mass 
moving under the gravitational effects of two finite-spherical masses, called the primaries, which move in 
circular orbits around their common barycenter [1] on account of their mutual gravitational attraction with 
the infinitesimal mass being influenced but not influencing the motion of the primaries. It has received 
attention of researchers especially in the two and three dimensional cases and with respect to its five 

equilibrium points, i.e. the collinear (or “Eulerian”) points1 2, 3,L L L  and the two isosceles triangular (or 

“Lagrangian”) points 4, 5L L [2-12]. Also, in general relativity, the3B problem has been the subject of several 

researches [13-15]. 
 
When the orbits of the primaries are elliptic, called the ER3BP, the smaller primary orbits the larger one in 
an elliptical orbit described by the two-body problem. Here, a non-uniformly rotating-pulsating coordinate 
system is commonly used with the property that, the positions of the primaries are fixed; however, the 
Hamiltonian is explicitly time-dependent [16].  In one such study with constant coefficient, [17], the motion 
of a dust grain particle under the influence of a dark degenerate primary and luminous secondary in the 
ER3BP. In their study using the binary systems Cen X-4 and RXJ 0450.1-5856 was investigated both 
numerically and analytically the existence and stability of such systems without taking into consideration the 
P–R effect was studied. 
 
In the last decades, many different authors consider various perturbing agents such as oblateness, triaxiality, 
radiation pressure(s) of the primaries, Coriolis and centrifugal forces [5,6,18,19], variation of the masses of 
the primaries and the infinitesimal mass [20] in the study of the R3BP.  Taking into consideration that one or 
both of the primaries are oblate spheroid, which affects the existence and stability of the equilibrium points, 
as in the cases of [21,22]; where both primaries are oblate spheroid, [23]; where only the bigger primary is 
an oblate spheroid; the range of stability for the triangular points increases or decreases depending on the 
sign of a parameter which depends on the perturbed functions.. Extension of studies went further on the 
increase in degree of oblateness, [10]; where the effects of oblateness up to J4; of both primaries; together 
with gravitational potential from a circular cluster of material points on the stability of the triangular 
equilibrium points in the CR3BP is studied; [24] extended the work of [25] by considering the shape of the 
second primary as an oblate spheroid with oblateness coefficients up to the second zonal harmonics. [26] 
considered the influence of even zonal harmonic parameters up to J4 for both primaries, on the existence of 
the libration points and their linear stability as well as analyzing the existence of periodic orbits around these 
points. 
 
In this paper, using the double white dwarfs NLTT 11748, LP400-22 and J1257+5428, under the assumption 
of the sphericity of the primary and oblateness of the secondary, we show the effect of the octupolar mass 
moment (J4) of the companion star on the stability of the triangular equilibrium points in the framework of 
the ER3BP. 
 
This work is organized as follow: Section 1 gives the introduction; while Sections 2 and 3 presents the 
equation of motion for the problem under consideration and locates the triangular equilibrium points; while 
Section 4 examines the stability of these equilibrium points; finally, the conclusions are drawn in Section 5. 
 

2 Equations of Motion 
 
We present the equations of motion of the ER3BP following [10,22] in a synodic- pulsating dimensionless 
coordinate system, with axes that expand and shrink, considering the secondary an oblate spheroid, with 
oblateness up to J4,  as 
 

ξ
′′ − 2η′ =  Ω� ; η′′ + 2ξ′ =  Ω�;  �′′ = Ω�                (1) 
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where the force function, 
 

Ω =  �
(����)½ [ �� �ξ� +  η�� +  �

��  { (�� µ)
� +  µ�� +  µ! 

���" −  #µ!�
$��% }]                             (2) 

 
and the mean motion 
 

(� =  (�) *�) �
+ (�� *�)  (1 +  #

� -� −  �

$ -�)                  (3) 

 
The distance of the third body from the primary and secondary are:             
                  r/� =  (ξ −  0/)� +  1� + ��  (i=1,2) with  0� =  −2 ,0� =  1 −  2              (4) 
 
and 0 <  2 =  5�

5 ) 5� <  ½ is the mass ratio with 6�, 6� as the masses of the primaries positioned at the 

points (0/,0,0)i= 1,2;-� & -�  are their oblateness and octupolar mass moment (��) coefficients, Bi= J2i8�� 
(i=1,2) characterize the oblateness of the smaller primary of mean radius R2 and quadruple and octupolar 
mass moments (Zonal Harmonic Co-efficient) J2 and J4 respectively; while 9 and : are respectively the semi-
major axis and eccentricity of the orbits. 
 

