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Abstract

In this paper, we shall establish sufficient conditions for the asymptotic stability of the zero
solution for a certain nonlinear non-autonomous third-order delay differential equation of the
following type

...
x + a(t)ẍ+ b(t)g(ẋ(t− r(t))) + c(t)h(x(t− r(t))) = 0.

By using a Lyapunov functional as a basic technique, we obtain a result which includes and
improves some related results in literature. An example is given in the last section of this paper,
to illustrate our main result of stability.
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1 Introduction

It is well-known that the study of qualitative properties of solutions, in particular an investigation of
their stability, is a very important problem in the theory and applications of differential equations.
The stability of solutions of delay differential equations has been studied by a variety of authors
over the years. We mention only a few of such books, for example, [1], [2], [3], [4], [5] and other
references therein.

So far perhaps the most effective method to determine the stability behaviour of solutions of linear
and nonlinear differential equations, with or without delay, is still the Lyapunov’s second method.

The major advantage of this method is that stability in the large can be obtained without any prior
knowledge of solutions. That is the method yields stability information directly without solving the
equation.

Lyapunov functional is an interesting and fruitful technique to determine the stability behaviour
of solutions of linear and nonlinear differential equations. This technique has gained increasing
significance and has given impetus for modern development of stability theory of differential equations.

Besides it is worth-mentioning, that according to our observation, it can be seen some papers on
the stability of solutions of third-order delay differential equations (see, for example, Abou-El-Ela
et. al. [6], Ademola and Arawomo [7], Afuwape and Omeike [8], Bai and Guo [9], Omeike [10] and
[11], Remili and Beldjerd [12] and [13], Remili and Oudjedi [14], Sadek[15] and [16], Shekhare et.
al. [17], Te.jumo. la and Tchegnani [18], Tunç [19], [20], [21], [22], [23], [24] and [25], Zhu [26]) and
references quoted therein.

In this work, we consider the nonlinear non-autonomous third-order delay differential equation of
the following form

...
x + a(t)ẍ+ b(t)g(ẋ(t− r(t))) + c(t)h(x(t− r(t))) = 0, (1.1)

where 0 ≤ r(t) ≤ γ, γ is a positive constant which will be determined later; a(t), b(t), c(t), g(ẋ)
and h(x) are real-valued functions continuous in their respective arguments; g(0) = h(0) = 0.

The dots indicate differentiation with respect to t and all solutions are assumed real.

Equation of the form (1.1), in which a(t), b(t), c(t) and r(t) are constants has been studied by
several authors, namely: Zhu [26], Sadek [15] and other references therein.

But Abou-El-Ela, Sadek and Mahmoud [6] and Tunç [19] considered a(t), b(t) and c(t) as constants;
0 ≤ r(t) ≤ γ, γ is a positive constant. To mention a few, they obtained criteria which ensure stability
and boundedness of solutions.

On the other hand, for a kind of non-autonomous nonlinear third-order delay differential equations,
the stability and boundedness results have been investigated only by a few researchers such as:

In 2005, Sadek [16] gave sufficient conditions for the asymptotic stability of the zero solution of
third-order delay differential equation

...
x + a(t)ẍ+ b(t)ẋ+ c(t)f(x(t− r)) = 0.

In 2008, Tunç [22] established some sufficient conditions for the asymptotic stability of the zero
solution of nonlinear delay differential equation of third-order

...
x + a(t)ϕ(x, ẋ)ẍ+ b(t)ψ(x, ẋ) + c(t)h(x(t− r)) = 0.
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In 2010, Tunç [24] obtained sufficient conditions for the stability of solutions of non-autonomous
third-order differential equation with a deviating argument r as

...
x + a(t)ẍ+ b(t)g1(ẋ(t− r)) + g2(ẋ) + h(x(t− r)) = 0.

In 2010, Omeike [11] studied the stability of the same above equation on Sadek’s [16] by another
way.

Recently in 2013, Shekhar et. al. [17] investigated the conditions of stability of third-order non-
autonomous nonlinear differential with delay

...
x + a(t)ẍ+ b(t)g(ẋ) + h(x(t− r)) = 0.

