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Safe operation of elements of power systems plays a crucial role in maintaining the reliability and 
safety of the system. Transformers being a key element in power systems need to be maintained and 
monitored on a regular basis. Dissolved gas analysis has been used as a reliable tool in maintaining the 
safe operation of transformers for a long time. Analysis of dissolved gases is analytical and often 
interpreted differently by different users and methods. The scope of Artificial Intelligence tools in 
dissolved gas analysis has become critical with increasing number of transformers being used in 
power systems coupled with rapid expansion of transmission and distribution components. Adaptive 
Neuro-Fuzzy Inference System (ANFIS) modeling technique has emerged as one of the soft computing 
modeling technique for power transformer. An ANFIS model for dissolved gas analysis of power 
transformers is implemented.  Similarly the GA-based weight optimization during training of an ANN is 
employed to improve diagnostic accuracy. A Graphical User Interface (GUI) is designed using Matlab to 
help in the seamless integration of analysis and decision making. The user interface is simple and easy 
to use providing the user flexibility and wide options for analysis. Traditional methods like Rogers 
Ratio, Key Gas Method, IEC Ratio Method, Dorenburg Ratio Method, Total Dissolved Combustible 
Gases Method and Triangle Method. The tools also incorporate fuzzy based analysis based on Rogers’s 
ratios and Key Gas methods and analysis using Artificial Neural Networks. The primary motivation for 
the work is to provide a platform for analysis of dissolved gases to help in the early detection and 
diagnosis of transformer faults. This work is carried out with assistance from Andhra Pradesh State 
Transmission Corporation (APTRANSCO) in the form of required transformer analysis data and expert 
opinion for validation of the tool. 
 
Key words: Transformer faults, expert system, Matlab, graphical user interface (GUI), fuzzy, artificial neural 
networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), genetic algorithm- artificial neural networks 
(GA-ANN). 

 
 
INTRODUCTION 
 
Dissolved Gas Analysis (DGA) has been used for more 
than 30 years (Duval and dePablo, 2001; Duval, 1989; 

IEEE Guide for the Interpretation of Gases Generated in 
Oil-Immersed   Transformers,   2009)   for   the   condition  
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assessment of functioning electrical transformers. DGA 
measures the concentrations of hydrogen (H2), methane 
(CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), 
carbon monoxide (CO) and carbon dioxide (CO2) 
dissolved in transformer oil. CO and CO2 are generally 
associated with the decomposition of cellulose insulation; 
usually, small amounts of H2 and CH4 would be expected 
as well. C2H6, C2H4, C2H2 and larger amounts of H2 and 
CH4 are generally associated with the decomposition of 
oil. All transformers generate some gas during normal 
operation, but it has become generally accepted that gas 
generation, above and beyond that observed in normally 
operating transformers, is due to faults that lead to local 
overheating or to points of excessive electrical stress that 
result in discharges or arcing. Despite the fact that DGA 
has been used for several decades and is a common 
diagnostic technique for transformers, there are no 
universally accepted means for interpreting DGA results 
IEEE C57-104 (IEEE Guide for the Interpretation of 
Gases Generated in Oil-Immersed Transformers, 2009) 
and IEC 60599 (1999) use threshold values for gas 
levels. 

