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Abstract

Let X and Y be Banach spaces and Ω be an open subset of X. Let f : X → Y be a Fréchet
differentiable function on Ω and F : X ⇒ 2Y be a set valued mapping with closed graph. We
deal with smooth generalized equations which is defined by the sum of Fréchet differentiable
function and a set valued mapping. Under some sufficient conditions, a Gauss-type proximal
point algorithm (G-PPA) is introduced and studied for solving generalized equations of the
form 0 ∈ f(x) + F (x). Indeed, when F is metrically regular we analyze semi-local and local
convergence of the G-PPA. Furthermore, we give a numerical example to justify the convergence
results of the G-PPA.
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1 Introduction

Let X and Y be Banach spaces. We are involved with the problem of seeking a point x ∈ Ω ⊆ X
satisfying

0 ∈ f(x) + F (x), (1.1)

where f : X → Y is a Fréchet differentiable function and F : X ⇒ 2Y is a set valued mapping with
closed graph. Robinson [1, 2], introduced the generalized equation (1.1) for f = 0, as a general
mechanism for describing, analyzing, and solving different problems in a unified way. Such kind
of problems have been reviewed broadly. Various examples are system of inequalities, variational
inequalities, linear and nonlinear complementary problems, system of nonlinear equations, equilibrium
problems, etc.; see in [1, 2, 3].

It is clarify that when F = {0}, (1.1) is an equation. When F is the normal cone to a convex and
closed set in X, (1.1) performs variational inequalities. When F is positive orthand in Rn, (1.1) is
a system of inequalities.

Different iterative methods have been presented for solving generalized equations such as Newton-
type method, proximal point method, etc.; see in [4, 5, 6, 7]. The proximal point algorithm (PPA) is
one of the most useful method for solving (1.1) in the case f = 0 and Y = X a Hilbert space. About
the root of PPA can be known in the works of Martinet [8] for variational inequalities. This PPA
has been further polished and spread out in [3, 7, 9] to a more general framework, including convex
programs, convex-concave saddle point problems and variational inequality problems. Rockafellar
[7] earnestly analyzed the PPA in the general structure of maximal monotone inclusions.

Let D(λk, x) denotes the subset of X for all x ∈ X and for some sequence of positive numbers λk,
which is characterized as follows:

D(λk, x) :=
{
d ∈ X : 0 ∈ λkd+ f(x+ d) + F (x+ d)

}
. (1.2)

Dontchev and Rockafellar [10] planned the following proximal point algorithm for solving (1.1):

Algorithm 1 (PPA)

Step 1. Let x0 ∈ X, λ > 0 and put k := 0.
Step 2. If 0 ∈ D(λk, xk), then stop; otherwise, go to Step 3.
Step 3. Put {λk} ⊆ (0, λ) and if 0 /∈ D(λk, xk), choose dk such that dk ∈ D(λk, xk).

Step 4. Write xk+1 := xk + dk.
Step 5. Set k by k + 1 and go to Step 2.

Note that, for a starting point near to a solution, the sequences generated by Algorithm 1 are not
uniquely defined and not every sequence is convergent. Under certain conditions, Dontchev and
Rockafellar [10, Chapter 6] showed that there exists one sequence {xn} generated by Algorithm 1,
which is linearly convergent to the solution. Hence, from the aspect of mathematical estimations,
this type of methods are not agreeable in mathematical utilizations. This barrier inspire us to
nominate a method ”so called” Gauss-type proximal point algorithm (G-PPA). The difference

2



Alom and Rashid; ARJOM, 2(4), 1-15, 2017; Article no.ARJOM.31288

between the Algorithm 1 and our proposed Algorithm 2 is that the G-PPA generates sequences,
whose every sequence is convergent, but this does not happen for the Algorithm 1.

Algorithm 2 (G-PPA)

Step 1. Let η ≥ 1, x0 ∈ X, λ > 0 and put k := 0.
Step 2. If 0 ∈ D(λk, xk), then stop; otherwise, go to Step 3.
Step 3. Put {λk} ⊆ (0, λ) and if 0 /∈ D(λk, xk), choose dk such that dk ∈ D(λk, xk)
and ∥dk∥ ≤ η dist (0, D(λk, xk)).
Step 4. Write xk+1 := xk + dk.
Step 5. Set k by k + 1 and go to Step 2.

We detect from the Algorithm 2, that

(i) if η = 1 and D(λk, xk) is singleton, Algorithm 2 matches with the Algorithm 1. For solving
the generalized equation problem (1.1), Dontchev and Rockafellar [10, Chapter 6] established
only the local convergence result. On the other hand, we have established both semilocal
and local convergence results for solving (1.1).

(ii) if λku = gk(u) a sequence of Lipschitz continuous functions, F is the normal cone mapping
and Y = X∗ a dual Banach space of X, Algorithm 2 is identical to the Gauss-type proximal
point method for variational inequalities, which has been introduced by Rashid [3]. In this
case our Theorem 3.1 is identical with the result given by Rashid [3, Theorem 3.1].

(iii) if f = 0, and Y = X a Banach space, Algorithm 2 is equivalent to the Gauss-type proximal
point method, which have been introduced by Rashid et al. [11].

(iv) if λku = gk(u) a sequence of Lipschitz continuous functions and f = 0, Algorithm 2 is
comparable to the general version of Gauss-type proximal point algorithm, which have been
introduced by Alom et al. [4].

