
*Corresponding author: E-mail: yusabdu@gmail.com;

British Journal of Applied Science & Technology
19(1): 1-37, 2017; Article no.BJAST.29503

ISSN: 2231-0843, NLM ID: 101664541

SCIENCEDOMAIN international

 www.sciencedomain.org

Response Time Improvement on One Time
Password (OTP) Technique to Prevent Replay Attack

in a Radius Environment

Yusuf Abdullahi1*, Muhammad Bashir Muazu1

and Adewale Emmanuel Adedokun1

1Department of Electrical and Computer Engineering, Ahmadu Bello University, Zaria, Nigeria.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the final
manuscript.

Article Information

DOI: 10.9734/BJAST/2017/29503

Editor(s):
(1) Samir Kumar Bandyopadhyay, Department of Computer Science and Engineering, University of Calcutta, India.

Reviewers:
(1) S. Akhila, BMS College of Engineering, Bangalore, India.

(2) C. Poongodi, Kongu Engineering College, India.
Complete Peer review History: http://www.sciencedomain.org/review-history/17822

Received 15
th

 September 2016
Accepted 4th November 2016
Published 14

th
February 2017

ABSTRACT

This research is aimed at the modification of the Remote Access Dial in User Server (RADIUS)
protocol with the one-time password (OTP) technique for the authentication environment with a
captive portal to prevent replay attacks. One of the important network security measures on a
campus network is the use of authentication for identification of legitimate users and one of the
most widely used solution in network authentication is the RADIUS protocol. However, there are
potential security vulnerabilities in the RADIUS network especially for networks using captive portal,
such as the replay attack. The Ahmadu Bello University (ABU) network is simulated using the
GNS3 software on a virtualized environment using Virtualbox, which comprises of the core,
distribution and access levels of the network and network devices (routers and switches). An OTP
generator was developed using PhP programming language for the three variants of the OTP: Time
One Time Password (TOTP), Challenge Response One Time Password (CROTP) and Hash One
Time Password (HOTP). Before improvement on the OTP technique using a PhP developed script,
the result obtained shows the average response time for TOTP, CROTP and HOTP as 2.5s, 5.2s
and 5.7s respectively, this result showed no improvement in the TOTP, CROPT and HOTP
response time respectively when compared with the recommended response time of a RADIUS

Original Research Article

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

2

server in a captive portal environment which is 1000 ms [1]. After improving the OTP technique by
integrating all the variants of OTP with the RADIUS server on a single server using the simulated
ABU campus network using GNS3, the result shows a significant improvement over the above
results. The results obtained shows the average response time for TOTP, CROTP and HOTP as
1.3s, 2s and 1.9s. The validation, based on the developed and simulated configuration was carried
out using live servers, routers and switches and the results showed improvement over the above
results the average response time for TOTP, CROTP and HOTP were obtained as 0.4s, 0.9s and
0.9s respectively. This shows significant improvement in the TOTP, CROPT and HOTP
respectively. The result shows the average response time is less than the recommended 1000ms
for RADIUS server response time in a captive portal environment.

Keywords: Password; hash one time password; radius; protocol.

1. INTRODUCTION

The entire Ahmadu Bello University Campus
Network Infrastructure runs on fiber optic
technology for transmission and is built based on
the Cisco standard hierarchical design standard
for campus networks (core, distribution and
access levels) providing high speed and
redundancy. The network is built on Cisco
technology using high end devices which include
Cisco Catalyst 6500 series as the core switch,
4500, 3700 and 3560 series switches as
distribution switches and 2960 series and gigabit
small business series switches as access
switches. This setup guarantees gigabit
transmission to every host on the network. The
network covers all the campuses of ABU Zaria
which include Samaru, Kongo, Shika and NAPRI
all connected with over 60 km of optical fiber
cable.

The core network as in Fig. 1 is built on the
Virtual Switching System technology for high
capacity using ether channel technology whereby
so many fiber ports are bundled together for
more bandwidth capacity on a link, all the servers
are part of the core network including the
authentication server. Distribution is built on
Layer 3 switches the Cisco 3750G all the
distribution points are connected back to the core
network through a fiber link, with static
addressing of point to point nodes. Dynamic
routing protocol is enabled running Open
Shortest Path First (OSPF), with each distribution
switch used as the OSPF Area Border Router
(ABR) with separate areas. The distributions also
host the virtual local area network VLAN of each
access layer switches.

The access layer which comprises mainly of
Small Business Series switches and 2960 series
switches is built on Layer 2 switching technology.
Access layer devices have access to Dynamic

Host Configuration Protocol (DHCP) services
from the distribution switch to which the Access
switch is connected.

Emerging campus networks are migrating from a
dedicated wired LAN infrastructure to high speed
hybrid campus networks that incorporates both
wired as well as wireless users like the Ahmadu
Bello University campus network, the challenges
of securing both users and network integrity
becomes more complex. One of the most
effective ways of securing users access is the
use a captive portal with Radius services. The
implementation of RADIUS services is however
bedeviled with large database overtime and this
is prone to replay attacks on the network. This
therefore suggests the need for multiple level of
authentication on networks. One-time password
(OTP) techniques are used to prevent replay
attacks. There are several OTP techniques used
today and this research work is aimed at
analyzing and comparing three variants of the
OTP namely TOTP, HOTP and CROTP in
RADIUS protocol. using the response time of
each technique as the performance metric.

The aim of this paper is to prevent replay attack
in RADIUS environment by improving response
time of OTP. The main objectives of this
research work are as follows: (1) Modeling of the
ABU Zaria network using GNS3 modelling
simulator. (2) Modification of the three variants of
the OTP technique (TOTP, HOTP and CROTP)
and selection of the best technique using the
response time as the performance metric. (3)
Validation of the improved authentication
technique by comparing its response time with
that of the standard technique.

1.1 Related Work

This section present related work that has been
done by researchers in an attempt to solve the

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

3

problems pointed out in the introduction. For
example, [1] presented the implementation of
legacy user authentication into IPSec remote
access scenario using the proposed Pre-IKE
Credentials Provisioning Protocol (PIC). The
research provided a comparison between their
technique and other alternative techniques like
OTP. The results of this comparison showed that
the technique had good interoperability, usability
and efficiency with IPSec and OTP between
routers only. This technique is, however, only
useful between routers and does not protect the
users behind the routers. [2]. Presented a model
for the secure use of OTP in Password-
Authenticated Key Exchange (PAKE) protocols;
considering the idea that such protocols should
be secure even if previous or future OTP have
been compromised. They have provided a
generic technique for constructing secure OTP.
This construction can be used with pseudo
randomly generated OTP, providing greater
efficiency in OTP distribution to reduce the
damage of many attacks such as replay attack
and spyware. This protocol provided security to
OTP to prevent replay attacks on servers only
but did not provide any security at the user level.

Havard [3] Developed protocols that enabled
individuals to use their mobile phones as OTP
generators using a web-based service. Their
phones run a Java MIDlet which communicates
with a server to generate OTPs. This is an
implementation of the OTP generator with web-
based service and does not improve on any of
the OTP techniques. [4] developed a proposal to
improve the communication efficiency between
NAS and RADIUS server by allowing the
RADIUS server to communicate its state
(active/dead) to NAS. Their proposal has
effectively helped to improve CPU utilization in
the network. The paper explained how to deal
with many of server processes such as closing
the session after no response from server side
(wait specific time) and this helped to reduce
time and reduce retransmissions. This research
did not consider prevention of replay attacks in
the simulation model of the interaction between
NAS and RADIUS Server. [5] used OTP
techniques to establish "The Generic Security
Service Application Program Interface" (GSS-
API) security context between two
communicating peers. This compared what was
proposed with Kerberos and public-key
technologies. While OTP techniques provided
greater security for user authentication, SHA-1
algorithms for integrity message was used to
enhance the security. This did not prevent replay

attack but rather increased the integrity of the
Kerberos, which is not a RADIUS protocol.

Hyun-Chul [6]. Analyzed the problems of
vulnerability of authentication mechanisms by
using existing shared key authentication
mechanism. CROTP and TOTP used public key
infrastructure to solve it. The proposed
mechanism can prevent spoofing attack in
advance by authenticating user with the use of
certificate information, and solved the problems
of replay attack, Time synchronization and
integrity by generating password though applying
hash function for label L and random value R
which are only used in applicable session. Also,
they transferred the generated password by
electronically signing with the user’s private key.
The process of generating private key by an
individual user to compare it with the public key
is a long process and difficult to achieve by
users. It is also vulnerable to attacks by malware
programs since the private key generated will be
stored on an individual’s system.

Jonghoon [7]. introduced a new protocol to
assure more secure authentication. This protocol
did not only prevent cloning the OTP generator, it
prevented phishing attack through transaction
information. The proposed protocol requires
using the OTP generator equipped with keypad.
Their protocol enhanced security and provided
more robust authentication method than the
existing ones. This research developed OTP
generator with a keypad, which, however, was
not meant to prevent replay attacks. [8]
suggested a secure dynamic user authentication
scheme that is based on a dynamic OTP with
both time and space (location). Their schema
used time synchronization to add time factor to
OTP and effectively improve two-factor
authentication to protect users account against
various attacks such as phishing attack, replay
attack, and perfect-man-in-the-middle attack.
This method required more time before
synchronization took place thereby keeping a
user for longer time before being authenticated.
This also led to the increase in response time
between the RADIUS Server and the user and
prevented the replay attack in RADIUS
environment. The CPU overhead for TOTP was
less than that of HOTP and CROTP. The
research focused mainly on the CPU overhead,
algorithm speed, server response time and OTP
duration, but the response time was high
because of the duration of the OTP, thus this
method does not solve the problem of response
time in a captive portal environment, but works
better in an e-commerce site. [9] considered a

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

4

set of factors like preventing replay attack, CPU
overhead, algorithm speed, server response time
and OTP duration. After measuring these factors
through an e-learning software based on apache
web server, the results showed that the three
OTP techniques (TOTP, HOTP and CROTP)
with the e-learning software, prevented the
replay attack in RADIUS environment, the CPU
overhead at TOTP technique is less than the
CPU overhead at HOTP and CROTP techniques.
The research focused mainly on the apache web
server to prevent replay attack. The apache web
server does not require low response time when
using RADIUS protocol.