3 Positions of Triangular Points 
 
The equilibrium solutions of the problem are obtained by equating all velocities and acceleration 
components of the dynamical systems to zero. That is, the equilibrium points are the solutions of the 
equations: 
 ;� =  ;� =  ;� = 0 

 
i.e. 
 

0 −  1
(� <(1 −  2)(0 − 0�)

=�# +  2(0 − 0�)
=�#

+  32-�(0 − 0�)
2=�


−  152(0 − 0�)-�
8=�A

B = 0 

1 −  1
(� <(1 −  2)1

=�# +  21
=�#

+  32-�1
2=�


−  152-�1
8=�A

B =  0 

[ �
C� D(�� E)

F " +  E
F�" +  #EG 

�F�% −  �
EG�
$F�H I] =  0                 (5) 

 
The positions of the triangular points are obtained from the first two equations of equation (5) above with 1 ≠  0 and � =  0. From which; 
 

(� =  �
F�" +  #G 

�F�% −  �
G�
$F�H                    (6) 

 

and =K# =  �
��, when oblateness of the smaller primary is absent i.e. B� = B� = 0, we have =K# =  �

��, (i=1,2), 

when the oblateness is considered the value of r2 will change slightly by M, say 
 

r� =  ε+  (�
C)�

"                    (7) 

 
Neglecting second and higher order terms of :�, -�, -�and their product, equation (3) becomes 
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(� = �
+ [1 + #

� :� +  #
� -� −  �


$ -�]                  (8) 

 
and then the second equations of (6) gives 
 

r� = (9)⅓(1 −  *�
� −  G 

� +  

$ -�);                   (9) 

 
From (6), (7) & (8) and neglecting higher order terms, we obtain; 
 

M =  G 
� (9�⅓ −  9⅓) −  


$ -�(9�� −  9⅓)               (10) 

 
Substituting M into (7) as appropriate, we obtain; 
 

r�� =  9�
"[ 1 −  e� +  -�(9��

" − 1) −  5
4 -� P9QR

" −  1S 

 
and (9), becomes; 
 

r�� = (9)�
"(1 −  :� −  -� +  


� -�)                (11) 

 
Using 4 & 11, we get 
 

0 =  1
2 −  2 − -�2 + 5

8 9��
"-� 

 
and 
 

η� =  9�
" − �

� − 9�
":� + -� P�

� − 9�
"S + 


� -�(9�
" − �

� 9��
")             (12) 

 
The co-ordinates (0, ±1) obtained in equation (12) are the triangular libration points and are denoted byL�,
. 
Using equation (12), for various values of oblateness-�& -�, we compute numerically the positions of the 
triangular points using the numerical data in Table 1 [18] to show the effects of -�& -� (Tables 2, 4 and 6), 
eccentricity e and semi-major axis a (Tables 3, 5 and 7).  These effects are shown graphically in Figs. 1-3. 
 

Table 1. Numerical data 
 

Binary system M1 M2 V 
NLTT 11748 0.15 0.71 0.1744 
LP400-22 0.19 >0.48 0.2836 
J1257+5428 0.20 >0.95(0.98) 0.16949 

 
Table 2. Effects of B1 and B2 for e=0.6, a=0.8; B2=-0.00001 and B1=0.1on LP400-22 

 
B1 W ±X B2 W ±X 
0.001 0.215893 0.548790 -0.000001 0.166399 0.515129 
0.01 0.211393 0.545815 -0.00001 0.166393 0.515126 
0.1 0.166393 0.515126 -0.0001 0.166327 0.515095 
0.2 0.116393 0.478724 -0.001 0.165675 0.514787 
0.3 0.0663927 0.439317 -0.01 0.159148 0.511701 
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Table 3. Effects of eccentricity and semi-major axis for e=0.6; a=0.8; B1=0.01 and B2=-0.00001 on 
LP400-22 