There have been investigated many effective works on semi-local analysis for some special cases such
as Newton method for nonlinear least square problems (cf. [5]), the extended Newton-type method
for solving variational inclusions (cf. [12]) and the Gauss-Newton method for convex inclusion
problems (cf. [13]). For seeking the solution of (1.1), Rashid et al. [6] introduced the Gauss-
Newton type method and achieved the semi-local and local convergence results. In his sequential
paper [3], Rashid introduced the Gauss-type proximal point method for finding the solution of
variational inequality problem and obtained the semi-local and local convergence results. In recent
time, Alom et al. [4] have been presented the general version of Gauss-type proximal point algorithm
for solving (1.1) in the case f = 0 and analyzed the semi-local and local convergence results. To
the best of our knowledge, there is no study on semi-local analysis for solving (1.1) by using the
Gauss-type proximal point method. Thus, we conclude that the contributions, presented in this
study, seem new.

In this study, our ambition is to evaluate the semi-local convergence of the G-PPA defined by
Algorithm 2. The vital apparatus in our study are the metric regularity property, which was
introduced by Dontchev and Rockafellar [14], and Lipschitz-like property for set-valued mappings,
whose concept was introduced by Aubin [15, 16]. Our fundamental results are the convergence
principle, entrenched in section 3, which, based on the information around the initial point, provide
some sufficient conditions assure the convergence to a solution of any sequence generated by
Algorithm 2. As a consequence, local convergence result for the G-PPA is achieved.

The content of this paper is arranged as follows: In section 2, we recall some significant notations,
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concepts, some preliminary results and also recall a fixed point theorem which has been proved
by Dontchev and Hager (cf. [17]). This fixed-point theorem is the vital mechanism to prove the
existence of any sequence generated by Algorithm 2. In section 3, we consider the G-PPA, which
is introduced in this section, as well as the concept of metric regularity property and the Lipschitz-
like property for set valued mappings to show the existence and the convergence of the sequence
generated by Algorithm 2. To verify the convergence results of the G-PPA, we give a numerical
example in section 4. In the last section, we give a summary of the main results obtained in the
paper.

2 Notations and Preliminary Results

In the whole section, let X and Y be Banach spaces and let F be a set valued mapping from X into
the subsets of Y , defined by F : X ⇒ 2Y . The graph of F is defined by the set gphF := {(x, y) ∈
X × Y : y ∈ F (x)}, the domain of F is defined by domF := {x ∈ X : F (x) ̸= ∅} and the inverse of
F is defined by F−1(y) := {x ∈ X : y ∈ F (x)}. By Br(x), we denote the closed ball centered at x
with radius r.

All the norms are denoted by ∥·∥. The distance from a point x to a set B is defined by dist(x,B) :=
inf{∥x − a∥ : a ∈ B} for each x ∈ X, while the excess from a set E to the set B is defined by
e(E,B) := sup{dist(x,B) : x ∈ E}.

The concept in the following definition of metric regularity for a set valued mapping is taken from
[[11]], and has been studied extensively; see for examples [9, 10, 18], and the references therein.

Definition 2.1. Let F : X ⇒ 2Y be a set-valued mapping and (x̄, ȳ) ∈ gphF . Let rx̄ > 0, rȳ > 0
and κ > 0. Then F is said to be

(i) metrically regular at (x̄, ȳ) on Brx̄(x̄)×Brȳ (ȳ) with constant κ if for all x ∈ Brx̄(x̄), y ∈ Brȳ (ȳ)

dist
(
x, F−1(y)

)
≤ κ dist

(
y, F (x)

)
.

(ii) metrically regular at (x̄, ȳ) if there exist constants r′x̄ > 0, r′ȳ > 0 and κ′ > 0 such that F is
metrically regular at (x̄, ȳ) on Br′x̄

(x̄)× Br′ȳ
(ȳ) with constant κ′.

From [3], we recall the definition of Lipschitz-like continuity for set-valued mappings. This concept
was introduced by Aubin [16] and has been studied extensively; see for examples [11, 14, 18] and
the references therein.

Definition 2.2. Let Γ : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphΓ. Let rx̄ > 0, rȳ > 0
and M > 0. Then Γ is said to be Lipschitz-like at (ȳ, x̄) on Brȳ (ȳ)× Brx̄(x̄) with constant M if for
any y1, y2 ∈ Brȳ (ȳ), the following inequality hold:

e(Γ(y1) ∩ Brx̄(x̄),Γ(y2)) ≤M∥y1 − y2∥.

The equivalence relation between metric regularity of a mapping F and the Lipschitz-like continuity
of the inverse F−1, which can be seen in [9, 11], is given as follows:

Lemma 2.1. Let F : X ⇒ 2Y be a set valued mapping and (x̄, ȳ) ∈ gphF . Let rx̄ > 0, rȳ > 0 and
κ > 0. Then F is metrically regular at (x̄, ȳ) on Brx̄(x̄)× Brȳ (ȳ) with constant κ if and only if its
inverse F−1 : Y ⇒ 2X is Lipschitz-like at (ȳ, x̄) on Brȳ (ȳ)×Brx̄(x̄) with constant κ, that is, for all
y, y′ ∈ Brȳ (ȳ),

e(F−1(y) ∩ Brx̄(x̄), F
−1(y′)) ≤ κ∥y − y′∥.