In this work, by constructing Lyapunov functional we obtain a new result of stability, which
complement and extend the previously known results.

Remark 1.1. Clearly the equation discussed in Sadek [16] and in Omeike [11] is a special case of
equation (1.1) when r(t) = r and g(ẋ) = ẋ. Moreover, if g(ẋ(t − r(t))) = g(ẋ), r(t) = r and
c(t) = 1 reduces to the case studied by Shekhar et. al. [17].

2 Stability Results

In order to reach the main result of this paper, we shall give some basic information to the stability
criteria for the general non-autonomous differential system with retarded argument

ẋ = f(t, xt), xt = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : [0,∞) × CH →n is a continuous mapping, f(t, 0) = 0. We suppose that f takes closed
bounded sets into bounded sets of n. Here (C, ∥.∥) is the Banach space of continuous functions
ϕ : [−r, 0] →n with supremum norm, r > 0; CH is the open H−ball in C; CH := {ϕ ∈ C([−r, 0],n ) :
∥ϕ∥ < H}.

The following are the classical theorems on uniform stability and uniform asymptotic stability of
(2.1). It goes back to Krasovskii [5].

Theorem 2.1. [27] Let V (t, ϕ) : CH → be a continuous functional satisfying a local Lipschitz
condition and the functions Wi(r), (i = 1, 2) are wedges, satisfying

(i) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤W2(∥ϕ∥) and

(ii) V̇(2.1)(t, xt) ≤ 0.

Then the zero solution of (2.1) is uniformly stable.

Theorem 2.2. [27] If there are a Lyapunov functional V for (2.1) and functions Wi(r), (i = 1, 2, 3)
are wedges such that

(i) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤W2(∥ϕ∥) and

(ii) V̇(2.1)(t, xt) ≤ −W3(|x(t)|).
Then the zero solution of (2.1) is uniformly asymptotically stable.

The main objective of this paper is to prove the following theorem.

Theorem 2.3. Suppose that a(t), b(t) and c(t) are continuously differentiable on [0,∞) and the
following conditions are satisfied

(i) h(0) = 0, h(x)
x

≥ δ0 > 0 (x ̸= 0) and h′(x) ≤ c1, for all x.
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(ii) g(0) = 0, g(y)
y

≥ b > 0 (y ̸= 0) and g′(x) ≤ c2, for all y.

(iii) 0 < δ1 ≤ c(t) ≤ b(t), −L ≤ b′(t) ≤ c′(t) ≤ 0, for t ≥ 0.

(iv) 0 ≤ ∆ ≤ a(t) ≤ L, for t ≥ 0.

(v) 1
2
a′(t) ≤ δ2 ≤ δ1(b− αc1), for t ≥ 0.

(vi) r(t) ≤ γ and r′(t) ≤ β, 0 < β < 1.

(vii)
∫∞
0

|c′(t)|dt <∞, c′(t) → 0 as t→ ∞.

Then the zero solution of (1.1) is uniformly asymptotically stable, provided that

γ < min

{
δ3(1− β)

c1L(1 + α) + L(c1 + c2)(1− β)
,

(α∆− 1)(1− β)

c2L(1 + α) + Lα(c1 + c2)(1− β)

}
,

where

δ3 := δ1(b− αc1)− δ2 > 0.

The following Remark is important for the proof of the main result.

Remark 2.1. From (iii) it follows that b(t) and c(t) are non-decreasing functions on [0,∞). Thus,
since they are continuous on this interval and bounded below by δ1 > 0, they are bounded on [0,∞)
and the limit of each exists at t→ ∞.

Since L in (iii) and (iv) is an arbitrary selected bound, we can also assume that

0 ≤ δ1 ≤ c(t) ≤ b(t) ≤ L,

lim
t→∞

c(t) = c0, lim
t→∞

b(t) = b0,

δ1 ≤ c0 ≤ b0 ≤ L.

(2.2)

Proof of Theorem 2.3. We write equation (1.1) as the following equivalent system

ẋ = y,

ẏ = z,

ż = −a(t)z − b(t)g(y)− c(t)h(x)

+ b(t)

∫ t

t−r(t)

g′(y(s))z(s)ds+ c(t)

∫ t

t−r(t)

h′(x(s))y(s)ds.