Based on this critical review of similar works,
there is a need to improve on the performance of
the authentication process based on the
response time of at least one of the OTP
techniques in a RADIUS environment with
captive portal on a network. The improved
technique is expected to prevent replay attacks
with least response time. Having discussed
that one of the greatest vulnerabilities of
OTP is the response time, this research work is
aim at improving the response time of OTP
technique.

2. THE FUNDAMENTAL THEORIES

2.1 Computer Security

Computer security is to prevent attackers from
achieving their objectives through unauthorized
access or unauthorized use of computers and
networks.

2.1.1 Goals of computer security

The goals of computer security can be
categorized as follows [10].

1) Detection: to detect activities that
violate the security policy, detect intruders
that sniff network and detect other
attacks such as passive attack or active
attack

2) Prevention: is ideal, because then there
are no successful attacks, to prevent
someone from violating security policy.

3) Recovery: to stop policy violations to
assess and repair damage, ensure
availability in presence of an ongoing
attack and retaliation against the attacker.

2.1.2 Components of computer security

The components of a computer security system
include:

a) Confidentiality: Keeping data and
resources secret or hidden.

b) Integrity: Ensuring authorized modifications
and Includes correctness and trust

c) Availability: Ensuring authorized access to
data and resources when desired.

d) Accountability: Ensuring that an entity’s
action is traceable uniquely to that entity.

e) Security assurance: Assurance that all four
objectives are met.

f) Authentication: Identity authentication (a
person; organizational entity; software
agent; device).

2.1.3 Security architecture

The security architecture explains the
requirements that includes policies, information
services, and security mechanism which are
used to protect information from attackers and
intruders as shown in Fig. 1 [11].

Fig. 1. An illustration of security architecture
[11]

2.2 Radius Protocol

The RADIUS protocol was first defined in
Request for Comment (RFC) 2058, in January
1997, contains proposed standard of RADIUS
protocol. Also, in January 1997 RADIUS
accounting was introduced in RFC 2059, status
of which is informational. Later in April 1997
these RFCs were obsoleted by RFC 2138 and
RFC 2139. Then in June 2000 RFC 2865 defined
RADIUS draft standard and obsoleted RFC
2138. RADIUS allows several clients to use one
centralized authentication and authorization
server for user authentication. User passwords
transmitted to the server are encrypted and client
can authenticate the server from reply. Replies
are also protected from alteration. RADIUS

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

5

protocol is used for user authentication and
authorization and to pass configuration data
between two servers. These servers are RADIUS
server and Network Access Server (NAS) that
acts as client for RADIUS server. NAS sends
requests to RADIUS server which replies
whether it denies or accepts the request and to
pass configuration information concerning the
request as shown in Fig. 2.

2.3 Authentication, Authorization and
Accounting (AAA)

Authentication, Authorization, and Accounting
(AAA) is a framework for intelligently controlling
access to computer resources, enforcing
policies, auditing usage, and providing the
information necessary to bill for services. These
combined processes are considered important
for effective network management and security
[13].

As the first process, authentication provides a
way of identifying a user, typically by having the
user go through a defined identification. The AAA
server compares a user's authentication
credentials with other user credentials stored in a
database. If the credentials match, the user is
granted access to the network. If the credentials
are at variance, authentication fails and network
access is denied.

Following authentication, a user must
gain authorization for doing certain tasks. After

logging into a system, for instance, the user may
try to issue commands. The authorization
process determines whether the user has the
authority to issue such commands. Simply put,
authorization is the process of enforcing policies:
determining what types or qualities of activities,
resources, or services a user is permitted.
Usually, authorization occurs within the context
of authentication. Once you have authenticated a
user, they may be authorized for different
type/level of access or activity.

The final plank in the AAA framework is
accounting, which measures the resources a
user consumes during access. This can include
the amount of system time or the amount of data
a user has sent and/or received during a session.
Accounting is carried out by logging of session
statistics and usage information and is used for
authorization control, billing, trend analysis,
resource utilization, and capacity planning
activities.

Authentication, Authorization, and Accounting
services are often provided by a dedicated
AAA server and this process is described in
Fig. 3.

2.4 System Architecture

RADIUS protocol is used between two servers.
RADIUS server is a shared authentication server
that has a list of valid clients. There is a shared
secret between the RADIUS server and these

Fig. 2. RADIUS authentication and authorization flow [12]

Fig. 3. Relationship between RADIUS and AAA [14]

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

6

clients. This secret cannot be empty, but
otherwise it is not defined by the protocol
standard how strong it must be. It is only
recommended that it is 16 octets minimum. This
secret is used to authenticate the RADIUS server
to the NAS and to hide the user password. For
these purposes the secret is part of value that is
hashed and the hash value is sent [15].

RADIUS server also has a database of users
containing their passwords, possible other
requirements for these users to gain access and
configuration data. According to information in
this database the RADIUS server accepts or
rejects the request or sends a challenge to user.
RADIUS server can also act as a proxy relaying
requests to other RADIUS server and to NAS.
When acting as proxy RADIUS server replies
messages between the NAS and other RADIUS
server. There can be many RADIUS servers as
proxies between the NAS and the RADIUS
server that handles the authentication and
authorization of the request [16].

2.5 Network Access Server (NAS)

The Network Access Server (NAS) acts as a
client to the RADIUS server. Users call in and
NAS prompts for needed authentication

information, for example user name and
password. The NAS then can use RADIUS
server for user authentication. When doing so the
NAS sends request to the RADIUS server
containing attributes that have information about
user that the RADIUS server needs. When
sending request containing user password, the
password is not sent as clear-text, instead it is
encrypted.

The captive portal also resides in the Network
access server as shown in Fig. 4.

Captive portals have been known to have
incomplete firewall rule sets. In some
deployments the rule set will route DNS requests
from clients to the Internet, or the provided DNS
server will fulfill arbitrary DNS requests from the
client. This allows a client to bypass the captive
portal and access the open Internet by tunneling
arbitrary traffic within DNS packets.

Some captive portals may be configured to allow
appropriately equipped user agents to detect the
captive portal and automatically authenticate.
User agents and supplemental applications can
sometimes transparently bypass the display of
captive portal content against the wishes of the
service operator as long as they have access to

Fig. 4. Captive portal display on ABU Zaria network (ABU Zaria, 2015)

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

7

correct credentials, or they may attempt to
authenticate with incorrect or obsolete
credentials, resulting in unintentional
consequences such as accidental account
locking [17].

A captive portal that uses MAC addresses to
track connected devices can sometimes be
circumvented by connecting via hard-wire a
router that allows setting of the router
MAC address. Many router firmware calls this
MAC cloning. Once a computer or tablet has
been authenticated to the captive portal using a
valid username and valid password, the MAC
address of that computer or tablet can be
entered into the router which will often continue
to be connected through the captive portal as it
shows to have the same MAC address as the
computer or tablet that was previously connected
[18].

The prevalent use of captive portals is for user
authentication. However captive portals are
gaining increasing use on free open wireless and
wired networks where instead of authenticating
users, they often display a message from the
provider along with the terms of use. Although
the legal standing is unclear, a click through a
page may display terms of use and release the
provider from any liability.

Institutions will often

require acknowledgement of an Acceptable use
policy in addition to authentication.

Institutions implementing Network Access Server
(NAS) often use captive portals to collect
machine information, to supply software
assessment agents which the supplicant user
must run before gaining admission to the
network, to provide online assistance for self-
remediation of security problems, and to inform
quarantined users when their network access
has been revoked [19].

2.6 Packet Format

As previously stated RADIUS uses UDP to carry
its packets. One UDP datagram contains exactly
one RADIUS packet. RADIUS packet consists of
five different fields: Code, Identifier, Length,
Authenticator and Attributes as in Fig. 5. Length
of the entire RADIUS packet is 20 octets for the
Code, Identifier, Length and Authenticator. In
addition to these various numbers of Attributes
can be included, and the total length of the
RADIUS packet is in the Length field.

First field in RADIUS packet is the Code. It is one
octet long. This field determines the type of the
RADIUS packet. Originally six Code values were
defined (four for authentication and authorization
plus two for accounting), with two values
reserved for possible use in the future. Also
value 255 was reserved. Later further 26 new
RADIUS packets Code values were defined
by various vendors. All packets with invalid
Code are not processed and no error message is
sent.

Second field in RADIUS packet is the Identifier.
The Identifier is one octet long. Purpose of this
field is to match the requests and replies. The
source IP address UDP port of the client is
also used for match identification. Each request
must have new identifier value, if for the
previous request a proper reply was received
or if there is any changes in the Attributes of
that request. The RADIUS server replies with
the same Identifier value in the reply.