We finish this section with the following lemma. This lemma is known as Banach fixed point lemma
which has been proved by Dontchev and Hagger in [17].
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Lemma 2.2. Let ψ : X ⇒ 2X be a set-valued mapping. Let η0 ∈ X, r ∈ (0,∞) and α ∈ (0, 1) be
such that

dist(η0, ψ(η0)) < r(1− α) (2.1)

and for any x1, x2 ∈ Br(η0),

e(ψ(x1) ∩ Br(η0), ψ(x2)) ≤ α∥x1 − x2∥. (2.2)

Then ψ has a fixed point in Br(η0), that is, there exists x ∈ Br(η0) such that x ∈ ψ(x). If ψ is
single-valued, then there exists x ∈ Br(η0) such that x = ψ(x).

3 Convergence Analysis of the G-PPA

Suppose X and Y are Banach spaces. Let f : X → Y be a single valued function, which is Fréchet
differentiable on Ω ⊆ X, and let F : X ⇒ 2Y be a set valued mapping with closed graph. Let
rx̄ > 0, rȳ > 0, ν > 0 and κ > 0 be such that νκ < 1. We define

r∗ := max
{2rx̄ + κrȳ

1− νκ
,
2νrx̄ + rȳ
1− νκ

}
. (3.1)

From (3.1), it is obvious that rx̄ < r∗ and rȳ < r∗.

To establish our main result, we need the following lemma:

Lemma 3.1. Let F : X ⇒ 2Y be a set valued mapping which has locally closed graph at (x̄, ȳ) ∈
gphF . Let r∗ be defined by (3.1). Let F be metrically regular at (x̄, ȳ) on Br∗(x̄) × Br∗(ȳ) with
constant κ. Let f : X → Y be Lipschitz continuous on Br∗(x̄) with Lipschitz constant ν and
f(x̄) = 0. Then the mapping f + F is metrically regular at (x̄, ȳ) on Brx̄(x̄)× Brȳ (ȳ) with constant
κ

1− νκ
.

Proof. According to our assumption on F , we obtain

dist
(
x, F−1(y)

)
≤ κ dist

(
y, F (x)

)
for all x ∈ Br∗(x̄), y ∈ Br∗(ȳ).

For all x ∈ Brx̄(x̄) and y ∈ Brȳ (ȳ), we will show that

dist
(
x, (f + F )−1(y)

)
≤ κ

1− νκ
dist

(
y, (f + F )(x)

)
.

To complete this, we will proceed by induction on k and verify that there exists a sequence {xk} ⊆
Br∗(x̄), with x0 = x, such that, for k = 0, 1, 2, ..., satisfies the following assertions:

xk+1 ∈ F−1(y − f(xk)) (3.2)

and
∥xk+1 − xk∥ ≤ (νκ)k∥x1 − x∥. (3.3)

It is obvious that (3.3) is true for k = 0. From the second condition in (3.1), we get 2νrx̄ + rȳ ≤
r∗(1 − νκ) and since νκ < 1, so (1 − νκ) is positive, and hence 2νrx̄ + rȳ ≤ r∗. This implies that
νrx̄ + rȳ ≤ r∗. Thus, for all x ∈ Brx̄(x̄) and y ∈ Brȳ (ȳ), we have

∥(y − f(x))− ȳ∥ = ∥y − ȳ + f(x̄)− f(x)∥ ≤ ∥f(x)− f(x̄)∥+ ∥y − ȳ∥
≤ ν∥x− x̄∥+ ∥y − ȳ∥ ≤ νrx̄ + rȳ ≤ r∗. (3.4)

This implies that y−f(x) ∈ Br∗(ȳ). Since F has locally closed graph, there exists x1 ∈ F−1(y−f(x))
with x0 = x and it shows that (3.2) is true for k = 0. Again, since F is metrically regular, we obtain

∥x1 − x∥ ≤ dist
(
x, F−1(y − f(x))

)
≤ κ dist

(
y, (f + F )(x)

)
. (3.5)
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Also,

∥x1 − x∥ = ∥x1 − x̄+ x̄− x∥ ≤ ∥x− x̄∥+ ∥x̄− x1∥ ≤ rx̄ + dist
(
x̄, F−1(y − f(x))

)
≤ rx̄ + κ dist

(
y − f(x), F (x̄)

)
≤ rx̄ + κ∥y − ȳ∥+ κ∥f(x)− f(x̄)∥

≤ rx̄ + κrȳ + νκrx̄ = (1 + νκ)rx̄ + κrȳ. (3.6)

Hence

∥x1 − x̄∥ ≤ ∥x1 − x∥+ ∥x− x̄∥ ≤ (1 + νκ)rx̄ + κrȳ + rx̄ = (2 + νκ)rx̄ + κrȳ. (3.7)

Since νκ < 1, we have from the first condition in (3.1) that

(2 + νκ)rx̄ + κrȳ <
2rx̄ + κrȳ
1− νκ

≤ r∗.

Thus, from (3.7), we have

∥x1 − x̄∥ ≤ r∗.

This implies that x1 ∈ Br∗(x̄). By using (3.7), we get

∥(y − f(x1))− ȳ∥ = ∥y − ȳ + f(x̄)− f(x1)∥ ≤ ∥y − ȳ∥+ ∥f(x1)− f(x̄)∥
≤ ∥y − ȳ∥+ ν∥x1 − x̄∥ ≤ rȳ + ν[(2 + νκ)rx̄ + κrȳ]

= 2νrx̄ + rȳ + νκ(νrx̄ + rȳ). (3.8)

From the second condition in (3.1), we get 2νrx̄ + rȳ ≤ r∗(1− νκ) and since (1− νκ) is positive, so
2νrx̄ + rȳ ≤ r∗ implies that νrx̄ + rȳ ≤ r∗. Thus, we get from (3.8) that

∥(y − f(x1))− ȳ∥ ≤ r∗(1− νκ) + νκr∗ = r∗.