(2.3)

Define the Lyapunov functional as

V (t, xt, yt, zt) = e−ν(t) U(t, xt, yt, zt), (2.4)

where ν(t) =
∫ t

0
|c′(s)|ds. It may be assumed that

∫∞
0

|c′(t)|dt ≤ N <∞ and

U(t, xt, yt, zt) =c(t)

∫ x

0

h(ξ)dξ + αc(t)h(x)y +
1

2
a(t)y2 + αb(t)

∫ y

0

g(η)dη + yz

+
1

2
αz2 + λ

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds+ µ

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds,

(2.5)

where α > 0 is any number chosen such that

1

∆
< α <

b

c1
, (2.6)

and λ, µ are two positive constants, which will be determined later.
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So that from (2.5) and (2.3), we find

dU

dt
=c′(t)

∫ x

0

h(ξ)dξ + αc′(t)h(x)y + αc(t)h′(x)y2 +
1

2
a′(t)y2

+ αb′(t)

∫ y

0

g(η)dη + z2 − αa(t)z2 − b(t)g(y)y

+ (y + αz)

{
b(t)

∫ t

t−r(t)

g′(y(s))z(s)ds+ c(t)

∫ t

t−r(t)

h′(x(s))y(s)ds

}
+ λy2r(t)− λ(1− r′(t))

∫ t

t−r(t)

y2(θ)dθ + µz2r(t)− µ(1− r′(t))

∫ t

t−r(t)

z2(θ)dθ.

Since h′(x) ≤ c1, c(t) ≤ L by (2.2); and by using the inequality 2uv ≤ u2 + v2, we have

c(t)(y + αz)

∫ t

t−r(t)

h′(x(s))y(s)ds ≤1

2
c1Lr(t)y

2 +
1

2
c1αLr(t)z

2

+
1

2
c1L(1 + α)

∫ t

t−r(t)

y2(s)ds.

Also since g′(y) ≤ c2, b(t) ≤ L by (2.2); and by using the inequality 2uv ≤ u2 + v2, we obtain

b(t)(y + αz)

∫ t

t−r(t)

g′(y(s))z(s)ds ≤1

2
c2Lr(t)y

2 +
1

2
c2αLr(t)z

2

+
1

2
c2L(1 + α)

∫ t

t−r(t)

z2(s)ds.

Therefore we get

dU

dt
≤c′(t)

∫ x

0

h(ξ)dξ + αc′(t)h(x)y + αc(t)h′(x)y2 +
1

2
a′(t)y2 + αb′(t)

∫ y

0

g(η)dη

+ z2 − αa(t)z2 − b(t)g(y)y +
1

2
L(c1 + c2)r(t)y

2 +
1

2
αL(c1 + c2)r(t)z

2

+
1

2
c1L(1 + α)

∫ t

t−r(t)

y2(s)ds+
1

2
c2L(1 + α)

∫ t

t−r(t)

z2(s)ds

+ λy2r(t)− λ(1− r′(t))

∫ t

t−r(t)

y2(θ)dθ + µz2r(t)− µ(1− r′(t))

∫ t

t−r(t)

z2(θ)dθ.

Since r(t) ≤ γ and r′(t) ≤ β, we find

dU

dt
≤c′(t)

∫ x

0

h(ξ)dξ + αc′(t)h(x)y + αc(t)h′(x)y2 +
1

2
a′(t)y2 + αb′(t)

∫ y

0

g(η)dη

+ z2 − αa(t)z2 − b(t)g(y)y +
1

2
Lγ(c1 + c2)y

2 +
1

2
αLγ(c1 + c2)z

2

+ λy2γ +

{
1

2
c1L(1 + α)− λ(1− β)

}∫ t

t−r(t)

y2(s)ds

+ µz2γ +

{
1

2
c2L(1 + α)− µ(1− β)

}∫ t

t−r(t)

z2(s)ds.