 Y W ±X A W ±X 
0.99 0.211393 0.486284i 0.99 0.211394 0.617079 
0.9 0.211393 0.299807i 0.9 0.211393 0.585032 
0.8 0.211393 0.237944 0.8 0.211393 0.545815 
0.7 0.211393 0.431142 0.7 0.211392 0.501671 
0.6 0.211393 0.545815 0.6 0.211391 0.450742 
0.5 0.211393 0.626665 0.5 0.211390 0.389714 
0.4 0.211393 0.685761 0.4 0.211388 0.311482 
0.3 0.211393 0.728418 0.3 0.211386 0.193227 
0.2 0.211393 0.757418 0.2 0.211382 0.17184i 
0.1 0.211393 0.774296 0.1 0.211371 0.330521i 

 

 
 

Fig. 1. Effects of eccentricity and Semi-major axis on the triangular points ofNLTT11748 
 

Table 4. Effects of B1 andB2 for e=0.8, a=0.7; B1=0.1 and B2=-0.00001 on J1257+5428 
 
B1 Z ±[ B2 Z ±[ 
0.001 0.330002 0.183096 -0.000001 0.280509 0.0705473 
0.01 0.325502 0.175866 -0.00001 0.280502 0.0705350 
0.1 0.280502 0.070535 -0.0001 0.280431 0.0704120 
0.2 0.230502 0.154474i -0.001 0.279717 0.0691695 
0.3 0.180502 0.229564i -0.01 0.272582 0.0552282 

 

 
 

Fig. 2. Effect of B2 on L4, 5 of J1257+1548 for B1=0.1, e=0.8 and a=0.7 
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Table 5. Effects of eccentricity and semi-major axis for e=0.8; a=0.7; B1=0.01 and B2=-0.00001 on 
J1257+5428 

 Y W ±X \ W ±X 
0.99 0.325502 0.487029i 0.99 0.325504 0.320401 
0.9 0.325502 0.321084i 0.9 0.325503 0.285052 
0.8 0.325502 0.175866 0.8 0.325503 0.237944 
0.7 0.325502 0.386245 0.7 0.325502 0.175866 
0.6 0.325502 0.501671 0.6 0.325501 0.0631065 
0.5 0.325502 0.581717 0.5 0.325500 0.156562i 
0.4 0.325502 0.639803 0.4 0.325498 0.234491i 
0.3 0.325502 0.681567 0.3 0.325496 0.296888i 
0.2 0.325502 0.709896 0.2 0.325492 0.35396i 
0.1 0.325502 0.726364 0.1 0.325481 0.411787i 

 

Table 6. Effects of B1 andB2 for e=0.3, a=0.7;B1=0.1 and B2=-0.00001 on NLTT 11748. 
 

B1 W ±X B2 W ±X 
0.001 0.3256 3

2
 -0.000001 0.320599 0.681569 

0.01 0.325092 0.683469 -0.00001 0.320592 0.681567 
0.1 0.320592 0.681567 -0.0001 0.325021 0.681555 
0.2 0.275592 0.662254 -0.001 0.319807 0.681428 
0.3 0.225592 0.640112 -0.01 0.312672 0.680154 

 

Table 7. Effects of eccentricity and semi-major axis for e=0.3; a=0.8; B1=0.01 and B2=-0.00001 on 
NLTT11748 

 Y W ±X \ W ±X 
0.99 0.320593 0.486284i 0.99 0.320594 0.805595 
0.9 0.320593 0.299807i 0.9 0.320593 0.77068 
0.8 0.320593 0.237944 0.8 0.320593 0.728418 
0.7 0.320593 0.431142 0.7 0.320592 0.681567 
0.6 0.320593 0.545815 0.6 0.320591 0.628682 
0.5 0.320593 0.626665 0.5 0.320590 0.567421 
0.4 0.320593 0.685761 0.4 0.320588 0.493558 
0.3 0.320593 0.728418 0.3 0.320586 0.397913 
0.2 0.320593 0.757418 0.2 0.320582 0.250619 
0.1 0.320593 0.774296 0.1 0.320571 0.225997i 

 

 
 

Fig. 3. Surface representation of the effect of the quadruple mass moment for e=0.6, a=0.8 and  
B2=-0.00001 of LP400-22 
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4 Stability of Triangular Libration Points 
 
To examine the linear stability of an infinitesimal body near the triangular pointL� (ξ], η]) we displace it to a 
position ξ=  ξ] +  ^, η = η] +  _ , where α , β  are small displacements. Substituting these values in the 
equations of motion (1) and taking only the linear terms, the variational equations of motion corresponding 
to the system are given as: - 
 0′′ − 21′ =  ^Ω��` +  _Ω��`  

 1′′ + 20 ′ =  ^Ω��` +  _Ω��`  
 
The second order partial derivatives of Ω are represented by the subscripts, while the superscript 0 implies 
that the partial derivatives are to be evaluated at the libration pointL� (ξ], η]). 
 