Other methods make use of ratios of gas 
concentrations (Duval, 1989; Rogers, 1978) and are 
based on observations that relative gas amounts show 
some correlation with the type, the location and the 
severity of the fault. Gas ratio methods allow for some 
level of problem diagnosis whereas threshold methods 
focus more on discriminating between normal and 
abnormal behavior. The IEC standard 60599 (1999) 
classifies the DGA detectable transformer faults into 2 
categories: the electrical fault and the thermal fault. 
These two main categories can be further sorted into 6 
types of transformer fault, according to the magnitudes of 
the fault energy: the electrical fault: partial discharge (PD 
), D1 (discharge of low energy) and D2 (discharge of high 
energy); the thermal fault: T1 (Thermal fault of low 
temperature range, T < 300°C), T2 (Thermal fault of 
medium temperature range, 300ºC < T < 700ºC) and T3 
(Thermal fault of high temperature range, T >700ºC) 
(Zhang et al., 1996). Many DGA analysis techniques 
employing Artificial Intelligence can be found in the 
literature. We briefly review here previous techniques for 
transformer failure prediction from DGA. All of them 
follow the methodology consisting in feature extraction 
from DGA, followed by a classification algorithm. The 
majority of them are techniques (Dukarm, 1993; Zhang et 
al., 1996; Yang and Huang, 1998; Wang et al., 1998; 
Guardado et al., 2001; Huang, 2003; Miranda and 
Castro, 2005; Naresh et al., 2008; Chen et al., 2009) built 
around a feed-forward neural-network classifier, that is 
also called Multi-Layer Perceptron (MLP) and that will be 
explained in the paper. Some of these papers introduce 
further enhancements to the MLP: in particular, neural 
networks that are run in parallel to an expert system in 
Wang et al. (1998), Wavelet Networks (that is, neural 
nets with a wavelet-based feature extraction)  in  Chen  et  
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al. (2009), Self-Organizing Polynomial Networks in Yang 
and Huang (1998) and Fuzzy Networks in Dukarm 
(1993), Huang (2003), Miranda and Castro (2005), and 
Naresh et al. (2008). Several studies (Dukarm, 1993; 
Huang et al., 1997; Huang, 2003; Miranda and Castro, 
2005; Naresh et al., 2008; Chen et al., 2009) resort to 
fuzzy logic (Huang, 2003) when modeling the decision 
functions. Fuzzy logic enables logical reasoning with 
continuously-valued predicates (between 0 and 1) 
instead of binary ones, but this inclusion of uncertainty 
within the decision function is redundant with the 
probability theory behind Bayesian reasoning and 
statistics. Stochastic optimization techniques such as 
genetic programming are also used as an additional tool 
to select features for the classifier in Huang et al. (1997), 
Huang (2003), Hao and Cai-Xin (2007), Chen et al. 
(2009), and Shintemirov et al. (2009). Finally, 
Shintemirov et al. (2009) conduct a comprehensive 
comparison between k-nearest neighbors, neural 
networks and support vector machines each of them 
combined with genetic programming-based feature 
selection. 

In this work a comprehensive tool which incorporates 
both traditional methods and tools based Artificial 
Intelligence has been designed. After an introduction and 
motivation for the paper along with a brief survey of 
literature, the problem statement was briefly described, 
followed by a description of approaches for dissolved gas 
analysis. An insight into the GUI tool was provided, the 
results presented and the study concluded. 
 
 
PROBLEM STATEMENT 
 
The Dissolved Gas Analysis is a diagnostic and 
maintenance tool used in machinery. Through this 
method, gases are studied to give an early indication of 
transformer abnormal behavior. For the last 20 years, this 
method is widely used for detecting and diagnosing the 
incipient faults of power transformers. Its effectiveness 
has been proven by a lot of well known electrical testing 
laboratories or institutions such as The Institute of 
Electrical and Electronics Engineers (IEEE), Central 
Electricity Generating Board of Great Britain (CEGB), 
International Electro Technical Commission (IEC), etc. 
Today, numbers of diagnostic methods based on the 
DGA have been proposed by researchers in the power 
transmission field from all over the world. 

The aim of the proposed work is to design a 
comprehensive tool for dissolved gas analysis that 
incorporate artificial intelligence elements to aid in 
incipient transformer fault detection. The objectives of the 
proposed tool can be listed as to provide seamless 
integration between different methods of analysis by 
enabling flexible and easy use of the tool; use hybrid 
artificial intelligence elements like neural network, neuro 
fuzzy   and  genetic  algorithm- artificial  neural   networks  
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(GA-ANN) to improve the diagnostic accuracy of the tool; 
provide the user with wide variety of options that include 
traditional methods of analysis like Rogers Ratio, IEC, 
Duval Triangle etc… to provide a holistic approach in 
analyzing transformer faults.  
 
 
ANALYSIS METHODS INCORPORATED IN THE 
AUTOMATE TOOL 
 
As part of this work, different methods of diagnosis of 
dissolved gases to identify transformer faults are 
designed and presented. The data for analysis is sourced 
from AP Transco (Andhra Pradesh Transmission 
Corporation) after extensive survey and data collection 
about different transformers located across Andhra 
Pradesh. 
 