If we take

λ =
c1L(1 + α)

2(1− β)
> 0, µ =

c2L(1 + α)

2(1− β)
> 0. (2.7)
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So that

dU

dt
≤c′(t)

∫ x

0

h(ξ)dξ + αc′(t)h(x)y +
1

2
a′(t)y2 + αb′(t)

∫ y

0

g(η)dη

−
[
c(t)

{
b(t)

c(t)

g(y)

y

}
y2 − αc(t)h′(x)y2 − λγy2 − 1

2
Lγ(c1 + c2)y

2

]
− 1

2

{
2(αa(t)− 1)− Lαγ(c1 + c2)− 2µγ

}
z2.

From (i), (ii) and (2.2), we have

dU

dt
≤c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y +
1

2
a′(t)y2

−
{
δ1(b− αc1)−

1

2
Lγ(c1 + c2)− λγ

}
y2

− 1

2

{
2(αa(t)− 1)− Lαγ(c1 + c2)− 2µγ

}
z2.

According to (iv), αa(t) ≥ α∆ > 1 by (2.6); thus

dU

dt
≤c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y +
1

2
a′(t)y2

−
{
δ1(b− αc1)−

1

2
Lγ(c1 + c2)− λγ

}
y2

− 1

2

{
2(α∆− 1)− Lαγ(c1 + c2)− 2µγ

}
z2.

From (v), it follows that

d

dt
U(t, xt, yt, zt) ≤c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y

+

{
δ2 − δ1(b− αc1) +

1

2
Lγ(c1 + c2) + λγ

}
y2

− 1

2

{
2(α∆− 1)− Lαγ(c1 + c2)− 2µγ

}
z2.

If we let δ3 := δ1(b− αc1)− δ2 > 0, then from (2.7) we find

d

dt
U(t, xt, yt, zt) ≤c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y

−
{
δ3 −

1

2
Lγ(c1 + c2)−

c1L(1 + α)

2(1− β)
γ

}
y2

−
{
(α∆− 1)− 1

2
Lαγ(c1 + c2)−

c2L(1 + α)

2(1− β)
γ

}
z2.

(2.8)

Next we show that

c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y ≤ 0, for all x, y and t ≥ 0.

From (iii), −L ≤ b′(t) ≤ c′(t) ≤ 0 for t ≥ 0, if c′(t) = 0 then

c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y = αb′(t)

∫ y

0

g(η)dη ≤ 0,
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since b′(t) ≤ 0 and
∫ y

0
g(η)dη ≥ 0.

For those t′s such that c′(t) < 0 and b′(t)
c′(t) < 1; by (iii) we have

c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y

≤ c′(t)

{∫ x

0

h(ξ)dξ + α

∫ y

0

g(η)dη + αh(x)y

}
.

Since h′(x) ≤ c1 and g(y)
y

≥ b > 0 implies that
∫ y

0
g(η)dη ≥ 1

2
by2, therefore we find

c′(t)

∫ x

0

h(ξ)dξ + αb′(t)

∫ y

0

g(η)dη + αc′(t)h(x)y

≤ c′(t)

{
1

2

α

b
(by + h(x))2 +

∫ x

0

(1− α

b
h′(ξ))h(ξ)dξ

}
≤ c′(t)

∫ x

0

(1− αc1
b

)h(ξ)dξ ≤ c′(t)δ4

∫ x

0

h(ξ)dξ ≤ 0,

where δ4 ≡ 1− αc1
b
> 1−

( b
c1

).c1

b
= 0, for all x, y and t.

Thus we can write (2.8) as the following

d

dt
U(t, xt, yt, zt) ≤−

{
δ3 −

1

2
Lγ(c1 + c2)−

c1L(1 + α)

2(1− β)
γ

}
y2

−
{
(α∆− 1)− 1

2
Lαγ(c1 + c2)−

c2L(1 + α)

2(1− β)
γ

}
z2.

If we choose

γ < min

{
δ3(1− β)

c1L(1 + α) + L(c1 + c2)(1− β)
,

(α∆− 1)(1− β)

c2L(1 + α) + Lα(c1 + c2)(1− β)

}
,

then we have

d

dt
U(t, xt, yt, zt) ≤− k1(y

2 + z2), for some k1 > 0. (2.9)

Since the integrals λ
∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds and µ

∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds are non-negative, then from

(2.5) we have

U ≥c(t)
{∫ x

0

h(ξ)dξ + α
b(t)

c(t)

∫ y

0

g(η)dη + αh(x)y

}
+

1

2
a(t)y2 + yz +

1

2
αz2.