This shows that y − f(x1) ∈ Br∗(ȳ). Since F has locally closed graph, there exists x2 ∈ F−1(y −
f(x1)) and it is clear that (3.2) is true for k = 1. Also, since F is metrically regular and x0 = x,
we obtain

∥x2 − x∥ ≤ dist
(
x, F−1(y − f(x1))

)
≤ κ dist

(
y − f(x1), F (x)

)
≤ κ dist

(
y − f(x1), y − f(x)

)
≤ νκ∥x1 − x∥. (3.9)

From (3.6) and (3.9), we get

∥x2 − x̄∥ ≤ ∥x2 − x∥+ ∥x− x̄∥ ≤ νκ∥x1 − x∥+ rx̄ ≤ νκ
[
(1 + νκ)rx̄ + κrȳ

]
+ rx̄

=
(
1 + νκ+ (νκ)2

)
rx̄ + (νκ)κrȳ =

1

1− νκ
rx̄ + (νκ)κrȳ. (3.10)

Since
1

1− νκ
<

2

1− νκ
and νκ <

1

1− νκ
for all values of νκ such that νκ < 1, so by using the first

condition in (3.1), we take the decision from (3.10) that

∥x2 − x̄∥ <
2

1− νκ
rx̄ +

1

1− νκ
κrȳ

=
2rx̄ + κrȳ
1− νκ

≤ r∗.

This implies that x2 ∈ Br∗(x̄). Using the metric regularity condition on F , we obtain

∥x2 − x1∥ ≤ dist
(
x1, F

−1(y − f(x1))
)
≤ κ dist

(
y − f(x1), F (x1)

)
≤ κ dist

(
y − f(x1), y − f(x)

)
≤ νκ∥x1 − x∥.
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This shows that (3.3) is true for k = 1. Thus, we have obtained two constructed points x1, x2 for
which (3.2) and (3.3) are true for k = 0, 1. We assume that x1, x2, ..., xn are constructed such that
(3.2) and (3.3) are true for k = 0, 1, 2, .., n− 1. By induction hypothesis, we have to construct xn+1

such that (3.2) and (3.3) hold for k = n.

We will first show that xi ∈ Br∗(x̄) for all i = 1, 2, ..., n. By using (3.3), for such an i, we have

∥xi − x∥ ≤
i−1∑
j=0

∥xj+1 − xj∥ ≤
i−1∑
j=0

(νκ)j∥x1 − x∥ ≤ 1

1− νκ
∥x1 − x∥. (3.11)

Again, using (3.11), (3.6) and the first condition in (3.1), we obtain

∥xi − x̄∥ ≤ ∥xi − x∥+ ∥x− x̄∥ ≤ 1

1− νκ
∥x1 − x∥+ ∥x− x̄∥

≤ 1

1− νκ

[
(1 + νκ)rx̄ + κrȳ

]
+ rx̄ =

2rx̄ + κrȳ
1− νκ

≤ r∗. (3.12)

This implies that xi ∈ Br∗(x̄) for all i = 1, 2, ..., n. Using (3.12) for i = n and by the second
condition in (3.1), we get

∥(y − f(xn))− ȳ∥ ≤ ∥y − ȳ∥+ ∥f(x̄)− f(xn)∥ ≤ ∥y − ȳ∥+ ν∥xn − x̄∥

≤ rȳ + ν
(2rx̄ + κrȳ

1− νκ

)
=

2νrx̄ + rȳ
1− νκ

≤ r∗.

This shows that y− f(xn) ∈ Br∗(ȳ). Since F has locally closed graph, there exists xn+1 ∈ F−1(y−
f(xn)) and it shows that (3.2) holds for k = n. Using the metric regularity condition on F , we
obtain

∥xn+1 − xn∥ ≤ dist
(
xn, F

−1(y − f(xn))
)
≤ κ dist

(
y − f(xn), F (xn)

)
≤ κ dist

(
y − f(xn), y − f(xn−1)

)
≤ κ ∥f(xn)− f(xn−1)∥

≤ νκ ∥xn − xn−1∥ ≤ (νκ)n∥x1 − x∥. (3.13)

The induction steps are completed, and therefore (3.2) and (3.3) are satisfied for all k. By (3.13)
with x0 = x, we get

∥xn+1 − x∥ ≤
n∑

i=0

∥xi+1 − xi∥ ≤
n∑

i=0

(νκ)i∥x1 − x∥ ≤ 1

1− νκ
∥x1 − x∥. (3.14)

By (3.14) and the relation
1

1− νκ
∥x1 − x∥+ ∥x− x̄∥ ≤ r∗ from (3.12), we obtain

∥xn+1 − x̄∥ ≤ ∥xn+1 − x∥+ ∥x− x̄∥ ≤ 1

1− νκ
∥x1 − x∥+ ∥x− x̄∥ ≤ r∗.

This shows that xn+1 ∈ Br∗(x̄). Since νκ < 1, we see from (3.13) that the sequence {xk} is
a Cauchy sequence, and all its elements are in Br∗(x̄). Hence, this sequence converges to some
x̂ ∈ Br∗(x̄), that is, x̂ = limk→∞xk. Then taking limit in (3.2) and the local closedness of gphF ,
satisfies x̂ ∈ F−1(y − f(x̂)), that is, x̂ ∈ (f + F )−1(y).