 
A fuzzy approach for dissolved gas analysis 
 
Fuzzy logic had been applied in various fields such as 
control system, decision support, fault diagnostics, image 
processing and data analysis. The fuzzy logic theory was 
applied in solving nonlinear control problems heuristically 
and modularly along linguistic lines. The advantages of 
fuzzy logic are that it exhibits the nature of human 
thinking and makes decision or judgment using linguistic 
interpretation. Furthermore, the control rules, regulations 
and methods based on the perception, experience and 
suggestion of a human expert were encoded in the 
meaningful way to avoid mathematical modeling 
problems. 
 
 
Fuzzy Rogers Ratio 
 
Rogers Ratio method uses the 4-digit ratio code 
generated from the 5 fault gases which are Acetylene, 
Ethylene, Methane, Hydrogen and Ethane to determine 
15 transformer conditions. Therefore, the structure for the 
Fuzzy Rogers Ratio is such that the four ratio codes are 
identified as the input parameter while the 15 
interpretation results based on the difference combination 
of ratio code are identified as the output parameter. 
 
 
Quantization 
 
The approach used in fuzzifying the gas ratios according 
to the method of Roger's Ratio is discussed here. The 
real variables are converted into the appropriate linguistic 
variables. The 4 ratios are classified as Low (Lo), 
Medium (Med), High (Hi) and Very High (Vhi) term set 
according to their membership intervals as defined below: 
 
AE = {Lo, Med, Hi}  

 
 
 
 
MH = {Lo, Med, Hi, Vhi}  
EE = {Lo, Med, Hi}  
EM = {Lo, Hi } 
 
 
Assignment of membership functions 
 
This approach is using the membership functions of type 
Triangular, Trapezoidal, L-function and Γ-function. The 
fuzzy membership function for the Roger 4 ratio input 
classifications for Acetylene / Ethane (AE), Methane / 
Hydrogen (MH), Ethane / Ethylene (EE) and Ethane / 
Methane (EM). Figure 1 depicts the structure of 
membership function used for Ethylene / Ethane (EE) 
 
 
Fuzzy inference rules setup 
 
Fuzzy inference rules consist of a collection of rules 
which are extracted from the expert. Normally, fuzzy 
inference consists of two components which are 
antecedent (if part) and consequent (then part). For this 
application, the fuzzy inference rules can be extracted 
from the Roger's ratio fault interpretation guide. There are 
a total of 22 fuzzy inference rules that can be derived 
from Rogers fault interpretation. However, the fuzzy logic 
techniques which allow partial membership may improve 
the number of matched cases as compared to the 
ordinary crisp set theory. 
 
Antecedent:  

 
Rule 1 = Min{MH=L, AE=L,EE=L, EM=L}  
Rule 2 = Min{MH=L, AE=L,EE=L, EM=H}  
Rule 3 = Min{MH=L, AE=L, EE=M, EM=L}  
Rule 4 = Min{MH=L, AE=M, EE=L, EM=L}  
Rule 5 = Min{MH=M, AE=L, EE=L, EM=L}  
Rule 6 = Min{MH=M, AE=L, EE=L, EM=H}  
Rule 7 = Min{MH=M, AE=L, EE=M, EM=L}  
Rule 8 = Min{MH=M, AE=L, EE=M, EM=H}  
Rule 9 = Min{MH=M, AE=M, EE=L, EM=L}  
Rule 10 = Min{MH=M, AE=M, EE=L, EM=H}  
Rule 11 = Min{MH=M, AE=M, EE=M, EM=L}  
Rule 12 = Min{MH=M, AE=M, EE=H, EM=L}  
Rule 13 = Min{MH=M, AE=H, EE=L, EM=L}  
Rule 14 = Min{MH=M, AE=H, EE=M, EM=L}  
Rule 15 = Min{MH=M, AE=H, EE=H, EM=L}  
Rule 16 = Min{MH=H, AE=L, EE=L, EM=L}  
Rule 17 = Min{MH=H, AE=L, EE=L, EM=H}  
Rule 18 = Min{MH=H, AE=L, EE=M, EM=L}  
Rule 19 = Min{MH=H, AE=L, EE=H, EM=L}  
Rule 20 = Min{MH=H, AE=M, EE=L, EM=L}  
Rule 21 = Min{MH=VH, AE=L, EE=L, EM=H}  
Rule 22 = Min{MH=VH, AE=L, EE=H, EM=L} 
 
The output of the fuzzy inference can be obtained using 
the Mamdani‟s Max-Min composition  technique  and  the 



 

 
 
 
 

 
 

Figure 1. Structure of membership function used for 
Ethylene / Ethane (EE). 

