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ABSTRACT 
 

Introduction: In previous studies, other function of adult hippocampal neurogenesis besides 
memory and learning has not been studied. The aim of this study is to discover other function of 
hippocampal neurogenesis, especially in addiction period. 
Materials and Methods: In this experiment 48 male Sprague-Dawley were randomly divided in 
four groups: 1) socialized 2) isolated 3) addicted socialized rats 4) addicted isolated rats. At the end 
of experiments short term memory, feeding behavior, blood glucose, zinc, anxiety level and 
neurogenesis were assessed. 
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Results: Short term memory was impaired in addicted isolated rats compared to addicted 
socialized rats. Food consumption increased in addicted social rats compared to addicted isolated 
rats. Level of blood glucose increased in addicted socialized rats compared to addicted isolated 
rats. Anxiety level increased in addicted isolated rats compared to addicted socialized rats. 
Neurogenesis decreased in addicted isolated rats compared to addicted socialized rats. Zinc was 
elevated in addicted isolated rats compared to addicted socialized rats. 
Conclusion: Feeding behavior can be regulated by adult hippocampal neurogenesis in addiction 
period, and socialization improves it. Also along with these positive effects co morbid psychiatric 
disorder such as an anxiety improves in addiction period. 
 

 

Keywords: Neurogenesis; memory; Y-maze; anxiety; addicted; zinc and glucose. 
 

1. INTRODUCTION 
 
Contrary to earlier dogma, it is now acceptable 
that adult brain is capable of generating new 
neurons [1]. Adult neurogenesis predominantly 
occurs in two regions of brain; subventricular 
zone and subgranular zone of hippocampus [2]. 
Newly generated neurons are involved in tuning 
the hippocampus to changing environment [3]. 
These changes may help in improving rewarding 
experiences or facilitate the avoidance of 
stressful conditions [4]. It is believed that there is 
a balance between positive and negative 
reinforcing states and, any disbalance may result 
in mood imbalances like anxiety and depression 
[5]. In addition, neuronal loss can lead to memory 
impairment as assessed by Morris water maze 
[6]. Since neurogenesis should be activated in 
quiescent neurons. In subventricular zone in is 
promoted by injury, ischemia and infarction [7] 
and from this area they are migrating to olfactory 
bulb where they differentiate into granule and 
periglomerular cells [2]. There are growing 
evidences that link energy balance and food 
intake to adult hippocampal neurogenesis [8].  
 

Socialization promotes new habits and skills in 
individuals [9]. Social interaction is especially 
important during childhood as it facilitates 
learning, reasoning, comprehension and critical 
thinking [10]. In addition, adult socialization helps 
in acquiring new values and behaviors 
associated with new adult statuses and roles. 
Environmental enrichment is more powerful than 
socialization in strength for activating 
neurogenesis [11]. In contrast, social isolation 
during adulthood can bring about a variety of 
troubles like personality disorder, family 
instability and social problems [12]. Social 
isolation impairs learning and memory formation, 
and promotes mood disturbances [13].  
 
Feeding behavior is a habit that regulated by 
many mechanisms. But the exact regulatory 
mechanisms are not well understood. Feeding 

behavior is a complex behavior that is regulated 
by hypothalamus [14]. It is regulated by hormonal 
and paracrine factors. Studies in this context for 
role of hippocampus are growing. Some studies 
have proved it for regulation of food intake [15]. 
Some studies suggest the association between 
rewarding center and control of food intake [16]. 
It is suggested that intake of large amount of 
drug or food can unbalanced these circuits and 
result in compulsive usage of food or drugs. Thus 
proper function of these circuits can result in 
balanced intake and food and drug intake has 
been related to close circuits. These circuits are 
also regulated by endogenous opioids [17].          
Also enough neurogenesis dependent on 
establishment of proper feeding habit, and 
enough neurogenesis helps habits that is needed 
for successful tolerance of morphine addiction. 
Excessive feeding can be addictive behavior that 
is the result of disturbances of reward center 
circuits [18]. So changes in feeding behavior can 
be considered as a sign of proper rewarding 
center function and neurogenesis regulates this 
circuit [19,20]. So in this study feeding behavior 
was assessed to examine the effect of morphine 
and socialization on feeding center that itself is 
regulated by neurogenesis.  
 