Hence, the characteristics equation corresponding to the system is: - 
 a� + a�  (4 − Ω��` −  Ω��` )  + Ω��` Ω��` −  (Ω��` )� = 0                            (13) 
 
Neglecting second and higher order terms of B�, B�, :�and their products, the values of the partial derivatives 
at the triangular point (12) are obtained as 
 

Ω��` =  1
( 1 −  :�)½ [ 3

4a�
"

+  3
4a�

"
:�  +  B� < 3

2a�
"

+  3µ
4a�

"
B +  -� < 15

16a�
"

−  45µ
169⅔ −  152

169�  −  152
49R

"
B] 

 

Ω��` =  1
( 1 −  :�)½  [ 3 −  3

4a�
"

  −  3
4a�

"
:� +  3

4a�
"

-� +  -� < − 15
89R

"
+  152

169� −  152
49R

"
+  15

169⅔B] 
 

Ω��` =  1
( 1 −  :�)½  [ 3

2a�
"

− 3µ
2a�

"
+  :� < 3

2a�
"

 −  32
9⅔B + -� d−  32

49⅔e 
                          +-�{ 15

89R
"

 −  15
8a�

"
+  152

49⅔ + 152
169�}] 

 
By substituting 9 = 1 −  ^, simplifying, and neglecting product and higher order terms, we obtain, 
 

Ωξξ
ο +  Ωηηο = 3 (1 +  e�

2 −  5µ2 B�) 

 

(Ω��` )�Ω��` � =    [ 27
16 +   45�

16 :� +  3
4 α+   272

4 B� +  45
32 -� − 452

4 -� ] 
 

(Ω��` )� = [  27
16 +  272�

4 −  272
4 +  45

16 :� −  452
16 :� +  452�

16 :� +  3 
4 α − 32(1 − 2)α 

+  B� < − 92  − 632
8 − 92�

8 B + -� <45
32  +   2252

32 −  3152�
16 B 

 
Substituting these values into equation (13) above and neglecting product and higher order terms, we get, 
 4(a�)� +  4( 4 − 3h� )a� +  272( 1 − 2) +  4h� = 0            (14) 
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Where; 
 

h� = 1 +  :�
2 +  2i� − 52

2 -� 

 
And  
 

h� =  32( 1 − 2)α +  92( 1 − 2)-� +  452( 1 − 2)
4 :� −  3152( 1 − 2)

16 -� 

 
Equation (14) is a quadratic equation in  jk, which yields; 
 

a� =  −( 4 − 3h�) ±  { ( 4 − 3h�)� − [272( 1 − 2) +  4h�]}½

2  

 
Its roots are  
 

a� =  �l ± √n
�                      (15) 

 
where the discriminant  
 o =  ( 4 − 3h�)� − [272( 1 − 2) +  4h�]                                                       (16) 
 
From equation (16) above; 
 

o =  ( 4 − 3h�)� − 272 +  272� −  4h�] =  272� + 122�^ +  452�:� +  362�-� −  #�
E�
� -� −

272 − 122^ − 452:� − 362-�  + #A
E
� -� + 1 − 3:� > 0                                        (17) 

 
For the stability of the libration points as given in equation (16) above, and equating the discriminant to zero 
i.e. ∆ = 0 and solving for µ, we obtain the critical mass parameter 2q as: 
 

 2q =  2r −  s �
�A√tuv ^ −  s ��

u√tuv :� − �
u  [ 1 + �#

√tu]-� − 

�$  [ 1 − �


�√tu]-� 

 
Where, 
 

µw =  �
� x 1 −  y�#

�Az  

         
The value of the critical mass parameter to ten decimal places is: - 
 2q =  0.0385208965 −  0.0178349412^ –  0.1872668826:� − 0.06277956556-� +0.1402286564-�                    (18) 
 
Since o > 0, in the interval 0 <  2 < 2q, this implies that the roots of equation (15) are pure imaginary 
numbers, hence the triangular points are stable in this region.  In the interval 2q <  2  < ½, o < 0, the real 
parts of the two roots (15) are positive, therefore the triangular points are unstable. Now, if 2 =  2q, o = 0, 
the roots in (15) are double roots, hence the instability of these points. 
 
