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Abstract 
 

We present some cusp forms and their Fourier coefficients on the full modular group 1Γ , using the 
adjoint linear maps, nonanalytic Poincare series and Hecke operators. 
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1 Introduction 
 
Let k be a positive integer and denote by Sk  the space of cusp forms and by kM  the space of modular forms 

of weight k on the modular group1Γ . We shall use H to denote the upper half plane, C/  for the set of 

complex numbers.  
 

Let f  and g be forms in kM  with Fourier coefficients )(ma  and )(mb respectively. For a positive integer 

n define a Dirichlet series of Rankin type by  
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By Deligne’s estimate, previously the Ramanujan-Petersson conjecture, )(;, sL ngf  
is absolutely convergent 

for Re(s)>
2

tk +
. It can be shown that )(;, sL ngf  has a meromorphic continuation to C/ .  

 
Let kMff ∈',  such that f  or 'f  is a cusp form. The Petersson scalar product is defined by  

 

dVyffff k

K
∫=〉〈 )(')(', ττ

 
 

in [1]. Where iyx +=τ ,
2y

dxdy
dV = and K is a fundamental domain for the action of  1Γ on H. 

 
In [2, p. 115], nonanalytic Poincare series is defined by  
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where 1
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dc
M , zdc || +τ  is the Hecke convergence factor, Im τ>0, ν is an arbitrary integer 

and υ is a multiplier system (MS) for 1Γ  in the weight k. The number κ is determined from υ by 



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


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10

11
,10,)( 2 SeS i κυ κπ . Eventually z can be thought of as an arbitrary complex number, 

but in order to guarantee absolute convergence of the double series (1) we assume initially that Rez>2-k. 

Uniform convergence of the series of absolute values implies that )|( zG τν  is holomorphic (in the variable 

z) in the half-plane Rez>2-k and, as a function of ∈τ H, it satisfies the transformation formula     
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In [2, p.118], the Fourier expansion of )|( zG τν is given  by  
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=
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1

2
, ),()(

c

w
cn cnAwZ υν  is Selberg’s Kloosterman zeta-function and  

 

∫
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11)1(),,( dueuu uηβαβαησ  is the notation of Siegel. 

 

In [2, p.125], the function )|( zF τν  is defined by 

 
Fν(τ | z)=y z/2 Gν(τ | z)                                                                                                                         (4) 

 

as a function of τ and z. Where iyx +=τ . It follows from (2) that, )|( zF τν  satisfies the transformation 

formulae  
 

Fν(Mτ | z)=υ(M)(cτ+d)k Fν(τ | z) 
 

By the Fourier expansion (3) of )|( zG τν  and from (4), we obtain the Fourier expansion of )|( zF τν  at 

the cusp point ∞  of the form 
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where the Fourier coefficients )(1 na  and )(2 na  depend upon z. Hence, )|( zF τν  is a modular form of 

weight k and MS υ.  
 
In [2, p. 125], the following lemma is given.  

 

Lemma 1.1: Suppose ν+κ >0, Rez>2-k and f(τ) is a cusp form of weight k and MS υ on 1Γ .  Then,   
 

〈 Fν,f 〉  = 2 νb Γ(k-1+z/2){4π(ν+κ )} 1-k-z/2 
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For n=ν+κ ,  we shall write  Fk-t,n(τ | z) instead of  Fν(τz). Thus, we have    
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In [3], the Hecke operator nT  is defined on kM  by the equation  
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for a fixed integer k and any n=1,2,… 
 

Theorem 1.2: If kMf ∈  and has the Fourier expansion  
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then fTn  has the Fourier expansion 
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for n=1,2,… 
 
In [3], Klein’s modular function )(τJ  is defined by  
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Theorem 1.3: If ∈τ H, we have the Fourier expansion 
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where )(nc are integers. [3] 
 
In [4], W. Kohnen proved the following theorem using analytic Poincare series and the properties of inner 
product.  
 



 
 
 

Kırmacı; BJMCS, 16(3): 1-10, 2016; Article no.BJMCS.25696 
 
 
 

5 
 

Theorem 1.4: The function  
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In [5], Min Ho Lee obtained the Fourier coefficients of Siegel cusp form ��

∗� in terms of Dirichlet series of 
Rankin type associated to the Fourier coefficients of Siegel cusp forms f and g. 