Feeding behaviors are well regulated behaviors 
for obtaining and consuming foods. These 
ingestive behaviors are regulated by neural 
circuits embedded within central nervous system 
[21]. However, current literature lacks exacts 
mechanisms involved in the regulation of feeding 
behavior. Classical studies have indicated the 
role paraventricular nucleus and lateral 
hypothalamic area as feeding centers. In 
addition, arcuate hypothalamic nucleus has 
recently gained much attention for the neuronal 
control of appetite and metabolism [14]. 
Interestingly, hippocampus has been recently 
highlighted for regulation of food intake [15,22]. 
Kanoski et al. [8] showed that ghrelin signalling in 
ventral subregion of hippocampus contributes to 
food intake and learned appetite behaviors. 



Regulation of food intake also r
communication between hypothalamic 
homeostatic circuits and reward circuits 
suggested that intake of large quantities of 
food/drug can disturb these circuits and may 
result in compulsive ingesting behaviors. In 
addition, endogenous opioids are also involved in 
the regulation of food intake and it appears to be 
linked with reward-dependent feeding 
 

Relapse to drug abuse can happen through two 
major mechanisms: 1) inadequacy of rewarding 
center that manifest itself through repeated and 
compulsive abuse despite adverse effects 2) co 
morbid psychiatric disorders occurrence such as 
anxiety and depression [23]. Neurogenesis 
reduces side-effects of drug abuse through its 
ability to positively enhance function of rewarding 
center [24] and also through improvement of co 
morbid psychiatric disorder such as depression 
and anxiety [25,26]. In this regard feeding 
behavior can also be regulated by rewarding 
center in a positive manner [27]. A disturbance of 
feeding behavior through increase in intak
food is the result of disturbed rewarding center 
function. 
 

Transition from occasional usage to uncontrolled 
and compulsive state is not a predictable 
behavior [28]. Defining behaviors that render 
development of such behavior is important. In 
this study, feeding behavior was assessed as
indicator of good prognosis. Since normal 
feeding behavior is indicative of healthy 
functioning of rewarding center. Also proper 
feeding is associated with behaviors that prevent 
addiction development [18]. In addition, addiction 
involves pathological disruption of neural 
processes that are normally important for reward
related learning and memory. For successful 
drug withdrawal and abstinence, intact short
memory is essential [29]. Thus, disturbed feeding 
patterns can be considered as co
memory impairment and mood imbalances that 
worsen prognosis in addiction period. 
 

Zinc is an essential element for many types of 
enzymes in brain [30]. Of the organs in brain that 
needs zinc is hippocampus that is involved in 
memory and other cognitive abilities. In rats with 
Alzheimer disease, zinc deficiency deteriorates 
cognitive function [31]. Neurogenesis can be 
affected by alternations of zinc level and 
bioavailability [31,32]. 
 

The aim of this study is to prove the hypothesis 
that socialization in addiction period increases 
neurogenesis that in turn increases food intake 
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Regulation of food intake also relies on 
communication between hypothalamic 
homeostatic circuits and reward circuits [16]. It is 
suggested that intake of large quantities of 
food/drug can disturb these circuits and may 
result in compulsive ingesting behaviors. In 
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the regulation of food intake and it appears to be 

dependent feeding [17]. 
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. A disturbance of 

feeding behavior through increase in intake of 
food is the result of disturbed rewarding center 

Transition from occasional usage to uncontrolled 
and compulsive state is not a predictable 

. Defining behaviors that render 
development of such behavior is important. In 
this study, feeding behavior was assessed as an 
indicator of good prognosis. Since normal 
feeding behavior is indicative of healthy 
functioning of rewarding center. Also proper 
feeding is associated with behaviors that prevent 
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involves pathological disruption of neural 
processes that are normally important for reward-
related learning and memory. For successful 
drug withdrawal and abstinence, intact short-term 

. Thus, disturbed feeding 
atterns can be considered as co-morbid with 

memory impairment and mood imbalances that 
worsen prognosis in addiction period.  