Moreover, by using (3.3) and (3.5), we obtain

dist
(
x, (f + F )−1(y)

)
≤ ∥x̂− x∥ = lim

k→∞
∥xk − x∥ ≤ lim

k→∞

k∑
i=0

∥xi+1 − xi∥

≤ lim
k→∞

k∑
i=0

(νκ)i∥x1 − x∥ ≤ 1

1− νκ
∥x1 − x∥

≤ κ

1− νκ
dist

(
y, (f + F )(x)

)
.
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Therefore the proof of the Lemma 3.1 is completed.

Choose a sequence of scalars {λk} ⊆ (0, λ). For each x ∈ X, define a mapping H(λk,x) : X → Y by

H(λk,x)(·) = −λk(· − x), (3.15)

and a set valued mapping ψ(λk,x) : X ⇒ 2X by

ψ(λk,x)(·) = (f + F )−1[H(λk,x)(·)]. (3.16)

Here we present the statement and a proof of our vital result, which ensures the existence and the
semi-local convergence of any sequence generated by the Gauss-type proximal point algorithm by
using some sufficient conditions with initial point x̄:

Theorem 3.1. Suppose η > 1 and that (f + F ) is metrically regular at (x̄, ȳ) on Brx̄(x̄)× Brȳ (ȳ)

with constant
κ

1− νκ
and gph(f + F ) ∩ (Brx̄(x̄)× Brȳ (ȳ)) is closed. Let δ > 0 be such that

(a) δ ≤ min
{rx̄

2
,

rȳ
(3η + 1)λ

, 1
}
,

(b) 3ηκλ+ νκ ≤ 1,

(c) ∥ȳ∥ < λδ.

Suppose that

lim
x→x̄

dist
(
ȳ, f(x) + F (x)

)
= 0. (3.17)

Then, with initial point x̄, there exists some δ̂ > 0 such that Algorithm 2 generates at least one
sequence and any generated sequence {xk} converges to a solution x∗ ∈ Bδ̂(x̄) of (1.1), that is, x∗

satisfies that 0 ∈ f(x∗) + F (x∗).

Proof. It is sufficient to show that Algorithm 2 generates at least one sequence and any generated
sequence {xk} satisfies

∥xk − x̄∥ ≤ 2δ, (3.18)

and

∥xk+1 − xk∥ ≤
(1
2

)k+1

δ. (3.19)

We will proceed by mathematical induction. For this aim, we define, for each x ∈ X,

r(λ,x) :=
3κ

2(1− νκ)

(
∥ȳ∥+ λ∥x− x̄∥

)
. (3.20)

Since η > 1, by the conditions (b) and (c) we have, for each x ∈ B2δ(x̄),

r(λ,x) ≤
3κ

2(1− νκ)
3λδ ≤ 3

2η
δ <

3

2
δ < 2δ. (3.21)

Take 0 < δ̂ ≤ δ such that

dist
(
0, f(x0) + F (x0)

)
≤ λδ for each x0 ∈ Bδ̂(x̄) (3.22)

(nothing that such δ̂ exists by (3.17) and assumption (c)). We see that (3.18) is obviously true for
k = 0. In order to show (3.19) is valid for k = 0, it is sufficient to prove that the point x1 exists, that
is, D(λ0, x0) ̸= ∅. To complete this, we have to prove that D(λ0, x0) ̸= ∅ by applying Lemma 2.2 to

the mapping ψ(λ0,x0) with η0 = x̄, r := r(λ,x0) and α :=
1

3
. Below we show that assertions (2.1) and

8



Alom and Rashid; ARJOM, 2(4), 1-15, 2017; Article no.ARJOM.31288

(2.2) of Lemma 2.2 are satisfied with η0 = x̄, r := r(λ,x0) and α :=
1

3
. Granting this, Lemma 2.2 is

applicable to conclude that there exists a fixed point x̂1 ∈ Br(λ,x0)
(x̄) such that x̂1 ∈ ψ(λ0,x0)(x̂1),

which implies that H(λ0,x0)(x̂1) ∈ (f + F )(x̂1), that is, 0 ∈ λ0(x̂1 − x0) + (f + F )(x̂1).

To proceed, note that x̄ ∈ (f + F )−1(ȳ) ∩ Br(λ,x0)
(x̄). By using the definition of excess e with the

mapping ψ(λ0,x0) in (3.16) and using the relations Br(λ,x0)
(x̄) ⊆ B2δ(x̄) ⊆ Brx̄(x̄), we have

dist
(
x̄, ψ(λ0,x0)(x̄)

)
≤ e

(
(f + F )−1(ȳ) ∩ Br(λ,x0)

(x̄), ψ(λ0,x0)(x̄)
)

≤ e
(
(f + F )−1(ȳ) ∩ Brx̄(x̄), (f + F )−1[H(λ0,x0)(x̄)]

)
. (3.23)

Since (3η + 1)λδ ≤ rȳ from the second relation in assumption (a), so 4λδ ≤ rȳ (as η > 1). Also,
using the relation x0 ∈ Bδ̂(x̄) ⊆ Bδ(x̄) and assumption (c), we obtain that,

∥H(λ0,x0)(x̄)− ȳ∥ = ∥ − λ0(x̄− x0)− ȳ∥ ≤ λ0∥x0 − x̄∥+ ∥ȳ∥
≤ λ∥x0 − x̄∥+ ∥ȳ∥ (3.24)

≤ 4λδ ≤ rȳ.