The Length field is third field in the RADIUS
packet and it is two octets long. For all RADIUS
packets have the Code, Identifier, Length and
Authenticator fields, the minimum length of the
RADIUS packet 20 octets and therefore the
minimum value for Length is 20. Maximum value

Fig. 5. RADIUS packet format [11]

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

8

is 4096. If the RADIUS packet is longer than
Length field states, all data that is outside the
stated length is ignored. This is done to avoid
over flows. If the RADIUS packet is longer than
Length field states, the packet is not processed
and no error message is sent [20].

Fourth field in RADIUS packet is the
Authenticator. This field is 16 octets and the most
significant octet comes first. This field is used for
two security functions. It authenticates the reply
from the RADIUS server to the NAS and is also
used in encryption of User-Password attribute.
Two different kinds of Authenticator fields are
defined.

Request Authenticator is the name of the
Authenticator field in Access-Request type
packets. Request Authenticator is a random
number that the NAS generates in order to be
able to authenticate that the reply is intended
exactly for the request that the Request
Authenticator was generated for. Therefore, it
must be unique and unpredictable. NAS also
uses Request Authenticator when encrypting
User-Password attribute [11].

Response Authenticator is the name of the
Authenticator field in Access-Accept, Access-
Reject and Access-Challenge type packets. The
value of the Response Authenticator is
calculated by the RADIUS server. For this
calculation the RADIUS server uses the values of
the Code, Identifier and Length fields of the
response being made, the Request Authenticator
of the request, the Attributes of the response
being made and the shared secret.

These are concatenated in this order and
then MD5 hash is calculated of this
concatenated string. The hash value is the
response authenticator and it is expressed as
follows: [20]

Response Authenticator = MD5 (Code +
Identifier + Length + Request Authenticator +
Attributes + Shared Secret) (2.1)

In addition to previous four fields RADIUS packet
can contain a number of attributes as shown in
Fig. 5. RADIUS uses attributes to carry additional
information such as configuration data,
information about the user and service.
Standard length for RADIUS attribute is three
fields as shown in Fig. 6, but some attributes
have more fields. These fields are Type, Length
and Value.

Fig. 6. RADIUS attributes [21]

Table 1 shows some standard attributes [14].

Table 1. Typical standard RADIUS attributes

[14]

6 Accounting Status 30 New Pin
7 Password Request 31 Terminate Session
8 Password Ack 32 Password Expired
9 Password Reject 33 Event Request
10 Accounting Message 34 Event Response
21 Resource Free

Request
40 Disconnect Request

22 Resource Free
Response

41 Disconnect Ack

23 Resource Query
Request

42 Disconnect Nak

24 Resource Query
Response

43 Change Filters
Request

25 Alternate Resource
Reclaim Request

44 Change Filters Ack

26 NAS Reboot Request 45 Change Filters Nak
27 NAS Reboot

Response
50 IP Address Allocate

29 Next Passcode

2.7 Shared Secrets

To strengthen security and increase transactional
integrity, the RADIUS protocol uses the concept
of shared secrets. Shared secrets are values
generated at random that are known to both the
client and the server. The shared secret is used
within all operations that require hiding data and
concealing values. The only technical limitation is
that shared secrets must be greater than 0 in
length, but the RFC recommends that the secret
be at least 16 octets [14].

A secret of that length is virtually impossible to
crack with brute force. The same set of best
practices that dictate password usage also
govern the proper use of RADIUS shared
secrets. Shared secrets are unique to a particular
RADIUS client and server pair. For instance, if an
end user subscribes to multiple Internet service
providers for his dial-up access, he indirectly
makes requests to multiple RADIUS servers. The
shared secrets between the client NAS
equipment in ISPs A, B, and C that are used to
communicate with the respective RADIUS
servers should not match. While some larger

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

9

scale RADIUS implementations may believe that
protecting transactional security by using an
automated shared-secret changer is a prudent
move, there is no guarantee the clients and
servers can synchronize to the new shared
secret at the most appropriate time. And even if it
was certain that the simultaneous
synchronization could occur, if there are
outstanding requests to the RADIUS server and
the client is busy processing, then those
outstanding requests will be rejected by the
server. The code below shows how the secret
code is implemented in the RADIUS environment
[14].

client NAME {
ipaddr = IPADDRESS
secret = SECRET
}

2.8 The Vulnerability of Radius Protocol

RADIUS consistently provides some levels of
protection against sniffing and active attacks.
Unfortunately, there are several vulnerabilities in
RADIUS protocol that are either caused by the
protocol or caused by poor client implementation
such as:

1) Offline dictionary attack on RADIUS
shared secret via message-authenticator
attribute where attacker can attempt offline
attack on any packet with a message-
authenticator attribute [21].

2) Online attack against the PAP password
in this attack, RADIUS servers enabling
replay of request authenticator (16 octets)
and identifier using PAP. Attacker can then
try an online dictionary attack against the
user password of 16 characters or less
[21].

3) Response authenticator based shared
secret attack attacker observes a valid
Access-Request packet and the
associated Access-Accept or Access-
Reject packet. They can launch an off-line
exhaustive attack on the shared secret.
The attacker can pre-compute the MD5
state and then resume the hash once for
each shared secret guess [22].

4) User-password attribute based shared
secret attack, an attacker can gain
information about the shared secret and
attempts to authenticate to the client with a
known password.

5) User-password based password attack,
the attacker attempts firstly to authenticate
to the client using a valid username, then

captures the resulting Access-Request
packet and determines the result of the
MD5 then it's replay modified Access-
Request packets, using the same request
authenticator and MD5 [22].

6) DOS arising from the prediction of the
request authenticator, the attacker can
predict future values of the request
authenticator then create a dictionary of
future request authenticator values. The
attacker can then masquerade as the
server and responds to the client's
requests with valid looking Access-Reject
packets then creating a denial of service.

7) Replay attack: Attacker can get user
password through passive eavesdropping
or sniff traffic; an attacker can build a
dictionary attack to find patterns and break
a cipher, then replay to server with valid
login. The adversary records a data
transfer and replies it at any time through
the network. Replay attack is a method of
exploiting a captured packet or packets
and resend to user that cause unexpected
or unwanted behavior from the server. If
the server does not detect the reused data
and accepts the repeatedly transmitted
packets, the attack is successful. If an
attacker would come across the data from
a user that is generated by the JavaScript,
it would be possible to login as the user
without the server noticing any difference.
The data is usually gathered either by
listening to the traffic or by installing
malicious software on the user computer.
[12].

To resolve these security issues, the OTP
technique was developed.

2.8.1 Attacker database

Database for attacker includes two tables; the
first table called users table includes username
of all users with their passwords that have been
captured through sniffing on ports or implement
malicious script. The second table is OTP table
that includes Id PIN and OTP stolen from users
of the system. A typical attacker database is
shown in Fig. 7.

2.8.2 Replay attack components

Replay attack components are described as
follows:

1. User: User is a person (victim) who
requests access to the system services.

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

10

2. Captive portal: The System is a web page
that is designed to provide services to end
users.

3. RADIUS server: The RADIUS server
checks the user information (username
and password)

 which is entered in the sign-in form. The
RADIUS server has a database to store
the user data.

4. Authentication server (AS): AS is
responsible of the second phase in the
system, after the system user enters the
PIN and the generated OTP in the OTP
page, the authentication server will check
the secret key, PIN and last OTP and then
will send a response to the system.

5. Attacker server: Attacker server sends
malicious software script to user to listen
on any request processed to system.

6. Attacker: Is malicious user that can sniff to
network traffic and steal user data. Attack
depends on the incoming requests to the
server continuously without interruption.

7. Response time: Server Response Time is
defined as the elapsed time between the
end request or demand on a computer
system by user and the beginning of server
response. The server response time can
also be defined as the length of time taken
by a system to respond to an instruction by
server. The response time of a RADIUS
server must not be more than 1000 ms.

Fig. 7. Attacker database [10]

2.8.3 Replay attack architecture

The attacker server is able to capture the
username and password from user within a
malicious script which is recording the private
information for users, then attacker server sends
the username and password to attacker who is
stealing and trying to authenticate username and
password in the system. The attacker listens and
take any information from user in each traffic
over the network. Replay attack architecture is
shown in Fig. 8 [23].

2.9 One Time Password (OTP) Technique

One Time Password OTP is an instant password,
in other words it is a code that changed after

each use and uses it to authenticate [24]. OTP
are passwords that are only valid for a single or
small number of transactions. An attacker has a
smaller period of time to gain access to
resources protected by such password because
any previously stolen passwords will likely have
become invalid. That means adding some
uncertain factors in the procedure of
authorization. The information transmitted over
network is different, thus the security is improved
OTP has a characteristic making it impossible to
predict the next password from the current
password; also they are not vulnerable to replay
attacks [10]. OTPs avoid a number of
shortcomings that are associated with traditional
(static) passwords (Sung-Jae, 2011). OTP is
based on a cryptographic algorithm [25].

���������� = �(�) (2.2)

Where key k is a cryptographically generated

Computing the cryptogram with factors makes
the output random and on time, cryptographic
algorithms based counter also called even and
based time (e.g. seconds) with triple factor, f1:
key k a cryptographic is generated, f2:T refers to
time factor, f3: c refers to counter factor. While
f1.i is number of factor, equation (2.1) shows a
cryptographic algorithm of OTP. Fig. 7 explains
OTP generation process.

���������� = � (�, �, �) (2.3)

2.9.1 Generation OTP and distribution

The process of the OTP generation consists of:

1) Input value
2) OTP generation
3) OTP extraction
4) Time

The OTP generation algorithm generates
an OTP value from an input value (user’s
strong password and secret key) as shown in
Fig. 9. It is based on hash functions for message
digest (MD5) and uses the shared input
value between the server and the OTP generator
[27].