Zinc is an essential element for many types of 
. Of the organs in brain that 

needs zinc is hippocampus that is involved in 
memory and other cognitive abilities. In rats with 
Alzheimer disease, zinc deficiency deteriorates 

. Neurogenesis can be 
affected by alternations of zinc level and 

The aim of this study is to prove the hypothesis 
that socialization in addiction period increases 
neurogenesis that in turn increases food intake 

as an indicator of proper rewarding center 
function and also improves co morbid psychiatric 
disorder such as mood disturbance and short 
term memory that causes relapse to drug abuse.
 
2. MATERIALS AND METHODS 
 
2.1 Animal Care 
  
The experimental protocols followed in this study 
were conformed to the guidelines for the care 
and use of laboratory animals published 
national institution of health (NIH Publication No. 
85-23, revised 1996) and was further approved 
by the institutional ethical committee at Tehran 
University of medical science (Tehran, Iran).
 

2.2 Animals 
 
In this study male Sprague
weighting 200-250 grams were used. In each 
group 8 rats were used in four groups. It should 
be noted that one rat was used for modeling 
socialization in two socialized groups
48 rats were used (Fig. 1). 
 

 
Fig. 1. Experimental groups

 
2.3 Addiction 
 
Rat’s receives 0.75 mg/rat/day morphine 
sulphate (IP) for 14 days. Morphine was 
prepared in powder form (Temad Co.). It was 
dissolved in distilled water. 
  
2.4 BrdU Preparation 
 
BrdU is analogue of base thymidine
incorporated into the DNA of newly generated 
neurons that is divided in dentate gyrus of 
hippocampus. After immunostaining the neurons 
that contain BrdU get color of brown. BrdU 
powder was purchased from Sigma
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Isolation
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Company. 50 mg/kg/rat were dissolved in normal 
saline (N/S 0.9%). Then it was injected 
interaperitoneally once a day at the same time. 
 

2.5 Isolation 
 
Animals were isolated in cages covered with 
black plastic for 14 days plus one week for 
adaptation to environment. 
 

2.6 Socialization 
 
Two animals were kept together in one large 
cage. 
 

2.7 Experimental Procedure 
 
After addiction period in day 14 Y-maze, feeding 
behavior and blood sugar were assessed. For 
performing novelty a suppressed feeding test rat 
for 24 hour fasted and in the following day 
experiment was done. Then rats anesthetized 
and brain was perfused with paraformaldehyde 
4%. Then the brain removed from the                
skull for obtaining brain sections for 
immunohistochemistry (Figs. 2 and 3). 
 

2.8 Feeding Behavior Assessment  
 

Twenty-four hour food and water intake were 
noted in rats. Food and water were weighed in 
the beginning and compared with that at the end. 
For this experiment, all rats were housed 

separately and tap water and food pellets were 
introduced to each cage.  
 

2.9 Novelty Suppressed Feeding Test   
 
This test was performed to assess anxiety-
induced hypophagia in rats. Rats were housed 
individually, and food pellets were removed from 
their cages. Water was made freely available. 
After 24 hours, rats were tested. The testing 
apparatus consisted of a square open field 
chamber (30 cm long × 30 cm wide × 20 cm 
high). A piece of chow was placed in the center 
of the testing apparatus. Each rat was placed in 
a corner of the testing apparatus, and the latency 
to the first feeding episode was recorded for 5 
min [33]. 
 

2.10 Y-maze  
 
We used a Y-shaped maze with three arms 
placed at 120° angle from each other. Each arm 
was 40 cm long, 30 cm high and 15 cm wide 
converging on a triangular central area with 15 
cm at its longest axis. This test was used to 
assess short term memory involving many parts 
of brain like; hippocampus, basal forebrain, 
septum and prefrontal cortex. In this study we 
considered prefrontal cortex function for short 
term memory assessment by recording 
spontaneous alternation in a single 8 minute 
session. Each rat was placed at one end of              
the maze and then allowed to move freely.