From the conditions b(t)
c(t)

≥ 1, c(t) ≥ δ1 ≥ 0; by (iii), and g(y)
y

≥ b > 0 implies that
∫ y

0
g(η)dη ≥

1
2
by2, then we obtain

U(t, xt, yt, zt) ≥δ1
{∫ x

0

h(ξ)dξ +
1

2

α

b
(by + h(x))2 − 1

2

α

b
h2(x)

}
+

1

2
a(t){y + z

a(t)
}2 + 1

a(t)
(αa(t)− 1)z2.

According to (iv) and (2.6), clearly αa(t) − 1 is positive. Thus there exist a positive constant δ5

7
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such that

U(t, xt, yt, zt) ≥ δ1

[ ∫ x

0

{
1− α

b
h′(ξ)

}
h(ξ)dξ +

1

2

α

b
(by + h(x))2

]
+

1

2
δ5(y

2 + z2)

≥ δ1

∫ x

0

{
1− α

b
h′(ξ)

}
h(ξ)dξ +

1

2
δ5(y

2 + z2)

≥ δ1δ4

∫ x

0

h(ξ)dξ +
1

2
δ5(y

2 + z2).

Since h(x)
x

≥ δ0 > 0, then we have

U(t, xt, yt, zt) ≥
1

2
δ0δ1δ4x

2 +
1

2
δ5(y

2 + z2).

Then there exists a positive constant k2 such that

U(t, xt, yt, zt) ≥ k2(x
2 + y2 + z2), (2.10)

where k2 := min{ δ0δ1δ4
2

, δ5
2
}.

Therefore we can find a continuous function W1(|ϕ(0)|) with W1(|ϕ(0)|) > 0 and W1(|ϕ(0)|) ≤
V (t, ϕ).

Now we shall prove that there exists a continuous function W2(∥ϕ∥) which satisfies the inequality
V (t, ϕ) ≤W2(∥ϕ∥).

Since h′(x) ≤ c1, g
′(y) ≤ c2 and h(0) = g(0) = 0, then by using the mean-value theorem we find

h(x) ≤ c1x and g(y) ≤ c2y. Therefore we obtain

U(t, xt, yt, zt) ≤
1

2
Lc1x

2 + αLc1|xy|+
1

2
Ly2 +

1

2
αLc2y

2 + |yz|+ 1

2
αz2

+ λ

∫ t

t−r(t)

(θ − t+ r(t))y2(θ)dθ + µ

∫ t

t−r(t)

(θ − t+ r(t))z2(θ)dθ.

From (vi) and since |uv| ≤ 1
2
(u2 + v2), then we get

U(t, xt, yt, zt) ≤
1

2
Lc1x

2 +
1

2
αLc1(x

2 + y2) +
1

2
Ly2 +

1

2
αLc2y

2 +
1

2
(y2 + z2) +

1

2
αz2

+
1

2
λr2(t)∥y∥2 + 1

2
µr2(t)∥z∥2

≤ 1

2
Lc1(1 + α)∥x∥2 + 1

2
{αL(c1 + c2) + 1 + L+ λγ2}∥y∥2

+
1

2
(1 + α+ µγ2)∥z∥2.

Therefore there exists a positive constant k3 such that

U(t, xt, yt, zt) ≤ k3(x
2 + y2 + z2), (2.11)

where k3 := min

{
Lc1(1+α)

2
, αL(c1+c2)+1+L+λγ2

2
, 1+α+µγ2

2

}
.

From (2.4) we have

d

dt
V (t, xt, yt, zt) = e−ν(t)

{
d

dt
U(t, xt, yt, zt)− |c′(t)|U(t, xt, yt, zt)

}
.