A time value, a counter value and a challenge
value are used as the key and data of the
generation algorithm. The extraction algorithm of
the OTP value extracts the real OTP value from
the output value of the OTP generation
algorithm.

Fig.

In this research three main techniques
of OTP (TOTP, HOTP and CROTP)
implemented and simulated on the modeled
ABU network and their response time
compared in order to determine the
most appropriate approach to adopt and
improve on the most appropriate
technique.

2.9.2 Justification for OTP

One-time passwords are passwords that are only
valid for a single or small number of transactions.
This contrasts with conventional passwords

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

11

. 8. Replay attack architecture [13]

Fig. 9. OTP generation [26]

In this research three main techniques
(TOTP, HOTP and CROTP), are

implemented and simulated on the modeled
network and their response time

compared in order to determine the
most appropriate approach to adopt and
improve on the most appropriate

time passwords are passwords that are only
valid for a single or small number of transactions.
This contrasts with conventional passwords

which are valid for many transactions as users
are reluctant to voluntarily change password
frequently. Since OTPs are only valid
for a limited number of uses, an attacker has a
smaller window of time to gain access to
resources guarded by such a password
because any previously stolen passwords wil
likely have become invalid. As with traditional
passwords, one-time passwords are vulnerable
to man-in-the-middle attacks. By observing the
OTP before it is successfully received by the
authenticator, an attacker has a valid password.
Because of this undesirable property, both OTPs
and conventional passwords must travel
securely.

; Article no.BJAST.29503

which are valid for many transactions as users
are reluctant to voluntarily change passwords
frequently. Since OTPs are only valid
for a limited number of uses, an attacker has a
smaller window of time to gain access to
resources guarded by such a password
because any previously stolen passwords will
likely have become invalid. As with traditional

time passwords are vulnerable
middle attacks. By observing the

OTP before it is successfully received by the
authenticator, an attacker has a valid password.

esirable property, both OTPs
and conventional passwords must travel

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

12

2.9.3 Approaches for the generation of OTP

There are three major technique used for
generation of OTP [16].

2.9.3.1 Time synchronization

In this technique, both the client and server will
have synchronous time clocks. In this approach
time is used as a changing factor which changes
every 3 minutes. The generation time must be
synchronized with the authentication server time.
If the authentication server and the user do not
keep the same time, then the expected OTP
value won't be produced and the user
authentication will fail [28].

With time-synchronized OTPs, the user
typically must enter the password within
a certain period of time before it is
considered expired and another one must be
generated [21].

2.9.3.2 Event synchronization

In this technique, both the client and server will
typically have a counter value. Whenever client

wants to login, it generates OTP from the counter
value and any other input Personal Identifier
Number (PIN) and updates the counter. User
submits the generated OTP to server. Server
also generates the password using the counter. If
password match, the server authenticates the
user and updates the counter (increment/
decrement the counter) [29]. it may happen that
the counter on client and server may drift (due
to passwords generated by client but not
submitted, passwords submitted by client but
does not reach to server due to network failure,
etc.) [30].

2.9.3.3 Challenge–response technique

In this technique a random number (PIN) chosen
by the authentication server is sent to a user, the
user enters PIN value then sends response to
the server. This technique based on a challenge
response [31].

2.9.4 Types of OTP techniques

The following are the different types of OTP
techniques.

Table 2. Replay attack steps [19]

Step no. Description
1. The user enters the username and password in the login screen.
2. The system sends user data to the RADIUS server to authenticate the user, the RADIUS

server verifies the username and password and sends a response either accept or reject.
3. Attack depends on the reception of incoming requests to the server

continuously without interruption
4. Attacker server sends malicious software script to user to listen on any

request processed to system.
5. Attacker steals data and last request, then sends these data to RADIUS Server
6. RADIUS server receives stolen data from attacker and replays for AS.
7. High response time on the RADIUS server results in time out but with valid credentials, which

the attacker can use.
8. AS query and verifies PIN, OTP, secret key, last OTP and response with the user is not

authenticated or authenticated.

Table 3. Steps in generation of HOTP technique [15]

Steps Description
1. The user enters the username and password in the login screen. The password should contain

more than six characters.
2. The system sends user data to the RADIUS server to authenticate the user.
3. The RADIUS server verifies the username and password and sends a response either accept

or reject.
4. The user opens the OTP application and enters the PIN.
5. The OTP application provides the generated OTP for the system user.
6. The user enters the PIN and the generated OTP through the system.
7. The system sends a request to the AS to check the last OTP, the PIN and the secret key of the

system user.
8. The AS verifies user OTP and sends a response to system either accept or reject.

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

13

Fig. 10. HOTP flowchart [10]

2.9.4.1 Hash one time password (HOTP)

technique

The HOTP technique is based on an increasing
counter value. Both the client and server will
typically have a counter value. Server generates
the password to use the counter. If passwords
match, the server authenticates the user and
updates the counter increment/ decrement the

counter), it may happen that the counter at client
and server may drift (due to passwords
generated by client but not submitted, or
passwords submitted by client but does not
reach to server due to network failure, etc.) [26].

In this case it will respond to server with denial
service. The steps in generation of HOTP
technique is shown in Table 3.

Start

String secret, int pin, int

lastCount

String password =lastCount +secret + pin

md=messageDigest.getInstance("MD5")

stringBuffersb="new"

I=0

I<byteData.length

Sb.append((Integer.toString((byteData[i] & 0xff) + 0x100, 16).substring(1))

Otp=otp.substring(0,6)

timer. is Running()=false

timer=newTimer(1000, actListner)

timer.start()

End

i++

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

14

2.9.4.2 HOTP: HMAC-based one-time password
algorithm

On both the client and the server, the choice of
algorithm for passcode generation is essentially
arbitrary, so long as it provides adequate security
and can be used in a user friendly manner. The
HOTP is a counter-based algorithm called
HMAC-Based One Time Password (HOTP)
Algorithm that is relatively easy to implement and
met the necessary usability requirements. The
HOTP algorithm is based on a monotonically
increasing counter value and a static symmetric
key known only to the client and the server. In
order to create the HOTP value, the HMAC-SHA-
1 algorithm is used. Each client has a unique
shared secret, typically 128 bits or 160 bits in
length. The shared secret is combined with an
increasing counter, also shared between the
client and the server, to generate the current
passcode [32].

The obtained HOTP is as follows:

����(�, �) = ��������(���� − ��� − 1(�, �))

(2.4)

Where: Truncate represents the function that
converts an HMAC-SHA-1 value into an HOTP
value; and the key (K), the counter (C), and Data
values are hashed high- order byte first.

The actual HOTP algorithm is relatively simple to
understand. First, a SHA-1 HMAC generator is
initialized using the shared secret. Then the
HMAC of the current counter, or moving factor, is
computed. Next, through a process called
dynamic truncation, certain bytes are extracted
from the HMAC. Finally, these bytes are taken
modulo 10n, where n is the number of digits
desired in the passcode, to produce the current
pass code [33].

In order for a client to authenticate to a server,
both must generate the same passcode.
Specifically, assuming that the server has
already distributed the shared secret to the client,
the client counter and the server counter must be
synchronized. When the counters are not
synchronized, a process called resynchronization
must occur. The HOTP algorithm has two basic
mechanisms to resynchronize the server with the
client. The most straightforward method is for the
client to simply send the counter value over to
the server. The server would merely need to
verify that the new counter is greater than the
current counter.

The second method is for the server to maintain
a look-ahead window of future passcodes. If the
client provides a passcode that lies within this
window, the server will ask the user to generate
the next passcode and send it to the server. If
two consecutive passcodes match, then the
server will resynchronize. The flowchart for
HOTP is shown in Fig. 10 [34].

3. THE PROPOSED METHOD

The methodology adopted is based on the
designed, configurations, and simulations of ABU
campus network to identify the response time on
the three variant of OTP in a RADIUS
environment using captive portal, GNS and
Virtualbox simulation software’s were used to
configure the network devices and the installation
of the Linux operating system with free RADIUS
2.0 with firewall on the virtualbox environment,
the Network Access Server which provides the
captive portal was also installed on the virtualbox
[35]. The proposed improved OTP techniques
was also adopted with the result output showed
some significant improvement on all the three
variant of OTP used with the TOTP having the
highest improvement on the response time both
with the simulation and during validation with the
active devices.

3.1 ABU Campus Network Modeling and

Simulation Using GNS3

ABU campus network (as shown in Fig. 11) was
simulated in GNS3 simulation environment. The
routers in the topology were configured to run
using Mikrotik router operating system to
simulate the real live ABU network design and
configuration. The authentication server uses
Ubuntu server 14.0 with firewall and
FreeRadius2 installed on it, the three OTP
variant will also be implemented on this server
together with the OTP generator. While the
windows machine is used as the user’s machine
which are connected to the virtualbox using the
GNS3 simulator.

3.2 Radius Server Environment

The RADIUS Server environment for this system
was prepared through a set of steps. These
steps are shown as follows:

1) Ubuntu Linux operating system version 14
is used for the installation of Freeradius2
and the developed OTP generators. As
Linux grows in terms of value to running

Galley Proof

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

15

critical applications, the need to manage
Linux environments to high standards of
service quality, availability, security, and
performance becomes an essential
requirement for success. The operating
system is installed on the kernel based
virtual machine.

2) The virtual machine (VM) with the Kernel-
based Virtual Machine (KVM) software that
is built into the operating system was
created. The Oracle VM Virtualbox is a
server virtualization based on multi
operating system.