 

 
 

Fig. 2. Interventions in control groups 
 

 
 

Fig. 3. Interventions in treatments groups 

One week for 
acclimatization in 

isolated and socialized 
rats (controls)

BrdU injection for 14 
days in isolated and 

socialized rats 
(controls)

In day 15 rats were 
tested for behavioral 

experiments, 
biochemicals and 
neurogenesis in 

isolated and socialized 
rats (controls)

One week for 
acclimatization in 

isolated and socialized 
addicted rats 
(Treatments)

BrdU and morphine 
injection for 14 days in 
isolated and socialized 

addicted rats 
(Treatments)

In day 15 rats were 
tested for behavioral 

experiments, 
biochemicals and 
neurogenesis in 

isolated and socialized 
addicted rats 
(Treatments)
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The sequence of each arm entry recorded 
manually (i.e., ABCBCAACACBABCB, etc.).  A 
spontaneous alternation behavior, which 
is regarded as a measure of spatial memory, was 
defined as the entry into all three arms on 
consecutive choices in overlapping triplet sets 
(i.e., ABC, ABA, CAB, and CBC). The percent 
spontaneous alternation behavior was calculated 
as the ratio of actual to possible alternations. 
Percent Alternation = Actual Alternation (i.e., 
ABC, CBA = 6) / Maximal Alternation*(i.e., 
ABCBCABCABCACBA = 15 – 2 = 13) 100 = 
(6/13)100 = 46.15%. * Total number of arms 
entered minus 2. The test was done once for 
each animal [34]. 
 

2.11 Blood Sugar  
 

For performing this experiment tails of rats were 
cut with scissor for obtaining blood. Blood was 
placed in glucose strips test. Then glucose level 
was assessed with glucometer (Roche, 
No.GN02531992). 
 

2.12 Zinc Assessment 
 
For obtaining plasma, after thoracotomy before 
paraformaldehyde perfusion five milliliter blood 
was taken from left heart. After coagulation and 
centrifugation plasma was collected in 
microtubes and stored in -70 centigrade. For 
preparing plasma for analysis of zinc level first 
they were incubated with 65% citric acid for 2 
hours. Then for one hour they were incubated 
with 65% perchloric acid.  The final solution was 
examined with atomic spectroscopy (Varian-220-
FS-aa). After obtaining absorbed wavelength it 
was adjusted with calibration curve and 
expressed as p.p.m.  
 

2.13 Neurogenesis 
 
For preparation of brains for BrdU staining, BrdU 
was injected 14 days interaperitoneally. It should 
be noted that in acclimatization period BrdU was 
not injected. BrdU is an analogue of thymine 
base which is incorporated in DNA of newly 
proliferated neurons in dentate gyrus of 
hippocampus. However, after day 14 rats before 
sacrificing, rats were sedated with xylazine (10 
mg/kg) and anesthetized with ketamine (100 
mg/kg). Brain after fixation with 
paraformaldehyde was removed from the skull 
and for one week kept in mixture solutions of 
paraformaldehyde and sucrose.  Brain sections 
in region of dentate gyrus of hippocampus were 
prepared with cryostat with the thickness of            

30 µm. Brain sections were stained according to 
kit protocol with primary and secondary antibody 
(5-Bromo-2-dU Labeling and Detection Kit ll; 
Roche, Germany, Cat. No. 11299964001-en-17).  

 
2.14 Quantification of BrdU Positive Cells 
 
Every fifth section throughout the hippocampus 
(total 10 sections for each rat) was processed for 
BrdU immunohistochemistry. All BrdU-positive 
cells in the sub granular zone (SGZ), hilus, 
granular cell layer (GCL) and molecular layer 
were assessed using light microscope (Zeiss, 
Germany) were counted in a blinded manner 
bilaterally. BrdU positive cells were counted in 
dentate gyrus in rostrocaudal fashion. As shown 
in Fig. 10 regions that were counted in 
hippocampus were whole dentate gyrus. BrdU 
positive neurons appeared much bigger than 
usual and appeared as singles or cluster cells. 
Mean were estimated for every five sections in 
this study and neurons were not multiplied by 
each section count [13]. 
  