This shows that H(λ0,x0)(x̄) ∈ Brȳ (ȳ). Thus, by using (3.24), (3.20) and Lemma 2.1, we obtain
from (3.23) that

dist
(
x̄, ψ(λ0,x0)(x̄)

)
≤ κ

1− νκ
∥ȳ −H(λ0,x0)(x̄)∥

≤ κ

1− νκ

(
λ∥x0 − x̄∥+ ∥ȳ∥

)
=

(
1− 1

3

)
r(λ,x0) = (1− α)r.

It shows that assertion (2.1) of Lemma 2.2 hold. Now, we show that assertion (2.2) of Lemma 2.2
also hold. Let x′, x′′ ∈ Br(λ,x0)

(x̄). Thus, by the first relation 2δ ≤ rx̄ from assumption (a) and

r(λ,x0) ≤ 2δ from (3.21), we have x′, x′′ ∈ Br(λ,x0)
(x̄) ⊆ B2δ(x̄) ⊆ Brx̄(x̄). By the second relation

in assumption (a), we get 4λδ ≤ rȳ (as η > 1) and by using the assumption (c) and the relation
x0 ∈ Bδ̂(x̄) ⊆ Bδ(x̄), we observe that

∥H(λ0,x0)(x
′)− ȳ∥ = ∥ − λ0(x

′ − x0)− ȳ∥ ≤ λ∥x′ − x0∥+ ∥ȳ∥
≤ λ∥x′ − x̄∥+ λ∥x̄− x0∥+ ∥ȳ∥ ≤ 4λδ ≤ rȳ.

Hence H(λ0,x0)(x
′) ∈ Brȳ (ȳ). Similarly, H(λ0,x0)(x

′′) ∈ Brȳ (ȳ). So, by Lemma 2.1, we obtain that

e
(
ψ(λ0,x0)(x

′) ∩ Br(λ,x0)
(x̄), ψ(λ0,x0)(x

′′)
)

≤ e
(
ψ(λ0,x0)(x

′) ∩ Brx̄(x̄), ψ(λ0,x0)(x
′′)
)

= e
(
(f + F )−1[H(λ0,x0)(x

′)]

∩ Brx̄(x̄), (f + F )−1[H(λ0,x0)(x
′′)]

)
≤ κ

1− νκ
∥H(λ0,x0)(x

′)−H(λ0,x0)(x
′′)∥

=
κ

1− νκ
λ0∥x′ − x′′∥

≤ λκ

1− νκ
∥x′ − x′′∥. (3.25)

By assumption (b) and since η > 1, (3.25) becomes

e
(
ψ(λ0,x0)(x

′) ∩ Br(λ,x0)
(x̄), ψ(λ0,x0)(x

′′)
)
≤ 1

3η
∥x′ − x′′∥ < 1

3
∥x′ − x′′∥ = α∥x′ − x′′∥.

9
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This implies that assertion (2.2) of Lemma 2.2 also hold. Thus, both the assertions of fixed point
Lemma 2.2 hold, so we can deduce that there exists a fixed point x̂1 ∈ Br(λ,x0)

(x̄) such that
x̂1 ∈ ψ(λ0,x0)(x̂1). Therefore, D(λ0, x0) ̸= ∅, and consequently, we can choose d0 ∈ D(λ0, x0) such
that

∥d0∥ ≤ η dist
(
0, D(λ0, x0)

)
(3.26)

≤ ηr(λ,x0) ≤ 2ηδ.

By Algorithm 2, x1 := x0 + d0 is defined. By the definition of D(λ0, x0), we get

D(λ0, x0) :=
{
do ∈ X : 0 ∈ λ0d0 + f(x0 + d0) + F (x0 + d0)

}
=

{
do ∈ X : x0 + d0 ∈ (f + F )−1(−λ0d0)

}
.

Thus, we have

dist
(
0, D(λ0, x0)

)
= dist

(
x0, (f + F )−1(−λ0d0)

)
. (3.27)

By the choice of d0 and the second relation (3η + 1)λδ ≤ rȳ in assumption (a) and (c), we obtain

∥ − λ0d0 − ȳ∥ ≤ λ∥d0∥+ ∥ȳ∥ ≤ 2ληδ + λδ ≤ rȳ,

and so −λ0d0 ∈ Brȳ (ȳ). Since (f + F ) is metrically regular at (x̄, ȳ) on Brx̄(x̄) × Brȳ (ȳ) with

constant
κ

1− νκ
, we have from (3.26) and (3.27) that

∥d0∥ ≤ η dist
(
x0, (f + F )−1(−λ0d0)

)
≤ ηκ

1− νκ
dist

(
− λ0d0, f(x0) + F (x0)

)
≤ ηκ

1− νκ
∥ − λ0d0 − 0∥+ ηκ

1− νκ
∥0−

(
f(x0) + F (x0)

)
∥

≤ ηκλ

1− νκ
∥d0∥+

ηκ

1− νκ
dist

(
0, f(x0) + F (x0)

)
. (3.28)

Using (3.22) in (3.28), we get

∥d0∥ ≤ ηκλ

1− νκ
∥d0∥+

ηκ

1− νκ
λδ. (3.29)

Using assumption (b) in (3.29), we get

∥x1 − x0∥ = ∥d0∥ ≤ ηκλ

1− νκ− ηκλ
δ ≤ 1

2
δ.