 
 
 

Table 1. Quantification for different key gases. 
 

Gas High Medium Low 

H2 105 100 95 

C2H2 36.75 35 33.25 

C2H4 52.5 50 47.5 

C2H6 68.25 65 47.5 

CH4 126 120 114 

CO 367.5 350 332.5 

CO2 2625 2500 2375 

 
 
 

 
 

Figure 2. Structure of membership function used for CO. 
 
 
 

consequent are computed as follows:  
 
Condition A = Max {rule 5} 
Condition B = Max {rule 1} 
Condition C = Max {rule 4} 
Condition D = Max {rule 3} 
Condition E = Max {rule 2} 
Condition F = Max {rule 9, rule 13} 
Condition G = Max {rule 11, rule 14} 
Condition H = Max {rule 12, rule 15} 
Condition I = Max {rule 7} 
Condition J = Max {rule 8} 
Condition K = Max {rule 10, rule 20} 
Condition M = Max {rule 16} 
Condition N = Max {rule 6, rule 17, rule 21} 
Condition O = Max {rule 18} 
Condition P = Max {rule 19, rule 22} 
 
 

Fuzzy key gas method 
 
A set of rules to diagnose abnormalities such as Thermal, 
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Corona or Arcing problems is employed in The Key Gas 
method. It is a reliable diagnostic method because it can 
be used to diagnose the condition of the transformer 
even though there are only a few gases obtained from 
the oil sample. Comparatively, the Rogers Ratio method 
requires all 5 necessary ratio gases to be detected 
correctly earlier to produce satisfactory result. However, 
there is a possibility that the ratio code cannot provide 
meaningful information due to the absent of certain 
gases. In this case, Fuzzy Key Gas method which uses 
the individual gas rather than the calculation gas ratio for 
detecting fault condition will be a perfect candidate to 
offset the limitation of the Rogers Ratio method. 
 
 
Quantization  
 
The quantization step is to define the threshold values for 
all the 7 input gases. The international recognized 
standard can be used to define the threshold value for 
Key Gas method. Based on the IEEE Standard, 7 input 
variables have been classified into Low (Lo), Medium 
(Med) and High (Hi) term set. From the 3 term sets, the 
IEEE standard value is being used as the medium term 
set while the high and low term set are being adjusted 
5% more or 5% less than the medium term set 
respectively as defined in Table 1. 

For the Fuzzy Key Gas fault diagnostic method, the 
appropriate types of membership function are Triangular, 
L-function and Γ-function. The fuzzy membership function 
for the Key Gas input for H2, CO, CO2, C2H2, C2H4, C2H6, 
CH4 and the Figure 2 depicts the structure of membership 
function used for Carbon Monoxide (CO). 

 
 
Selection of fuzzy compositional operator 
 
The output of the fuzzy inference can be obtained using 
the Mamdani‟s Max-Min composition technique shown as 
follows: 

 
Antecedent: 
 