2.15 Statistics  
 
Data analysis was performed with SPSS version 
22 and Graph Pad prism version 5. Univariate 
(Two-way) ANOVA was performed with two 
factors (Addition × Socialization) and if variance 
was significantly different, Post hoc Tukey was 
done for analysis of mean difference. Data was 
represented as mean ± SEM. * means significant 
difference between adjacent group and $, & and 
# means significant different between those apart 
from each other. 
 

3. RESULTS 
 
3.1 Short Term Memory  
 
Statistical analysis with Univariate (Two-way) 
ANOVA showed that variance is significantly 
different among four groups for short term 
memory (F: 17.993, DF: 1 and P: 0.008).  Post 
hoc analysis with Tukey showed, in addiction 
period, short term memory was impaired in 
addicted isolated rats compared to addicted 
socialized rats in addiction period (Interaction 
between factors (Socialization × Addiction) F: 
17.993, DF: 1 and P: 0.008) (Fig. 4). 
 

3.2 Feeding Behavior  
 

A.  Statistical analysis with Univariate (Two-
way) ANOVA showed that variance is 
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significantly different among four groups 
for food intake (F: 26.544, DF: 1 and P: 
0.000). Post hoc analysis with Tukey 
showed, In addiction period, total amount 
of food and water in 24 hour decreased in 
addicted isolated rats compared to 
addicted socialized rats (Interaction 
between factors (Socialization × Addiction) 
F: 8.375, DF: 1 and P: 0.011). Also rats in 
isolation group consume less food than 
socialized group (P: 0.000). 

B.  Statistical analysis with Univariate (Two-
way) ANOVA showed that variance is 

significantly different among four groups 
for water intake (F: 7.803, DF: 1 and P: 
0.011).  Post hoc analysis with Tukey 
showed, Addicted isolated rats consume 
more water than addicted socialized rats 
that may indicator of high metabolism and 
more toxic substance (Interaction between 
factors (Socialization × Addiction) F: 7.479, 
DF: 1 and P: 0.013). Adversely rats in 
isolation group consume less water than 
socialized rats that is indicator of fewer 
metabolisms in this group (P: 0.046) (Figs. 
5A and B). 

 

 
 

Fig. 4. Short term memory was assessed by Y-maze / sec (n=8) 
Data was represented by Mean ± SEM.* means significant difference between adjacent groups (Socialized × 

Isolated in Non-Addicted groups and Socialized × Isolated in Addicted groups) 
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Fig. 5. A. Amount of food intake / gram (n=8) B. Amount of water intake / ml (n=8) 
Data was represented by Mean ± SEM. * means significant difference between adjacent groups (Socialized × 

Isolated in Non-Addicted groups and Socialized × Isolated in Addicted groups) 
 

3.3 Blood Sugar  
 
Statistical analysis with Univariate (Two-way) 
ANOVA showed that variance is significantly 
different among four groups for blood glucose (F: 
13.940, DF: 1 and P: 0.001).  Post hoc analysis 
with Tukey showed, in addiction period, level of 

glucose was increased in addicted isolated              
rats compared to addicted socialized rats 
(Interaction between factors (Socialization × 
Addiction) F: 4.763, DF: 1 and P: 0.041).                    
Also isolated rats had higher level of                     
glucose than socialized group P: 0.0393)                   
(Fig. 6). 