The triangular points are thus stable in the interval 0 <  2  < 2q  , where the critical mass parameter depends 
on the influence oblateness up to ��, the semi-major axis and eccentricity of the orbits. 
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5 Conclusions 
 
The positions and linear stability of the triangular libration points have been investigated in the ER3BP and 
are found to be affected by oblateness (J2 & J4), eccentricity (e) and semi-major axis (a) of the orbits. These 
effects on the locations are shown numerically (Tables 2-7) and graphically (Figs. 1-3). It is observed 
generally that for the binary systems NLTT 11748, LP400-22 and J1257+5428, the effect of increasing 
eccentricity is a shift away from the line joining the primaries, and reverse is the case with increase in the 
semi-major axis (Tables 3, 5 and 7). The triangular points also cease to exist as the semi-major axis 
approaches unity and in the quasi-parabolic cases. The quadruple and octupolar mass moment on the other 
hand, cause a shift towards the origin and away from the line joining the primaries respectively.  Our results 
in the circular case confirm with [7,27] in the absence of radiation in their problem and with J4=0 in ours. 
They also agree with those of [4,5] when the primary is spherical and secondary is non-luminous in the latter 
cases and [10] without considering oblateness of the bigger primary as well as neglecting the gravitational 
potential from the circular cluster of material points. Under the same conditions in the elliptic case when the 
octupolar mass moment �� is taken as zero, it verifies the results of [28]. The effects of the perturbations in 
oblateness (J2 & J4) and eccentricity of the orbits (18) is a reduction in the size of the region of stability. As 
such, they have destabilizing tendencies. The triangular points are stable in the interval 0 <  2 < 2q.  The 
mass ratios of the double white dwarf binaries use in this paper (Table 1) are outside this range and are as 
such unstable. 
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Alain and Chenciner. The three-body problem. Scholarpedia: 2111; 2007. 
 
[2] Sharma RK, Subba Rao PV. Collinear equilibria and their characteristics exponents in the restricted 

three-body problem when the primaries are oblate spheroids. Celest. Mech. 1975;12:189–201. 
 
[3] Sharma RK. The linear stability of libration points of the photo-gravitational restricted three-body 

problem when the smaller primary is an oblate spheroid. Astrophys. Space Sci. 1987;135:271–281. 
 
[4] Singh J, Ishwar B. Stability of triangular points in the generalized photogravitational restricted three-

body problem. Bulletin of Astronomy Society of India. 1999;27:415–424. 
 
[5] Abdulraheem A, Singh J. Combined effects of perturbation, radiation and oblateness on the stability 

of equilibrium points in the restricted three-body problem. Astron. J. 2006;131:1880-1885. 
 
[6] Abdul Raheem A, Singh J. Combined effects of perturbations, radiation and oblateness on the 

periodic orbits in the restricted three-body problem. Astrophys Space Sci. 2008;317:9–13.  
DOI: 10.1007/s10509-008-9841-4  
 

[7] Vishnu Namboori NI, Sudheer Reedy D, Sharma RK. Effect of oblateness and radiation pressure on 
angular frequencies at collinear points. Astrophysics and Space Science. 2008;318:161-168. 
Available: http://dx.doi.org/10.1007/s10509-008-9934-0 

 
[8] Kalantonis VS, Perdios EA, Perdiou AE. The Sitnikov family and the associated families of 3D 

periodic orbits in the photogravitational RTBP with oblateness. Astrophysics & Space Science. 
2008;315:323–334. 

 



 
 
 

Singh et al.; BJMCS, 16(3): 1-11, 2016; Article no.BJMCS.24539 
 
 
 

10 
 
 

[9] Arrendondo JA, Guo J, Stoica C, Tamayo C. On the restricted three-body problem with oblate 
primaries. Astrophysics and Space Science. 2012;2:315-322.  
DOI: 10.1007/s10509-012-1085-7 

 
[10] Singh J, Taura JJ. Effects of zonal harmonics and a circular cluster of material points on the stability 

of triangular points in the R3BP. Astrophysics and Space Science. 2013;350:127-132.  
DOI: 10.1007/s10509-013-1719-4¸ISSN 004-640X 

 
[11] Safiya AB, Sharma RK. On the dichotomy in the Earth-Moon system restricted three-body problem. 