This shows that (3.19) holds for k = 0. Assume that x1, . . . , xn are generated by Algorithm 2 and
(3.18) and (3.19) are verified for k = 0, 1, 2, . . . , n− 1. So, we obtain

∥xn − x̄∥ ≤
n−1∑
i=0

∥xi+1 − xi∥+ ∥x0 − x̄∥ ≤ δ

n−1∑
i=0

(1
2

)i+1

+ δ ≤ 2δ. (3.30)

Thus, (3.18) is valid for k = n. We have to show that there exists a point xn+1 such that (3.19)
is valid for k = n. In the similar way, as we did for the case of k = 0, we obtain by using Algorithm

10
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2 that

∥xn+1 − xn∥ = ∥dn∥ ≤ η dist
(
xn, (f + F )−1(−λndn)

)
≤ ηκ

1− νκ
dist

(
− λndn, f(xn) + F (xn)

)
≤ ηκ

1− νκ
∥ − λndn −

(
f(xn) + F (xn)

)
∥

≤ ηκλn

1− νκ
∥dn∥+

ηκ

1− νκ
∥f(xn) + F (xn)∥

≤ ηκλ

1− νκ
∥dn∥+

ηκλn−1

1− νκ
∥ − λn−1(xn − xn−1)∥

≤ ηκλ

1− νκ
∥dn∥+

ηκλ

1− νκ
∥xn − xn−1∥

≤ ηκλ

1− νκ− ηκλ
∥xn − xn−1∥ (3.31)

≤ 1

2
·
(1
2

)n

δ =
(1
2

)n+1

δ.

Hence (3.19) is valid for k = n and so (3.18) and (3.19) are valid for all k. This implies that
{xk} is a Cauchy sequence and hence it is convergent, say, to x∗. So there exists x∗ ∈ Brx̄(x̄)
such that x∗ := limk→∞(xk). Now, the closedness of gph(f + F ) ∩ (Brx̄(x̄) × Brȳ (ȳ)) yields that
0 ∈ f(x∗) + F (x∗). Hence, the proof is completed.

In the case where x̄ is a solution of (1.1), that is, ȳ = 0, in Theorem 3.1, we have the following
corollary, which gives the local convergence result of the G-PPA.

Corollary 3.1. Suppose that η > 1, λ > 0, and let x̄ be a solution of (1.1). Let gph(f + F ) be

locally closed at (x̄, 0) and let (f + F ) be metrically regular at (x̄, 0) with constant
κ

1− νκ
. Choose

a sequence of scalars {λk} ⊆ (0, λ). Suppose that

lim
x→x̄

dist
(
0, f(x) + F (x)

)
= 0. (3.32)

Then there exists δ̂ > 0 such that any sequence {xk} generated by Algorithm 2 with initial point
x0 ∈ Bδ̂(x̄) converges to a solution x∗ of (1.1), that is, x∗ satisfies that 0 ∈ f(x∗) + F (x∗).

Proof. By hypothesis (f + F ) is metrically regular at (x̄, 0) which have locally closed graph at

(x̄, 0) with constant
κ

1− νκ
. Then by definition there exist constants rx̄ > 0 and r0 > 0 such that

(f+F ) is metrically regular at (x̄, 0) on Brx̄(x̄)×Br0(0) with constant
κ

1− νκ
, that is, the following

inequality holds

dist
(
x, (f + F )−1(y)

)
≤ κ

1− νκ
dist

(
y, (f + F )(x)

)
for all x ∈ Brx̄(x̄), y ∈ Br0(0).

Let supk λk := λ ∈ (0, 1) be such that 3ηκλ+ νκ ≤ 1 and let x0 ∈ Bδ̂(x̄). Since x0 is very close to
x̄, then, for every y0 near 0 such that gph(f + F ) is locally closed at (x0, y0). Then (3.32) allow us
to take 0 < δ̂ ≤ δ so that

dist
(
0, f(x0) + F (x0)

)
≤ λδ for each x0 ∈ Bδ̂(x̄).

11
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Then, for each 0 < r ≤ rx̄ and 0 < r̃ ≤ r0, one has that

dist
(
x, (f + F )−1(y)

)
≤ κ

1− νκ
dist

(
y, (f + F )(x)

)
for all x ∈ Br(x̄), y ∈ Br̃ȳ (ȳ),

that is, (f + F ) is metrically regular at (x̄, ȳ) on Br(x̄) × Br̃ȳ (ȳ) with constant
κ

1− νκ
. Choose

0 < r1 <
rx̄
2

and 0 < r2 <
r0
2

be such that

min
{r1

2
,

r2
(3η + 1)λ

}
> 0.

Thus, we can choose 0 < δ ≤ 1 such that

δ ≤ min
{r1

2
,

r2
(3η + 1)λ

}
.

Now, it is routine to check that all the assumptions in Theorem 3.1 hold. Thus, Theorem 3.1 is
applicable to complete the proof of the corollary.

4 Numerical Experiment

We introduce a numerical example in this section to verify the semi-local convergence result of the
G-PPA generated by Algorithm 2.