8
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By using the inequalities (2.9), (2.10) and the fact that |c′(t)| ≥ 0, we obtain

dU

dt
− |c′(t)|U ≤ −k1(y2 + z2)− k2(x

2 + y2 + z2),

therefore, if

γ < min

{
δ3(1− β)

c1L(1 + α) + L(c1 + c2)(1− β)
,

(α∆− 1)(1− β)

c2L(1 + α) + Lα(c1 + c2)(1− β)

}
,

then we have

d

dt
V (t, xt, yt, zt) ≤ −k4 e−ν(t)(x2 + y2 + z2), for some k4 > 0

≤ −W3(|x(t)|).
(2.12)

Therefore from (2.10), (2.11) and (2.12) the Lyapunov functional V (t, xt, yt, zt) satisfies all the
conditions of Theorem 2.2, so that the zero solution of (1.1) is uniformly asymptotically stable.

Thus the proof of Theorem 2.3 is now complete.

3 Example

In this section, we give an example to illustrate the main stability result.

We consider the following third-order nonlinear non-autonomous delay differential equation

...
x + (

1

4
sin t+

5

4
)ẍ+ (1 +

1

t2 + 2
){2ẋ(t− r(t)) + sin ẋ(t− r(t))}

+
1

28
(
1

4
+

1

t2 + 3
)x(t− r(t)) = 0.

(3.1)

This equation can be stated as the following equivalent system

ẋ = y,

ẏ = z,

ż = −(
1

4
sin t+

5

4
)z − (1 +

1

t2 + 2
)(2y + sin y)

+ (1 +
1

t2 + 2
)

∫ t

t−r(t)

{2 + cos y(s)}z(s)ds

− 1

28
(
1

4
+

1

t2 + 3
)x+

1

28
(
1

4
+

1

t2 + 3
)

∫ t

t−r(t)

y(s)ds.

(3.2)

So we have

0 < ∆ =
1

4
≤ a(t) =

1

4
sin t+

5

4
≤ 3

2
= L,

1

2
a′(t) =

1

8
cos t ≤ 1

8
= δ2, for all t ≥ 0,

0 < 1 ≤ b(t) = 1 +
1

t2 + 2
≤ 3

2
,

−3

2
< b′(t) =

−2t

(t2 + 2)2
≤ 0, for all t ≥ 0,

0 < δ1 =
1

4
≤ c(t) =

1

4
+

1

t2 + 3
≤ 7

12
,
−3

2
< c′(t) =

−2t

(t2 + 3)2
≤ 0.

9
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Then we can note that

0 <
1

4
= δ1 ≤ c(t) ≤ b(t) ≤ L =

3

2
,

lim
t→∞

c(t) = c0 =
1

4
, lim

t→∞
b(t) = b0 = 1, δ1 ≤ c0 ≤ b0 ≤ L.

Now from (3.1) and (3.2) we obtain

g(y) = 2y + sin y, g(0) = 0,
g(y)

y
= 2 +

sin y

y
≥ 1 = b > 0 (y ̸= 0),

g′(y) = 2 + cos y, g′(y) ≤ 3 = c2, for all y.

h(x) =
1

28
x, h(0) = 0,

h(x)

x
=

1

28
= δ0 > 0, h′(x) =

1

28
<

1

14
, for all x.

If we let α = 6, then we get

δ1(b− αc1) =
1

7
≥ δ2 =

1

8
, for all t ≥ 0, then δ3 := δ1(b− αc1)− δ2 =

1

56
> 0.

From the above definition of c(t), we have∫ ∞

0

|c′(t)|dt = 1

3
<∞, c′(t) → 0 as t→ ∞.

Then all the assumptions of Theorem 2.3, (2.2) and (2.6) are satisfied, we can conclude using
Theorem 2.3 that the zero solution of (3.1) is uniformly asymptotically stable.

4 Conclusion

The problem of the asymptotic stability of delay differential equations is very important in the
theory and applications of differential equations. In the present paper, sufficient conditions were
obtained for the asymptotic stability of the zero solution for a certain third-order nonlinear non-
autonomous differential equation with the variable delay. By using a Lyapunov direct method as a
basic technique, a Lyapunov functional was defined and used to obtain our results. The obtained
results are new and extend existing results of stability in the literature on deterministic system of
delay differential equation.
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