3) The freeRADIUS2 is installed and use
putty.exe configuration tool to open
sessions as shown in Fig. 12 on type to be
SSH on port 22. SSH is a secure shell
against eavesdropping and encrypt data
during traffic.

4) The Freeradius2 was installed together
with the MySQL server. The MySQL server
stores all the usernames and passwords
for the users, also the logs for the
response time will be stored in MySQL
database, the database can be accessed
via either command line tool using putty or
the graphical user interface using
PhPmyadmin.

To run the RADIUS server, enter the user name
and password for RADIUS and then type the
command “ radiusd –x “as shown in Fig. 13.

Thus, the RADIUS server will display a ready to
process any request from the user as shown in
Fig. 14.

3.3 Captive Portal Implementation

The captive portal was implemented on the
Network Access Server (NAS) which also resides
on the Ubuntu Linux server, the captive portal is
developed using the PhP programming
language, the captive portal is the screen that
appears when a user access resources on the
network, it consists of fields such as the login,
password, self-registration, drop down button to
select different types of OTP technique.
Fig. 15 shows the developed page for
user authentication. This page is similar to the
captive portal in Fig. 4 with the improved
version of the page, there is now additional field
for OTP technique and self-registration which are
missing on the current ABU network captive
portal.

3.4 OTP Generation Scenarios

This sub-section describes the OTP generation
scenario to show how the user OTP is generated
through OTP application. The OTP application is
developed using a PHP developed script. After
the user is authenticated (sign-in process) by
RADIUS server, the system transmits the user to
the OTP page which is an important page in the
login process in the captive portal. The user must
open the OTP application and enter the PIN and
then get the OTP which is generated by one of
the three OTP variants. Finally, the user takes
the OTP and enters the PIN and OTP in the OTP
page of the system. After that the user can login
to the system if the matching process is verified
and certified ok by the authentication server.

Fig. 11. ABU network model using GNS3

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

16

Fig. 12. Putty SSh client

Fig. 13. Accessing RADIUS server

Fig. 14. Running RADIUS server

Figs. 16, 17 and 18 show the developed OTP
application for the generation of OTP for the
three variants of OTP techniques, using the

algorithm for each technique. The source code
for the developed OTP application is shown in
Appendix I.

Fig

Fig. 1

Fig

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

17

Fig. 15. Captive portal

Fig. 16. Developed HOTP generator

. 17. Developed CROTP generator

Fig. 18. Developed TOTP generator

; Article no.BJAST.29503

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

18

3.5 Obtaining Usernames, PIN AND OTP

The user can register self on the server from the
captive portal, then prompt the user to select
desired PIN, then the user will generate the
desires OTP from the three techniques using
the developed OTP generator as shown in
Fig. 15.

3.6 User Login Scenario

The user login scenario offers a set of cases for
login process in the RADIUS server. In Table 4,
each case passes the system user in several
stages in order to login to the network. These
cases are mentioned as follows:

Case 1: The valid user

a) A user login to the network by providing
username and password.

b) The RADIUS server sends a response
accepting the credentials.

c) The system redirects the user to
OTP page, the user provides PIN and
OTP.

d) The system sends the PIN and OTP to
authentication server (AS) which checks
PIN, last OTP and secret key and then AS
sends an acceptance response to the
system.

e) The authentication result in this case is
successful and the user can login to
network.

Case 2: The missing user name

a) A user attempts to login to the network
without providing username.

b) The RADIUS server sends a rejection
response.

c) The system prevents this user from login to
the network.

Case 3: Invalid password

a) A user login to the system by providing
valid username and invalid password.

b) The RADIUS server sends a rejection
response.

c) The system does not response to user

Case 4: Invalid OTP

a) A user login to the network by providing
username and password.

b) The RADIUS server sends a response
accepting the credentials.

c) The system redirects the user to the OTP
page, the user provides valid PIN and
invalid OTP.

d) The system sends the PIN and the invalid
OTP to AS which verifies PIN, last OTP
and secret key and then AS sends a
rejection response.

e) The authentication result of this case is
failed.

Case 5: Invalid PIN

a) A user login to the server by providing

valid username and password.

b) The RADIUS server sends a response
accepting the credentials

c) The system redirects the user the OTP
page, and the user enters invalid PIN and
valid OTP.

d) The system sends the PIN and the OTP to
AS which verifies PIN, last OTP and secret
key and then AS sends a rejection
response.

e) The authentication result of this case
failed.

The summary of the results is as shown in
Table 4.

3.7 The Improved OTP Technique

After obtaining the response time for each of the
three OTP variants, it can be seen that the TOTP
variant had the least response time (screen shot
shown in Fig. 19 shows the data taken during the
test).

The OTP generator is merged with the
RADIUS server using the PHP-developed script
in order to eliminate the time taken to
synchronize between the OTP generator and the
RADIUS server. The improved OTP flowchart is
shown in the Fig. 20. The source code for
the improved OTP technique is shown in
Appendix II.

3.8 Validation

The simulated ABU network environment
using GNS3 was adopted and configured on a
live server, using a Dell power edge server
with 8GB of RAM, 500GB of Hard disk drive and
2.3Ghz processor with Linux operating
system, FreeRadius 2.0 and Firewall were
installed on the server. Also Mikrotik router and
cisco switches were used for the validation
process in ABU Zaria Data Centre. Plate 1 show

the validation setup on one of the equipment rack
in the ABU Data Centre. After obtaining the
response time for each of the three OTP
variants, it can be seen that still the TOTP variant

 RADIUS server

 C
a

s
e

s

A

u
th

e
n

ti
c

a
ti

o
n

 r
e

q
u

e
s

t

U

s
e
rn

a
m

e

P

a
s

s
w

o
rd

Case 1 V V V
Case 2 V I Na
Case 3 V V I
Case 4 V V V
Case 5 V V V

KEY: V: Valid information; I: Invalid information; Na: Not applicable; S: authentication successful; F:

Fig. 19. Response

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

19

the validation setup on one of the equipment rack
in the ABU Data Centre. After obtaining the

e three OTP
variants, it can be seen that still the TOTP variant

had the least response time (screen shot shown
in Plate. 1 shows the data taken during
the test).

Table 4. User login cases

 OTP techniques Authentication server

T

O
T

P

H
O

T
P

C

R
O

T
P

O

T
P

P

IN

L
a

s
t

O
T

P

V V V V V
Na Na Na Na Na
I Na Na Na Na
V I Na Na Na I
V V I I I

Valid information; I: Invalid information; Na: Not applicable; S: authentication successful; F:
authentication failed

Response time for the three OTP variants

; Article no.BJAST.29503

had the least response time (screen shot shown
in Plate. 1 shows the data taken during

S

e
c

re
t

k
e

y

A

u
th

e
n

ti
c

a
ti

o
n

 r
e

s
u

lt

V S
Na F
Na F
Na I F
 F

Valid information; I: Invalid information; Na: Not applicable; S: authentication successful; F:

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

20

Fig. 20. Flowchart for the improved OTP technique

Plate 1. Validation setup

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

21

Fig. 21. Validation for response time using the three OTP variants

4. RESULTS AND DISCUSSION

4.1 Data

The modeled ABU campus network in GNS3
modeler environment is simulated for ten users
averagely to represent a response time for each
user using the three variant of OTP, the average
response time were taken before improving,
during simulation and during the validation
process.

To measure the server response time, ten
different cases are offered for each of the three
OTP techniques before and after improving the

OTP technique. These cases show the server
response time for each request by the system
user. Table 5 shows the user request time and its
response time by the server before improving the
OTP technique.

The Unix time stamp is a way to track time as a
running total of seconds. This count starts at the
Unix Epoch on January 1st, 1970 UTC. The Unix
time stamp is merely the number of seconds
between a particular date and the Unix Epoch.
For example, the user request time for case 1 is
equal to 1447419898 as timestamp. This case is
equal to 13/11/2015, 3:04:58 pm as current date
using a timestamp converter.

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

22

From the Table 5, the average response time
before improving these techniques are TOTP 2.5
sec., CROTP is 5.2 sec. and HOTP is 5.7 s. This
results were obtained when the OTP generators
and the RADIUS servers were separated. From
these results it can be concluded that the TOTP

has the least response time, while the HOTP has
the highest response time. These values are
higher than the recommended response time for
a captive portal in a RADIUS environment which
is approximately 1000 ms. The response time for
each variant is as shown in Figs. 22 - 24.

Table 5. Server response time for three OTP variants

Case Request time Response time Technique type Drift second
1 1447419892 1447419895 TOTP 3
2 1447420040 1447420044 TOTP 4
3 1447510055 1447510056 TOTP 1
4 1447510225 1447510226 TOTP 1
5 1447510511 1447510517 TOTP 6
6 1447510737 1447510738 TOTP 1
7 1447513402 1447513404 TOTP 2
8 1447514101 1447514106 TOTP 5
9 1447514384 1447514385 TOTP 1
10 1447514696 1447514697 TOTP 1
11 1447505190 1447505196 HOTP 6
12 1447504833 1447504837 HOTP 4
13 1447505111 1447505119 HOTP 8
14 1447505521 1447505525 HOTP 4
15 1447505981 1447505988 HOTP 7
16 1447506642 1447506650 HOTP 8
17 1447507060 1447507068 HOTP 8
18 1447507511 1447507516 HOTP 5
19 1447507873 1447507878 HOTP 4
20 1447508422 1447508425 HOTP 3
21 1447578601 1447578619 CROTP 8
22 1447578922 1447578930 CROTP 8
23 1447579244 1447579246 CROTP 2
24 1447579532 1447579538 CROTP 6
25 1447579869 1447579873 CROTP 4
26 1447580235 1447580241 CROTP 6
27 1447580739 1447580744 CROTP 5
28 1447581432 1447581437 CROTP 5
29 1447581927 1447581932 CROTP 5
30 1447582628 1447582631 CROTP 3

Fig. 22. TOTP response time

0

1

2

3

4

5

6

7

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

R
es

p
o

n
se

 T
im

e
(S

)

Users

TOTP Response time before improvement

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

23

Fig. 23. HOTP response time

Fig. 24. CROTP response time

4.2 Improved OTP Technique

After the implementation of the modified OTP
technique by integrating all the OTP techniques
to resides in a RADIUS server rather than using
the OTP generator separately for each
technique. Table 6 shows the results for the
modified techniques.