Example 4.1. Let X = Y = R, x0 = 0.5, η = 3, λ = 0.1, ν = 0.4 and κ = 0.3. Define a
differentiable function f on R by f(x) = 3x + 1 and a set-valued mapping F on R by F (x) =
{−7x+2, 4x−5}. Then f+F is a set-valued mapping on R defined by f(x)+F (x) = {−4x+3, 7x−4}.
Then Algorithm 2 generates a sequence which converges to x∗ = 0.75.

Consider f(x) + F (x) = −4x+ 3 and supkλk := λ = 0.1. Then it is clear from the statement that
f + F is metrically regular at (0.5, 1) ∈ gph(f + F ). From (1.2), we obtain that

D(λk, xk) =
{
dk ∈ R : 0 ∈ λk(dk) + f(xk + dk) + F (xk + dk)

}
=

{
dk ∈ R : dk =

10

39
(3− 4xk)

}
.

On the other hand, if D(λk, xk) ̸= ∅ we obtain that

0 ∈ λk(xk+1 − xk) + f(xk+1) + F (xk+1) ⇒ xk+1 =
30− xk)

39
.

Thus from (3.31), we obtain that

∥dk∥ ≤ ηκλ

1− νκ− ηκλ
∥dk−1∥.

Since
ηκλ

1− νκ− ηκλ
=

9

79
< 1 for the given values of η, λ, κ and ν, thus we conclude that the

sequence generated by Algorithm 2 converges linearly. The following table 1, obtained by using
Matlab program, indicates that the solution of the generalized equation is 0.75 when k = 5.

12
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Table 1. Finding a solution of generalized equation

x f(x)+F(x)

0.5000 1.0000
0.7564 -0.0256
0.7498 0.0007
0.7500 -0.0000
0.7500 0.0000
0.7500 -0.0000

...
..

0.4

.

0.6

.

0.8

.

1

.−2

.

−1

.

0

.

1

.

2

.

3

.

x

.

f
(x
)
+

F
(x
)

.

The following figure is the graphical representation of f(x) + F (x)

.

. ..−4x+ 3

. ..7x− 4

Fig. 1. The graph of f(x) + F (x)

5 Concluding Remarks

Under the assumptions that when f is a Fréchet differentiable function and F is metrically regular
with η > 1, we have established semi-local and local convergence result for the G-PPA defined by
Algorithm 2. Moreover, we have given a numerical example to verify the semi-local convergence
result for Algorithm 2. If η = 1 and D(λk, xk) is singleton, Algorithm 2 is identical with the
Algorithm 1 introduced by Dontchev and Rockafellar [10, Chapter 6]. If F is the normal cone
mapping, λku = gk(u) a sequence of Lipschitz continuous functions and Y = X∗ a dual Banach
space of X, the results established in the present paper coincide with the results obtained in [3].
This result extends and improves the result obtained in [3, 10].

Acknowledgement

We thank the referees and the associate editor for their valuable comments and constructive
suggestions which improved the presentation of this manuscript.

13



Alom and Rashid; ARJOM, 2(4), 1-15, 2017; Article no.ARJOM.31288

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Robinson SM. Generalized equations and their solutions, part I: basic theory. Math. Program.
Stud. 1979;10:128-141.

[2] Robinson SM. Generalized equations and their solutions, part II: applications to nonlinear
programing. Math. Program. Stud. 1982;19:200-221.

[3] Rashid MH. Convergence analysis of gauss-type proximal point method for variational
inequalities. Open Science Journal of Mathematics and Application. 2014;2(1):5-14.

[4] Alom MA, Rashid MH, Dey KK. Convergence analysis of the general version of gauss-
type proximal point method for metrically regular mappings. J. Applied Mathematics.
2016;7(11):1248-1259.

[5] He JS, Wang JH. and Li C. Newton’s method for undetermined systems of equations under
the modified γ-condition. Numer. Funct. Anal. Optim. 2007;28:663-679.

[6] Rashid MH, Yu SH, Li C, Wu SY. Convergence analysis of the Gauss-Newton-type method
for Lipschitz-like mappings. J. Optim. Theory Appl. 2013;158(1):216-233.

[7] Rockafellar RT. Monotone operators and the proximal point algorithm. SIAM J. Control
Optim. 1976;14:877-898.

[8] Martinet B. Régularisation d’inéquations variationnelles par approximations successives. Rev.
Fr. Inform. Rech. Opér. 1970;3:154-158.

[9] Rockafellar RT, Wets RJB. Variational analysis. Springer-Verlag, Berlin; 1997.

[10] Dontchev AL, Rockafellar RT. Implicit functinos and solution mappings: A view from
variational analysis. Springer Science+Business Media, LLC, New York; 2009.

[11] Rashid MH, Wang JH, Li C. Convergence analysis of Gauss-type proximal point method for
metrically regular mappings. J. Nonlinear and Convex Analysis. 2013;14(3):627-635.

[12] Rashid MH. On the convergence of extended Newton-type method for solving variational
inclusions. Journal of Cogent Mathematics. 2014;1(1):1-19.

[13] Li C. and Ng KF. Majorizing functions and convergence of the Gauss-Newton method for
convex composite optimization. SIAM J. Optim. 2007;18:613-642.

[14] Dontchev AL, Rockafellar RT. Regularity and conditioning of solution mappings in variational
analysis. Set-valued Anal. 2004;12(1):79-109.

[15] Aubin JP. Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res.
1984;9:87-111.

14



Alom and Rashid; ARJOM, 2(4), 1-15, 2017; Article no.ARJOM.31288

[16] Aubin JP, Frankowska H. Set-valued analysis. Birkhäuser, Boston; 1990.
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