 

 
 

Fig. 6. Level of blood glucose mg/dl (n=8) 
Data was represented by Mean ± SEM. * means significant difference between adjacent groups (Socialized × 

Isolated in Non-Addicted groups and Socialized × Isolated in Addicted groups) 
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3.4 Anxiety Level Assessing with Novelty 
Suppressed Feeding (NSF) Test  

 
Statistical analysis with Univariate (Two-way) 
ANOVA showed that variance is significantly 
different among four groups for anxiety level 
assessing with NSF (F: 7.724, DF: 1 and P: 
0.032). Post hoc analysis with Tukey showed, in 
addiction period, level of anxiety was increased 
in addicted isolated rats compared to addicted 
socialized rats (Interaction between factors 
(Socialization × Addiction) F: 9.553, DF: 1 and P: 
0.005). Isolated rats had lower anxiety level 
compared to socialized rats in control groups (P: 
0.026). Also Addicted isolated rats had higher 
anxiety compared to isolated rats (P: 0.0062) 
(Fig. 7). 
 
3.5 Zinc Assessment 
  
Statistical analysis with Univariate (Two-way) 
ANOVA showed that variance is significantly 
different among four groups for zinc level in 
serum (F: 50.541, DF: 1 and P: 0.000). Post hoc 
analysis with Tukey showed, in addiction period, 
in addicted socialized rats zinc increased 
compared to addicted isolated rats (Interaction 
between factors (Socialization × Addiction) F: 
25.925, DF: 1 and P: 0.001). In isolated rats zinc 
decreased compared to socialized rats in control 

groups (P: 0.045). Also, in addicted socialized 
rats zinc increased significantly compared to 
control and isolated rats (P: 0.045) (Fig. 8). 
 

3.6 Neurogenesis 
 
Statistical analysis with Univariate (Two-way) 
ANOVA showed that variance is significantly 
different among four groups for newly generated 
neurons (F: 13.804, DF: 1 and P: 0.002). Post 
hoc analysis with Tukey showed, neurogenesis 
decreased in addicted isolated rats compared to 
addicted socialized rats during addiction period 
(Interaction between factors (Socialization × 
Addiction) F: 5.648, DF: 1 and P: 0.030). 
Socialized rats in control groups had more 
neurogenesis than rats in isolation (P; 0.000). 
Addicted socialized rats had fewer neurogenesis 
than socialized rats (0.02). Rats in isolated group 
had more neurogenesis than addicted isolated 
rats (P: 0.000) (Figs. 9 and 10). 
 

4. DISCUSSION 
 
For the first time, our study shows that 
socialization during addiction period improves 
feeding behavior, neurogenesis, mood 
disturbances and stress responses. Furthermore, 
we showed that addiction groups have worse 
prognosis than socialized and isolated groups.  

 

 
 

Fig. 7. Level of anxiety / sec (n=8) 
 Data was represented by Mean ± SEM. * means significant difference between adjacent groups (Socialized × 
Isolated in Non-Addicted groups and Socialized × Isolated in Addicted groups) and $ between those apart from 

each other 
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Fig. 8. Level zinc in serum assessed by atomic spectrophotometer (n=6) 
Data is represented as mean ± SEM. * means significant difference between adjacent groups (Socialized × 

Isolated in Non-Addicted groups and Socialized × Isolated in Addicted groups) and $ and & between those apart 
from each other 

 

 
 

Fig. 9. Neurogenesis in dentate gyrus of hippocampus (n=6) 
Data was represented by Mean ± SEM. * means significant difference between adjacent groups (Socialized × 
Isolated in Non-Addicted groups and Socialized × Isolated in Addicted groups) and $, # and & between those 

apart from each other 

 
Satiety - the absence of hunger or feeling of 
fullness is regulated in several ways. Previous 
studies have revealed its time dependent 
regulation. Forty-eight hour food deprivation 
elicited some responses in different from those in 
short-term (24 h and 6 h) food deprivation [21].  
In this study, we observed that hippocampal 
neurogenesis affects short-term food deprivation 
[35]. It has been suggested that BDNF plays an 

important role in regulating hippocampal 
neurogenesis and it may affect neuronal circuits 
involved in satiety [36]. In addition, neuropeptide 
Y - a neurotransmitter involved in neurogenesis 
and neuronal guidance, also controls food intake 
[15]. Also in the other way it can alter food intake 
by changing emotional states that impart 
regulated by hippocampus. In this study it was 
assessed by novelty suppressed feeding test.  
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Emotional states can alter feeding behaviors by 
hormonal influences [37]. Hormones like 
glucocorticoids, leptin, adiponectin, resistin, and 
insulin affect hippocampal neurogenesis and this 
in return may influence the function of feeding 
center [38]. Furthermore, depressed state can 
motivate an individual to take high-
can reduce hippocampal neurogenesis 