 

In this paper, we shall obtain some cusp forms of integer weight on 1Γ , using nonanalytic Poincare series 

and the properties of inner product. Further, the Fourier coefficients of cusp form fPg
*  of weight k-t on 1Γ  

are written in terms of Dirichlet series of Rankin type associated to the Fourier coefficients of cusp forms f 
and g of weights k and t respectively. Using the properties of  Hecke operators ��, some results for the 

Fourier coefficients of cusp form fTn  are also given. 

 
For several recent results concerning Modular forms, we refer the reader to [6-11].  
 

2 The Results 
 

Theorem 2.1: Let t be a positive integer, k an integer with k>t+2. Let kSf ∈)(τ
 
and tSg ∈)(τ . Then the 
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Proof: Let t be a positive integer, k an integer with k>t+2. Let kSf ∈  and tSg ∈ . The map Pg:Sk-t→Sk, 

h→gh is a linear homomorphism of finite dimensional Hilbert spaces and has an adjoint Pg
*:Sk→Sk-t. Let 

),( nfPa g
∗  be the nth Fourier coefficient of Pg

*f. Since Fk-t,n is a modular form of weight k-t, by Petersson 

scalar product and  using Lemma 1.1, we obtain 
                           
 
         



 
 
 

Kırmacı; BJMCS, 16(3): 1-10, 2016; Article no.BJMCS.25696 
 
 
 

6 
 

〉〈= −
∗∗

ntkggt FfPnfPaw ,,),(.2  

∫ −
−

−

−

=

〉〈=

〉〈=

K

tk
ntk

ntk

ntkg

dVyFH

gFf

FPf

,

,

,

)(

,

,

τ

 

 

where tygfH )()()( τττ = , 
2

1
)4(

)
2

1(

z
tk

t

n

z
tk

w
+−−

+−−Γ
=

π
. From the transformation formulas of f and g, the 

function H(τ) is a modular form of weight k-t on 1Γ .  Hence, we write 
 

∫
∞

−−−∗ =
0

22),,(),(2 dyyeynHanfPaw tkyn
gt

π
                    

 
Thus,  we have  
 

=∗ ),( nfPa g ∫
∞

−−−

0

22),,(
2

1
dyyeynHa

w
tkny

t

π
 

 

where ),,( ynHa  is the nth Fourier coefficient of )(τH  w.r.t. the variable ixe π2 . Using the Fourier 
expansions of f and g in the definition of H, we obtain  
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Theorem 2.2: Let k be an integer with k>2. Let )(1 τg  be a modular function with respect to 1Γ  which is 

analytic on H and kSf ∈)(τ . Then the function, for ∈τ H and ��	 > 2 − 
,  
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for pn =  and ,...2,1, =pm  

 

Proof: Let kSf ∈)(τ . Let k be an integer with k>2. Let kkp SST →: be a Hecke operator  such that

hgh 1→ . Where )(1 τg  is a modular function with respect to 1Γ  which is analytic on H. Since the Hecke 

operators are Hermitian on kS , using Lemma 1.1 and from Petersson scalar product, we obtain 
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By Mellin’s transform, we find,  
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The proof of the following Theorem is similar to that of the Theorem 2.2 and by using Theorem 1.4 
 

Theorem 2.3: Let k be an integer with k>2. Let )(1 τg  be a modular function with respect to 1Γ  which is 

analytic on H and kSf ∈)(τ . Then the function 
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as the Fourier coefficients of ∆nT , respectively. Where )(nc are the Fourier coefficients of Klein’s j -

invariant and  �(�) is Ramanujan’s tau function. 
 

Example 2. Let kSf ∈)(τ , 
 > 14 and �(�) = ∆(�) the discriminant function. From (7), we obtain 
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as the Fourier coefficiens of ��
∗�. Where �(�) is Ramanujan’s tau function.  

 

4 Conclusion 
 
Some cusp forms on the full modular group and their Fourier coefficients  are obtained. Therefore, the result 
of W. Kohnen’s paper [4], from Poincare series to a nonanalytic Poincare series, is extended. 
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