From Table 6 the average response time
for the TOTP is 1.3s, that of CROTP is 2s and
that of HOTP is 1.9s. From these results it can
be concluded that the TOTP has the least
response time, while the HOTP and CROTP
have the highest response times. The value for
the TOTP is close the recommended response
time for a captive portal in a RADIUS
environment which is approximately 1000 ms.
This delay is due to the simulation software

which require a lot of processing power. The
response time for each technique is shown in
Figs. 25 - 27.

4.3 Validation

After the implementation of the improved OTP
technique by integrating all the OTP techniques
to resides in a RADIUS server rather than using
the OTP generator separately for each technique
using the live server and routers as shown in
Plate 1 for validation of the results. Table 7
shows the validation results for the modified
techniques.

From Table 7 the average response time
for the TOTP is 0.4s, that of CROTP is 1.0s and
that of HOTP is 1.0s. From these results it can
be concluded that the TOTP has the least

0
1
2
3
4
5
6
7
8
9

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10

R
es

p
o

n
se

 T
im

e
(S

)

Users

HOTP Response time before improvement

0

5

10

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10R

es
p

o
n

se
 T

im
e

(S
)

Users

CROTP Response time before improvement

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

24

response time, while the HOTP and CROTP
have the highest response times. The response

time for each technique is shown in
Figs. 28 - 30.

Table 6. Response time for the improved OTP technique

Case Request time Response time Technique type Drift second

1 1447419898 1447419899 TOTP 1

2 1447420040 1447420041 TOTP 1

3 1447510055 1447510057 TOTP 2
4 1447510225 1447510226 TOTP 1

5 1447510511 1447510512 TOTP 1

6 1447510737 1447510738 TOTP 1

7 1447513402 1447513403 TOTP 1

8 1447514101 1447514103 TOTP 2

9 1447514384 1447514385 TOTP 1

10 1447514697 1447514698 TOTP 1

11 1447505190 1447505193 HOTP 3

12 1447504833 1447504835 HOTP 2

13 1447505111 1447505113 HOTP 2

14 1447505521 1447505523 HOTP 2

15 1447505985 1447505986 HOTP 1

16 1447506645 1447506648 HOTP 3
17 1447507065 1447507067 HOTP 2

18 1447507511 1447507512 HOTP 1

19 1447507873 1447507874 HOTP 1

20 1447508422 1447508424 HOTP 2

21 1447578609 1447578612 CROTP 3

22 1447578922 1447578925 CROTP 3

23 1447579244 1447579247 CROTP 3

24 1447579535 1447579536 CROTP 1

25 1447579869 1447579871 CROTP 2

26 1447580235 1447580236 CROTP 1

27 1447580739 1447580740 CROTP 1

28 1447581432 1447581434 CROTP 2

29 1447581927 1447581929 CROTP 2
30 1447582628 1447582630 CROTP 2

Fig. 25. Improved TOTP response time

0

0.5

1

1.5

2

2.5

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10R

e
sp

o
n

se
 T

im
e

(S
)

Users

Improved TOTP response time

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

25

Fig. 26. Improved HOTP response time

Fig. 27. Improved CROTP response time

Fig. 28. Validation TOTP response time

0

0.5

1

1.5

2

2.5

3

3.5

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10

R
es

p
o

n
se

 T
im

e
(S

)

Users

Improved HOTP response time

0

1

2

3

4

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10

R
es

p
o

n
se

 T
im

e
(S

)

Users

Improved CROTP response time

0

0.5

1

1.5

2

2.5

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10

R
es

p
o

n
se

 T
im

e
(S

)

Users

Validation result TOTP

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

26

Fig. 29. Validation HOTP response time

Table 7. Validation results for response time

Case Request time Response time Technique type Drift second

1 1463735334 1463735336 TOTP 2

2 1463735711 1463735712 TOTP 1

3 1463736020 1463736020 TOTP 0

4 1463737558 1463737558 TOTP 0
5 1463737743 1463737743 TOTP 0

6 1463738712 1463738713 TOTP 1

7 1463739705 1463739705 TOTP 0

8 1463740402 1463740402 TOTP 0

9 1463741234 1463741234 TOTP 0

10 1463741629 1463741629 TOTP 0

11 1464080937 1464080938 HOTP 1

12 1464081291 1464081293 HOTP 2

13 1464081729 1464081730 HOTP 1

14 1464082154 1464082155 HOTP 1

15 1464082709 1464082712 HOTP 3

16 1464083079 1464083079 HOTP 0

17 1464083418 1464083419 HOTP 1
18 1464083917 1464083917 HOTP 0

19 1464084208 1464084208 HOTP 0

20 1464085323 1464085324 HOTP 1

21 1464088388 1464088391 CROTP 3

22 1464088788 1464088789 CROTP 1

23 1464089073 1464089074 CROTP 1

24 1464089744 1464089744 CROTP 0

25 1464090479 1464090479 CROTP 0

26 1464090913 1464090914 CROTP 1

27 1464091894 1464091895 CROTP 1

28 1464092302 1464092304 CROTP 2

29 1464093222 1464093222 CROTP 0

30 1464094031 1464094032 CROTP 1

0

1

2

3

4

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10

R
es

p
o

n
se

 T
im

e
(S

)

Users

Validation result HOTP

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

27

Fig. 30. Validation CROTP response time

Nowadays, user authentication has become
one of the most important issue in the
security trend. RADIUS protocol provides
remote services for user authentication,
but there are some vulnerabilities in RADIUS
protocol such as the replay attack, which this
research is based on. Therefore, the significant
contributions of this research work are as follows:

1. Development of an improved php-based
OTP generator for the three variants
of the OTP: TOTP, CROTP and HOTP,
which was successfully integrated into the
Linux server application.

2. The average response time obtained for
TOTP, CROTP and HOTP using the
improved OTP generator showed was
60%, 10% and 10% improvement
compared with the response times
obtained using the standard OTP
generator respectively.

5. CONCLUSIONS

The RADIUS protocol with vulnerability of replay
attack and the three techniques to prevent the
replay attack in a RADIUS environment with
captive portal is implemented. This research
work is aimed at preventing a replay attack on
users on a network by evaluating the three
variants of OTP techniques with the aim of
selecting and adopting the one that has the best
response time for further improvement. Previous
studies have suggested several approaches to
reduce the effect of replay attack such as PKI,
PSK, IPsec, session key, sets clock and OTP
techniques, in order to enhance the security in
RADIUS environment. From the results obtained

this research work has shown the improved
response time of all the OTP techniques
compares with the previous result. The
result obtained is lower than the recommended
response time of a RADIUS server in
a captive portal environment which is 1000 ms.
The TOTP technique is the recommended
technique to adopt having the lowest response
time.

6. LIMITATION

During the course of this research work, certain
limitations were observed which are itemized as
follows: GNS3 emulator consumes a lot of
computer resources during simulation; a
computer system with very high specs is
required. The PhP programming debugging was
a bit harder. The Virtualbox was not connecting
to the GNS simulator.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Mikko S. Legacy User Authentication with
IPSEC; 2004.
Available:Publications/Thesis/msaarinen.p
df

2. Kenneth GP. One-time-password-
authenticated key exchange. Australasian
Conference on Information Security and
Privacy (ACISP); 2010.

3. Havard RL. Security analysis of mobile
phones used as OTP generators.

0

1

2

3

4

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User
10

R
es

p
o

n
se

 T
im

e
(S

)

Users

Validation result CROTP

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

28

International Federation for Information
Processing (IFIP). 2010;324-331.

4. Rohan D. Interactive remote authentication
dial in user service (RADIUS)
authentication server model. International
Conference on Wireless and Mobile
Communication ICWMC. Boston. 2012;
238-241.

5. Yang X. The use of one-time password
and RADIUS authentication in a GSS- API
Architecture; 2012.

Available:http://www.diva-
portal.org/smash/get/diva2:512701/FULLT
EXT01.pdf

6. Hyun-Chul K. A design of one-time
password mechanism using public key
infrastructure; 2013.

Available:http://www.diva-
portal.org/smash/get/diva2:512701/FULLT
EXT01.pd

7. Jonghoon LJ. Advanced OTP
authentication protocol using PUF. The
Fifth International Conference on Evolving
Internet IARIA, London. 2013;48-51.

8. Xuguang R. TSPass: A dynamic user.
International Journal of Computer Science
and Network Security IJCSNS. 2012;
12(10).

9. Amna. Implementing and Comprising of
OTP Techniques (TOTP, HOTP, CROTP)
to Prevent Replay Attack in RADIUS
Protocol using ELSBOT; 2014.