Rule 1 = Min{ H2=Hi } 
Rule 2 = Min{ H2=Med } 
Rule 3 = Min{ H2=Lo }  
Rule 4 = Min{ CO=Hi and CO2=Hi }  
Rule 5 = Min{ CO=Hi and CO2=Med }  
Rule 6 = Min{ CO=Hi and CO2=Lo }  
Rule 7 = Min{ CO=Med and CO2=Hi }  
Rule 8 = Min{ CO=Med and CO2=Med }  
Rule 9 = Min{ CO=Med and CO2=Lo }  
Rule 10 = Min{ CO=Lo and CO2=Hi }  
Rule 11 = Min{ CO=Lo and CO2=Med } 
Rule 12 = Min{ CO=Lo and CO2=Lo } 
Rule 13 = Min{ C2H2=Hi } 
Rule 14 = Min{ C2H2=Med } 
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Rule 15 = Min{ C2H2=Lo } 
Rule 16 = Min{ C2H4=Hi } 
Rule 17 = Min{ C2H4=Med } 
Rule 18 = Min{ C2H4=Lo } 
Rule 19 = Min{ CH4=Hi and C2H6=Hi } 
Rule 20 = Min{ CH4=Hi and C2H6=Med } 
Rule 21 = Min{ CH4=Hi and C2H6=Lo } 
Rule 22 = Min{ CH4=Med and C2H6=Hi } 
Rule 23 = Min{ CH4=Med and C2H6=Med } 
Rule 24 = Min{ CH4=Med and C2H6=Lo } 
Rule 25 = Min{ CH4=Lo and C2H6 =Hi } 
Rule 26 = Min{ CH4=Lo and C2H6=Med } 
Rule 27 = Min{ CH4=Lo and C2H6=Lo } 
 
The consequent are computed as follows: 
 
Corona (CN) = Max {Rule 1} 
Cellulose Insulation Breakdown (CIB) = Max {Rule 4, 
Rule 5, Rule 7, Rule 10} 
Low Temperature Oil Breakdown (LTOB) = Max {Rule 19, 
Rule 20, Rule 21, Rule 22, Rule 25} 
High Temperature Oil Breakdown (HTOB) = Max {Rule 
16} 
Arcing (ARC) = Max {Rule 13} 

 
A suitable defuzzification method for fuzzy diagnosis 
system is the Max-membership defuzzification method 
where the element that has the maximum degree of 
membership function is chosen. 

 
 
ANN based system for transformer incipient fault 
diagnosis 

 
The basic idea of neural network based diagnosis is non-
linear mapping input and outputs. Both back propagation 
network (BPN) and probabilistic neural network (PNN) 
are used to diagnose the transformer faults in its incipient 
stage. An artificial neural network (ANN) includes 
selection of inputs, outputs, network topology and 
weighed connection of node. Input features will correctly 
reflect the characteristics of the problem (Huang, 2003). 
Another major work of the ANN design is to choose 
network topology. This is done experimentally through a 
repeated process to optimize the number of hidden layers 
and nodes according to training and prediction accuracy. 
In this work, 7 key gases namely H2, CO, CO2, C2H2, 
C2H4, C2H6, and CH4 are analyzed to diagnose 5 different 
fault conditions namely, Corona (CN), Cellulose 
Insulation Breakdown (CIB), Arcing (ARC), Low 
Temperature Oil Breakdown (LTOB) and High 
Temperature Oil Breakdown (HTOB). In this work, a 
Feed-Forward Back Propagation network is used. A 
TRAINLM training function along with LEANGDM 
adaptive learning function of training and adaptation of 
the network is used. MSE is used to compute the 
performance measure. The total network comprises  of  2   

 
 
 
 
layers with layer one having 10 neurons and using a 
TANSIG transfer function. The regression plot of the 
regression plot of the network used in the work is given in 
the Figure 3. 
 
 

Adaptive neuro fuzzy inference system 
 
Adaptive Neuro-Fuzzy Inference System (ANFIS) is a 
class of adaptive networks that is functionally equivalent 
to fuzzy inference system. Sugeno type ANFIS uses a 
hybrid learning algorithm to identify parameters of 
Sugeno-type fuzzy inference system. It applies a 
combination of the least squares method and the back 
propagation gradient descent method for training FIS 
membership function parameters to emulate a given 
training data set. An ANFIS works  by applying neural 
learning rules to identify and tune the parameters and 
structure of a Fuzzy Inference System (FIS). There are 
several features of the ANFIS which enable it to achieve 
great success in a wide range of scientific applications. 
The attractive features of an ANFIS include: easy to 
implement, fast and accurate learning, strong 
generalization abilities, excellent explanation facilities 
through fuzzy rules, and easy to incorporate both 
linguistic and numeric knowledge for problem solving. 
According to the neuro-fuzzy approach, a neural network 
is proposed to implement the fuzzy system, so that 
structure and parameter identification of the fuzzy rule 
base are accomplished by defining, adapting and 
optimizing the topology and the parameters of the 
corresponding neuro-fuzzy network. The network can be 
regarded both as an adaptive fuzzy inference system with 
the capability of learning fuzzy rules from data, and as a 
connectionist architecture provided with linguistic 
meaning. The H2, CH4, C2H4, C2H6 and C2H2, CO2 and 
CO gas concentrations are the input vectors for the 
network. 