Astophysics and Space Science. 2012;1-5.  
DOI: 10.1007/s10509-012-1103-9. Citeulike: 10704869 

 
[12] Abouelmagd EI, El-Shaboury SM. Periodic orbits under combined effects of Oblateness and radiation 

in the restricted problem of three bodies. Astrophysics and Space Science. 2012;341:331-341. 
 
[13] Fokker AD. A consequence of Einstein’s theory of gravitation. The geodesic precession. 

Nederlandsche Akademie van Wetenschappen Proceedigs. 1921;23(1):729-738. 
 
[14] Renzetti G. Exact geodetic precession of the orbit of two-body gyroscope in geodesic motion about a 

third mass. Earth, Moon and Planets. 2012;1:55-59. 
 
[15] Iorio L. Orbital motions as gradiometer for Post-Newtonian tidal effects. Astron. Space Science; 

2014.  
Available: http://dx.doi.org/10.3389/fspas.2014.0003 

 
[16] Szebehely VG. Theory of orbit. Academic Press, New York; 1967. (First Edition)  
 
[17] Singh J, Umar A. Motion in the Photogravitational elliptic restricted three-body problem under an Ob- 

late primary. The Astronomical Journal. 2012a;143:109.  
Available: http://dx.doi.org/10.1088/0004-6256/143/5/109 

 
[18] Umar A, Singh J. Semi-analytic solutions for the triangular points of double white dwarfs in the 

ER3BP: Impact of the body’s oblateness and the orbital eccentricity. Advances in Space Research; 
2015.  
Available: http://dx.doi.org/10.1016/j.asr.2015.01.042  

 
[19] Singh J, Balogun EA. Stability of triangular points in the photogravitational CR3BP with Poynting- 

Robertson drag and a smaller triaxial primary. Astrophysics Space Sci; 2014.  
DOI: 10.1007/s10509-014-2023-7, ISSN 0004-640X 

 
[20] Singh J, Oni L. Effect of oblateness, perturbations, radiation and varying masses on the stability 

points in the R3BP. Astrophysics and Space Science. 2012;344(1):51-61.  
DOI: 10.1007/s/10509-012-1324y 

 
[21] Vidyakin VV. A plane circular task pertaining to three spheroids. Astronomical Journal. 1974; 

51(5):1087-1094. 
 
[22] Singh J, Umar A. Application of binary pulsars to axisymmetric bodies in the elliptic R3BP. 

Astrophysics and Space Science. 2013;348:393-402.  
Available: http://dx.doi.prg/10.1007/s10509-013-1585-0 

 
[23] Sharma RK, Subba Rao PV. Stationary solutions and their characteristic exponents in the restricted 

three-body problem when the more massive primary is an oblate spheroid. Celest. Mech. 1976;13: 
137–149. 



 
 
 

Singh et al.; BJMCS, 16(3): 1-11, 2016; Article no.BJMCS.24539 
 
 
 

11 
 
 

[24] Singh J, Omale AJ. Effects of perturbations in Coriolis and centrifugal forces on the locations and 
stability of libration points in the Robe’s circular restricted three-body problem under an oblate-
triaxial primaries. Advances in Space Research (Impact Factor: 1.36). 2014;55:1. 
DOI: 10.1016/j.asr.2014.08.032 
 

[25] Singh J, Sandah AU. Existence and linear stability of equilibrium points in the Robe’s restricted 
three-body problem with oblateness. Advances in Mathematical Physics; 2012. 
Available: http://dx.doi.org/10.115/2012/679063 

 
[26] Abouelmagd EI, Alhouthuali MS, Juan L. G. Guirao, Malaikah HM. The effect of Zonal Harmonic 

co-efficient in the framework of the restricted three-body problem. Preprint Submitted to Advances in 
Space Research; 2014. 

 
[27] Ishwar B, Elpe A. Secular Solutions of Trianular Equilibrium poins in the Generalized 

Photogravittaional Restricted three-body problem. Astrophysics and Space Science. 2001;277:        
437-446. 
Available: http://dx.doi.org/10.1023/A:1012528929233 
 

[28] Singh J, Umar A. On the stability of triangular equilibrium points in the elliptic R3BP under radiating 
and oblate primaries. Astrophysics and Space Science. 2012b;341:349-358. 
Available: http://dx.doi.org/10.1007/s10509-012-1109-3  

_______________________________________________________________________________________ 
© 2016 Singh et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://sciencedomain.org/review-history/14440 