Available:http://library.iugaza.edu.ps/thesis
/113489.pd

10. Lapiedra J. The information security
process prevention, detection and
response. SANS Institute; 2002.

11. Rigney CSWARM. Remote authentication
dial in user services (RADIUS). Internet
Engineering Task Force (IETF); 2007.

12. Hassel J. Securing public access to private
resources RADIUS, First Edition ed., J.
Sumser, Ed., California CA: O’Reilly &
Associates, Inc. 2003;29-30.

13. M’Raihi D. TOTP: Time-based one-time
password algorithm. Internet Engineering
Task Force IETF; 2011.

14. Namrata TVP. An approach of
authentication in public cloud using two
step verification code. International Journal
of Emerging Research in Management &
Technology. 2013;2(5).

15. Jaakko T. Overview, details and analysis
of radius protocol; 2014.
Available:http://www.cisco.com/image/gif/p
aws/12433/32.pdf

16. Jaakko T. Overview, details and analysis
of radius protocol; 2015.

17. Available:http://www.cisco.com/image/gif/p
aws/12433/32.pdf

18. Etutorials. Access control: IEEE 802.1X,
EAP and RADIUS; 2014.

19. Available:http://etutorials.org/Networking/8
02.11+security.+wi-
fi+protected+access+and+802.11i/Part+II+
The+Design+of+Wi-
Fi+Security/Chapter+8.+Access+Control+I
EEE+802.1X+EAP+and+RADIUS/

Etutorials. Access control: IEEE 802.1X,
EAP and RADIUS; 2015.

20. Available:http://etutorials.org/Networking/8
02.11+security.+wi-
fi+protected+access+and+802.11i/Part+II+
The+Design+of+Wi-
Fi+Security/Chapter+8.+Access+Control+I
EEE+802.1X+EAP+and+RADIUS

21. Jaakko T. Overview, details and analysis
of radius protocol; 2014.

Available:http://www.cisco.com/image/gif/p
aws/12433/32.pdf

22. Trupti H. Remote client authentication
using mobile phone. International Journal
of Scientific and Research Publications.
2012;2(5):5549-5555.

23. Etutorials. Access control: IEEE 802.1X,
EAP and RADIUS; 2015.

Available:http://etutorials.org/Networking/8
02.11+security.+wi-
fi+protected+access+and+802.11i/Part+II+
The+Design+of+Wi-
Fi+Security/Chapter+8.+Access+Control+I
EEE+802.1X+EAP+and+RADIUS

24. Florian DLTBB. Secure protocol
implementation. IEEE. 2010;179-182.

25. Amna. Implementing and comprising of
OTP techniques (TOTP, HOTP, CROTP)
to prevent replay attack in RADIUS
protocol using ELSBOT; 2014.

Available:http://library.iugaza.edu.ps/thesis
/113489.pdf

26. Bellare HN. CROTP: OATH challenge-
response algorithm. IEEE; 2011.

27. Sung-Jae. Low-power design of hardware
one-time password generators for card-
type OTP. ETRI Journal. 2011;33(4).

28. Himika PNNAST. Generation of secure
one- time password based on image
authentication. IEEE. 2012;195-206.

29. Namrata TVP. An approach of
authentication in public cloud using two
step verification code. International Journal

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

29

of Emerging Research in Management
&Technology. 2013;2(5).

30. Binod V. HOTP-based user authentication
scheme in home networks. IJCSNS-
International Journal of Computer Science
and Network Security. 2013;1-10.

31. Namrata TVP. An approach of
authentication in public cloud using two
step verification code. International Journal
of Emerging Research in Management &
Technology. 2013;2(5).

32. Sung-Jae. Low-power design of hardware
one-time password generators for card-
type OTP. ETRI Journal. 2011;33(4).

33. Binod V. HOTP-based user authentication
scheme in home networks. IJCSNS
International Journal of Computer Science
and Network Security. 2013;1-10.

34. Yeh T. A secure one-time password
authentication scheme using smart cards.
IEICE Transaction on Communication.
2009;2515-2518.

35. DNG, Gagan DSAA. Replay attack
prevention in Kerberos authentication
protocol using triple password.
International Journal of Computer
Networks & Communications (IJCNC).
2013;5(2).

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

30

APPENDIX I

Developed OTP Generators for the three OTP techniques

$interval = 10;
$ timeInUnit = floor($time/$interval);
$i = 0;
$ epoch = $timeInUnit – 18;
while ($i < 36) {
$otp = $epoch.$user->getSecret().$pin;
$otp = md5($otp(;
$epoch++;
$i++;}

$No
 beginning of roll =counter client .
$roll end =counter + MOE Function sync_OTP
{
$ Counter=Counter+1;
$i=0;
$While (i<=50)
$Current counter=counter client –i;

For (i=0;i<i*2;i++)
$Counter++;
$i++;
}

<?php
namespace OTPHP { /**
 * One Time Password Generator
 * The OTP class allow the generation of one-time
 * password that is described in rfc 4xxx.
class OTP {
 /**
 * The base32 encoded secret key
 * @var string
 */
 public $secret;
 /**
 * The algorithm used for the hmac hash function
 * @var string
 */
 public $digest;
 /**
 * The number of digits in the one-time password
 * @var integer
 */
 public $digits;
 /**
 * Constructor for the OTP class
 * @param string $secret the secret key
 * @param array $opt options array can contain the
 * following keys :
 * @param integer digits : the number of digits in the one time password
 * @param string digest : the algorithm used for the hmac hash function

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

31

 * @return new OTP class.
 */
 public function __construct($secret, $opt = Array()) {
 $this->digits = isset($opt['digits']) ? $opt['digits'] : 6;
 $this->digest = isset($opt['digest']) ? $opt['digest'] : 'sha1';
 $this->secret = $secret;
 }
 /**
 * Generate a one-time password
 *
 * @param integer $input : number used to seed the hmac hash function.
 * This number is usually a counter (HOTP) or calculated based on the current
 * timestamp (see TOTP class).
 * @return integer the one-time password
 */
 public function generateOTP($input) {

 $hash = hash_hmac($this->digest, $this->intToBytestring($input), $this->byteSecret());
 foreach(str_split($hash, 2) as $hex) { // stupid PHP has bin2hex but no hex2bin WTF
 $hmac[] = hexdec($hex);
 }
 $offset = $hmac[19] & 0xf;
 $code = ($hmac[$offset+0] & 0x7F) << 24 |
 ($hmac[$offset + 1] & 0xFF) << 16 |
 ($hmac[$offset + 2] & 0xFF) << 8 |
 ($hmac[$offset + 3] & 0xFF);
 return $code % pow(10, $this->digits);
 }
 /**
 * Returns the binary value of the base32 encoded secret
 * @access private
 * This method should be private but was left public for
 * phpunit tests to work.
 * @return binary secret key
 public function byteSecret() {
 return \Base32::decode($this->secret);
 }
 /**
 * Turns an integer in a OATH bytestring
 * @param integer $int
 * @access private
 * @return string bytestring
 */
 public function intToBytestring($int) {
 $result = Array();
 while($int != 0) {
 $result[] = chr($int & 0xFF);
 $int >>= 8;
 }
 return str_pad(join(array_reverse($result)), 8, "\000", STR_PAD_LEFT);
 }
 <?php
 require './otphp/lib/otphp.php';
 require './config.php';
 //echo $config['secret']." \n";
 $techniques = array('HOTP', 'TOTP', 'CR');
 if(isset($argv[1]) && isset($argv[2]) && in_array($argv[1], $techniques)) {

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

32

 $technique = $argv[1];
 $pin = $argv[2];
 if($technique == 'HOTP') {
 $counter = file_get_contents("./counter.conf");
 $hotp = new \OTPHP\HOTP($config['secret'].$pin);
 $token = $hotp->at($counter);
echo "*WELCOME TO DEPT. OF ELCECT. AND COMP. ENG. ABU ZARIA OTP Generator*
 echo "* Token Successfully Generated * \n";
 echo
"*** \n";
 echo "* * \n";
 echo "* Method: ".$technique." * \n";
 echo "* Token: ".$token." * \n";
 echo "* * \n";
 echo
"*** \n";
 file_put_contents("./counter.conf", (int)$counter+1);
 }else if($technique == 'TOTP') {
 $totp = new \OTPHP\TOTP($config['secret'].$pin, array('interval' => 180));
 $token = $totp->now();

echo "*WELCOME TO DEPT. OF ELCECT. AND COMP. ENG. ABU ZARIA OTP Generator*
 echo "* Token Successfully Generated * \n";
 echo
"*** \n";
 echo "* * \n";
 echo "* Method: ".$technique." * \n";
 echo "* Token: ".$token." * \n";
 echo "* * \n";
 echo "* Token is Valid for 3 Min * \n";
 echo "
*** \n";
 }else if($technique == 'CR') {
 $counter = file_get_contents("./counter.conf");
 $cr = new \OTPHP\HOTP($counter.$config['secret'].$pin);
 $token = $cr->at($counter);
echo "*WELCOME TO DEPT. OF ELCECT. AND COMP. ENG. ABU ZARIA OTP Generator*
 echo "* Token Successfully Generated * \n";
 echo
"*** \n";
 echo "* * \n";
 echo "* Method: ".$technique." * \n";
 echo "* Token: ".$token." * \n";
 echo "* * \n";
 echo
"*** \n";
 file_put_contents("./counter.conf", (int)$counter+1);
 }else {
echo "*WELCOME TO DEPT. OF ELCECT. AND COMP. ENG. ABU ZARIA OTP Generator*
 echo "* * \n";
 echo "* Error: Use Generator as: php otpgen [technique] [pin] * \n";
 echo "* --techniques (HOTP, TOTP, CR) * \n";
 echo "* * \n";
 echo "
*** \n";
 }
?>