 

Fig. 10. A) Different parts of dentate gyrus of Hippocampus have been marked in picture
Counting of BrdU positive cell ha

(MOL) (outer (OML), middle (MML) and inner (IML)), granular cell layer (GCL) and hilus (sub 
granular zone (SGZ) and deep hilus). Newly generated neurons were counted in these
(40X magnification). B, C, D and E
groups. They may be in single or cluster forms. It should be noted that all newly generated 

neurons have not been marked by arrows (400X magnification) (n=6)
Data was represented by Mean ± SEM
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Adult hippocampal neurogenesis is highly 
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Previously, stress has been studied in two forms: 
acute and chronic. The effect of acute stress on 
neurogenesis is quite controversial. It has been 
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On the other hand, studies indicate that social 
defeat and restraint stress can reduce the rate of 
neurogenesis [41-43], but prolonged restraint 
stress may not affect it [44-46]. Therefore, it 
seems that duration, frequency and intensity of 
stressors may influence neurogenesis. 
 
It is well evident that chronic stress decreases 
hippocampal neurogenesis, especially in 
neonatal mice [47]. It may reduce survival and 
inhibit proliferation of new neurons [48]. 
Interestingly, hippocampus - dependent learning 
as demonstrated by water maze training, causes 
acute downregulation of adult neurogenesis [49]. 
In accordance to previous studies, we found that 
social isolation - induced chronic stress reduces 
neurogenesis during drug addiction period. 
 
Stressful events lead to the activation of 
hypothalamus-pituitary-adrenal (HPA), which in 
turn, triggers glucocorticoid release. It has been 
observed that administration of corticosterone 
decreases both, proliferation and survival of new 
neurons [50]. Furthermore, elevated pro-
inflammatory cytokines have also been linked to 
neurodegeneration [51,52]. Following stress, IL-1 
expression has shown to be dramatically 
enhanced in hypothalamus [53,54]. 
 
Adult hippocampal neurogenesis is vital for the 
regulation of feeding behavior and neuropeptide 
Y can potentiate both, neurogenesis and food 
intake. Hokfelt et al. [15] showed that mice 
deficient in Y1 or Y2 receptor had fewer 
proliferating precursor cells and neuroblasts in 
SVZ and rostral migratory stream and fewer 
neurons in the olfactory bulb expressing 
calbindin, calretinin or tyrosine hydroxylase. We 
found that socialization promotes food and water 
intake during addiction period, thereby attaining 
the state of nutritional balance. 
 
Another important subject to be discussed is the 
role of circadian rhythm in regulating 
neurogenesis and feeding behavior [55]. 
Furthermore, feeding behavior is affected by 
light- dark cycle. In a complex circadian control 
pathway, light-controlled rhythms are primary 
regulators of neuronal proliferation, and 
hormonal and activity-driven influences over 
neurogenesis are secondary events [55]. In a 
study, glucocorticoids have shown to increase 
food intake in rats by increasing sensitivity to 
leptin and insulin [56]. In addition to increased 
sensitivity to leptin and insulin, glucocorticoids 
also increase the sensitivity to melanocortin 
action [57]. Hence, in our study, reduced appetite 

can be partly attributed to changes in circadian 
rhythm and hormonal sensitivity caused by 
isolation.  
 