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

33

APPENDIX II

Improved OTP Technique
<?php
use Helpers\Assets;
use Helpers\Url;
use Helpers\Session;
?><div class="mainContainer">
 <img src="<?php echo Url::templatePath(); ?>images/logo.png" style="max-width: 100%;" />
 <h2>Radius Server OTP</h2>
 <?php
 echo Session::message('error');
 if(!empty(Session::get('pin'))) {
 echo "<p>Generate Token Using PIN: ".Session::pull('pin')." & Technique:
".Session::pull('technique')."</p>";
 }else if(!empty(Session::get('technique'))) {
 echo "<p>Generate Token Using Technique:
".Session::pull('technique')."</p>";
 ?>
 <form action="<?php echo DIR; ?>otp" method="POST" role="form" style="max-width: 70%;
margin: auto;">
 <div class="form-group">
 <label for="pin">PIN:</label>
 <input type="text" class="form-control" id="pin" name="pin"
placeholder="PIN">
 </div>
 <div class="form-group">
 <label for="token">Token:</label>
 <input type="password" class="form-control" id="token" name="token"
placeholder="Token">
 </div> <button type="submit" class="btn btn-default">Submit</button>
 </form>

 <p>Logged In as <?php echo Session::get('username'); ?> <a href="<?php echo DIR;
?>logout" class="btn btn-danger">Logout</p>
</div>
<?php
use Helpers\Assets;
use Helpers\Url;
use Helpers\Session;
?> <div class="mainContainer">
 <img src="<?php echo Url::templatePath(); ?>images/logo.png" style="max-width: 100%;" />
 <h2>Radius Server Register</h2>
 <?php
 echo Session::message('error');
 ?>
 <form action="<?php echo DIR; ?>register" method="POST" role="form" style="max-width:
70%; margin: auto;">
 <div class="form-group">
 <label for="username">Username:</label>
 <input type="text" class="form-control" id="username" name="username"
placeholder="Username" required>
 </div>
 <div class="form-group">
 <label for="password">Password:</label>
 <input type="password" class="form-control" id="password"
name="password" placeholder="Password" required>
 </div>

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

34

 <div class="form-group">
 <label for="technique">OTP Technique:</label>
 <select class="form-control" id="technique" name="technique" required>
 <option>Select One</option>
 <option value="HOTP">HOTP</option>
 <option value="TOTP">TOTP</option>
 <option value="CR">Challenge Response</option>
 </select>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </form>

 <p>Already have an account? <a href="<?php echo DIR; ?>" class="btn btn-
danger">Login</p> </div>
<?php
use Helpers\Assets;
use Helpers\Url;
use Helpers\Session;
?>
<div class="mainContainer">
 <img src="<?php echo Url::templatePath(); ?>images/logo.png" style="max-width: 100%;" />
 <h2>Radius Server Secret</h2>
 <p> Registration Successfull, your secret is : <?php echo Session::pull('secret');
?> </p>

 <p><a href="<?php echo DIR; ?>" class="btn btn-primary">Login Now</p>
</div>
<?php
use Helpers\Assets;
use Helpers\Url;
use Helpers\Session;
?>
<div class="mainContainer">
 <img src="<?php echo Url::templatePath(); ?>images/logo.png" style="max-width: 100%;" />
 <h2>Radius Server Secured Page</h2>
 <p>This is a test secured page.</p>

 <p>Logged In as <?php echo Session::get('username'); ?> <a href="<?php echo DIR;
?>logout" class="btn btn-danger">Logout</p>
-*- text -*-

clients.conf -- client configuration directives
Id

Define RADIUS clients (usually a NAS, Access Point, etc.).
Defines a RADIUS client.
 '127.0.0.1' is another name for 'localhost'. It is enabled by default,
to allow testing of the server after an initial installation. If you
are not going to be permitting RADIUS queries from localhost, we suggest
that you delete, or comment out, this entry.
Each client has a "short name" that is used to distinguish it from
other clients.
In version 1.x, the string after the word "client" was the IP
address of the client. In 2.0, the IP address is configured via
the "ipaddr" or "ipv6addr" fields. For compatibility, the 1.x
format is still accepted.
client localhost {
 # Allowed values are:
 # dotted quad (1.2.3.4)

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

35

 # hostname (radius.example.com)
 ipaddr = 127.0.0.1
 # OR, you can use an IPv6 address, but not both
 # at the same time.
ipv6addr = :: # any. ::1 == localhost
 #
 # A note on DNS: We STRONGLY recommend using IP addresses
 # rather than host names. Using host names means that the
 # server will do DNS lookups when it starts, making it
 # dependent on DNS. i.e. If anything goes wrong with DNS,
 # the server won't start!
 # The server also looks up the IP address from DNS once, and
 # only once, when it starts. If the DNS record is later
 # updated, the server WILL NOT see that update.
 # One client definition can be applied to an entire network.
 # e.g. 127/8 should be defined with "ipaddr = 127.0.0.0" and
 # "netmask = 8"
 # If not specified, the default netmask is 32 (i.e. /32)
 # We do NOT recommend using anything other than 32. There
 # are usually other, better ways to achieve the same goal.
 # Using netmasks of other than 32 can cause security issues.
 # You can specify overlapping networks (127/8 and 127.0/16)
 # In that case, the smallest possible network will be used
 # as the "best match" for the client.
 # Clients can also be defined dynamically at run time, based
 # on any criteria. e.g. SQL lookups, keying off of NAS-Identifier,
 # etc.
 # See raddb/sites-available/dynamic-clients for details.
 netmask = 32
 # The shared secret use to "encrypt" and "sign" packets between
 # the NAS and FreeRADIUS. You MUST change this secret from the
 # default, otherwise it's not a secret any more!
 # The secret can be any string, up to 8k characters in length.
 # Control codes can be entered vi octal encoding,
 # e.g. "\101\102" == "AB"
 # Quotation marks can be entered by escaping them,
 # e.g. "foo\"bar"
 # A note on security: The security of the RADIUS protocol
 # depends COMPLETELY on this secret! We recommend using a
 # shared secret that is composed of:
 # upper case letters
 # lower case letters
 # numbers
 # And is at LEAST 8 characters long, preferably 16 characters in
 # length. The secret MUST be random, and should not be words,
 # phrase, or anything else that is recognizable.
 # The default secret below is only for testing, and should
 # not be used in any real environment.
 secret = testing123
 # Old-style clients do not send a Message-Authenticator
 # in an Access-Request. RFC 5080 suggests that all clients
 # SHOULD include it in an Access-Request. The configuration
 # item below allows the server to require it. If a client
 # is required to include a Message-Authenticator and it does
 # not, then the packet will be silently discarded.
 # allowed values: yes, no
 require_message_authenticator = no

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

36

 # The short name is used as an alias for the fully qualified
 # domain name, or the IP address.
 # It is accepted for compatibility with 1.x, but it is no
 # longer necessary in 2.0
 shortname = localhost
 # the following three fields are optional, but may be used by
 # checkrad.pl for simultaneous use checks
 # The nastype tells 'checkrad.pl' which NAS-specific method to
 # use to query the NAS for simultaneous use.
 # Permitted NAS types are:
 cisco
 computone
 livingston
 max40xx
 multitech
 netserver
 pathras
 patton
 portslave
 tc
 usrhiper
 other
 nastype = other # localhost isn't usually a NAS...
 # The following two configurations are for future use.
 # The 'naspasswd' file is currently used to store the NAS
 # login name and password, which is used by checkrad.pl
 # when querying the NAS for simultaneous use.
 login = !root
 password = someadminpas
 # As of 2.0, clients can also be tied to a virtual server.
 # This is done by setting the "virtual_server" configuration
 # item, as in the example below.
 virtual_server = home1
 # A pointer to the "home_server_pool" OR a "home_server"
 # section that contains the CoA configuration for this
 # client. For an example of a coa home server or pool,
 # see raddb/sites-available/originate-coa
 coa_server = coa
}
IPv6 Client
#client ::1 {
secret = testing123
shortname = localhost
#}
All IPv6 Site-local clients
#client fe80::/16 {
secret = testing123
shortname = localhost
#}
#client some.host.org {
secret = testing123
shortname = localhost
#}
You can now specify one secret for a network of clients.
When a client request comes in, the BEST match is chosen.
i.e. The entry from the smallest possible network.
client 192.168.0.0/24 {

Abdullahi et al.; BJAST, 19(1): 1-37, 2017; Article no.BJAST.29503

37

secret = testing123-1
shortname = private-network-1
#}

#client 192.168.0.0/16 {
secret = testing123-2
shortname = private-network-2
#}
client 172.20.10.13 {
 secret = testing123
 shortname = private-network-2
}
#client 10.10.10.10 {
secret and password are mapped through the "secrets" file.
secret = testing123
shortname = liv1
the following three fields are optional, but may be used by
checkrad.pl for simultaneous usage checks
nastype = livingston
login = !root
password = someadminpas
#}

Per-socket client lists. The configuration entries are exactly
the same as above, but they are nested inside of a section.
You can have as many per-socket client lists as you have "listen"
sections, or you can re-use a list among multiple "listen" sections.
Un-comment this section, and edit a "listen" section to add:
"clients = per_socket_clients". That IP address/port combination
will then accept ONLY the clients listed in this section.
#clients per_socket_clients {
client 192.168.3.4 {
secret = testing123
}
#}

© 2017 Abdullahi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/17822