Current literature lacks much information about 
the effect of diet and nutrition on adult 
hippocampal neurogenesis. In a study, high-fat 
diet impairs hippocampal neurogenesis in male 
rats [58]. However, other diets have not been 
studied yet. Neuronal lipoprotein lipase (LPL) is 
essential for regulating energy balance by 
hydrolyzing triglycerides. Picard et al. [59] 
demonstrated that inhibition of hippocampal LPL 
activity can increase ceramide (a core 
constituent of all complex sphingolipids) 
biosynthesis, which in turn enhances 
neurogenesis. It is evident that ceramide levels 
control dendritic spine maturation and cognition. 
Furthermore, caloric restriction and exercise 
enhances progenitor cell survival and 
proliferation, respectively [58,60], and social 
isolation can delay this exercise-induced 
neurogenesis [61]. The responding ability of new 
hippocampal neurons to triglycerides changes 
shows that new neurons may be affected by 
nutritional status affect [59]. Furthermore, Perera 
et al. [36] reported that  higher blood glucose 
levels were associated with higher rate of 
neurogenesis. The current study establishes that 
socialization can improve feeding behavior and 
therefore, can attain nutritional balance in the 
body. However, further studies are needed to 
assess effects of different types of diet on 
neurogenesis.  
 
Specific mechanisms that link hippocampal 
neurogenesis with the hypothalamus and 
appetite regulation remain unclear. There are two 
reasons for considering the involvement of 
hippocampus in regulating energy balance. First, 
hippocampus is part of limbic system and 
appetite center is located in hypothalamus. 
Secondly, hippocampal projections spread to 
adjacent areas like feeding center [36]. In 
addition, a study shows that BDNF knock-out 
rats have poor regulation of food intake                    
and demonstrate diminished hippocampal 
neurogenesis [36,62]. We observed low glucose 
intake by isolated rats during addiction, which 
can be due to the increase in metabolic demand 
for restoring neurogenesis.  
 

Leptin- an adipose derived hormone, effects 
hypothalamic receptors that control food intake. It 
increases hippocampal cell proliferation by 
interacting with leptin receptors on hippocampal 
progenitor cells [36,63].  
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Ghrelin is a hormone and neuropeptide which is 
involved in regulating energy balance via 
hypothalamic circuits [64]. Ghrelin also plays an 
important role in regulating reward perception in 
dopamine neurons that link ventral tegmental 
area to nucleus accumbens [65]. However, the 
role of exogenous Ghrelin in promoting 
neurogenesis via regulating behavior needs to be 
investigated. 
 
Independent of its cognitive functions, 
hippocampus plays a distinctive role in mediating 
mood balance. Current literature demonstrates 
that selective impairment of hippocampal 
neurogenesis can exhibit a striking increase in 
anxiety-related behaviors [5,66]. Hippocampus 
may respond to stress by altering nutritional 
balance in order to combat adverse effects of 
mood disturbance. Effect of stress on feeding 
behavior is controversial. According to some 
studies, stress increases food intake, whereas 
other reports contradict this observation. 
However, sustained chronic stress seems to 
decrease appetite [67]. 
 
Social interaction profoundly effects 
neurogenesis and this effect can at least be 
partly attributed to oxytocin [68]. A study 
suggests the therapeutic effect of oxytocin for 
treating amphetamine abuse [69]. 
 
In this study zinc decreased in isolated rats, also 
addicted socialized rats had higher level of zinc 
compared to isolated and control rats. This 
emphasizes on role of pair state (socialization) 
on balance of zinc level. Zinc is a necessary 
element may be for enough level of 
neurogenesis [32]. Also neurogenesis in 
hippocampus may directly or indirectly through 
rewarding center regulates addictive behaviors. 
Changes in neurogenesis can be resulted in 
some ways by reduced level of zinc such as 
lower level of connective tissue that result in 
lower level of stem cells niches [31]. 
 
5. CONCLUSION 
 
Hippocampal neurogenesis regulates feeding 
behavior along with co morbid psychiatric 
disorders in a positive manner. These positive 
effects increase with socialization. With 
increasing neurogenesis with socialization, 
rewarding center function back to normal state 
sooner. So with restoring neurogenesis adverse 
effect of drug abuse can be prevented. Also this 
study showed that there is interrelated 
relationship between feeding behavior and co 

morbid psychiatric disorders such as depression 
and anxiety in addiction period and both are 
regulated by neurogenesis. 
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