ANFIS can also be invoked using an optional argument 
for model validation. ANFIS only supports Sugeno-type 
systems. In this work, a Sugeno type fuzzy system is 
initially created with H2, CH4, C2H4, C2H6 and C2H2, CO2 

and CO gas concentrations as input vectors for the 
network. 

The accuracy of any  Neuro Fuzzy system is influence 
by its inference rules and how many possible conditions 
these inference rules may represent positively; the higher 
the representation higher the accuracy. These input 
parameters are classified as High, Medium and Low as 
described in „Fuzzy Key Gas Method‟. The faults that are 
classified are CN, CIB, LTOB, HTOB, and ARC. A 
representation of the rules are given below 
Rule 1: If H2 = LOW and CH4, =LOW and C2H4 =LOW and 
C2H6 =LOW and C2H2 = LOW, and CO2=LOW and CO 
=LOW Fault = 0 (No Fault) 
 
Rule 2: If H2 = MEDIUM and CH4, =LOW and C2H4 =LOW 
and C2H6 =LOW and C2H2 = LOW, and CO2=LOW and
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Figure 3. Regression plot of the ANN used in analysis. 

 
 
 
CO =LOW Fault = 0 (No Fault) 
Rule 3: If H2 = HIGH and CH4, =LOW and C2H4 =LOW 
and C2H6 =LOW and C2H2 = LOW and CO2=LOW and CO 
=LOW Fault = 1 (CN Fault) 
Rule 4: If H2 = LOW and CH4, =LOW and C2H4 =LOW and 
C2H6 =LOW and C2H2 = MEDIUM, and CO2=MEDIUM and 
CO =LOW Fault = 0 (No Fault) 
Rule 5: If H2 = LOW and CH4,=LOW and C2H4 =LOW and 
C2H6 =LOW and C2H2 = MEDIUM, and CO2=HIGH  and 
CO =LOW  Fault = 2  (CIB) 
Rule 6: If H2 = LOW and CH4, =LOW and C2H4 =LOW and 
C2H6 =LOW and C2H2 = MEDIUM, and CO2=MEDIUM  
and CO =LOW  Fault = 0 (No Fault) 
Rule 7: If H2 = LOW and CH4, =LOW and C2H4 =LOW and 
C2H6 =LOW and C2H2 = MEDIUM, and CO2=LOW  and 
CO =MEDIUM  Fault = 2 (No Fault). 
 
Rule 177: If H2 = HIGH and CH4, =HIGH and C2H4 =HIGH 
and C2H6 =HIGH and C2H2 = HIGH, and CO2=HIGH  and 
CO =HIGH Fault = 5 (HTOB). 
Initially the system is trained using a data set which 
contains around 40 data inputs which has  different  types 

of faults and no faults condition represented by them. 
This data is essential in the generation and training of the 
ANFIS from the basic fuzzy structure. ANFIS has around 
177 rules derived from the basic fuzzy structure. The 
ANFIS model structure that is generated for the analysis 
is presented in the Figure 4. The above ANFIS system 
which is conceptually based on KEY gas method is 
capable of identifying faults like Corona, Arcing, High 
Temperature Oil Break Down, Cellulose Insulation Break 
Down, etc. 
 
 
GA optimized ANN for incipient fault detection 
 
Genetic algorithm is an adaptive search technique used 
for solving mathematical problems and engineering 
optimization problems that emulates Darwin‟s 
evolutionary theory that is fittest is likely to survive. An 
important characteristic of GA is that global feature of 
search is related to the diversity of the initial population: 
the more diverse the population, the more global the 
search.  From  the  initial  population,  selection   strategy 
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Figure 4. Rule base of Sugeno System to Model and ANFIS model structure. 

 
 
 
based on fitness proportion is adopted to select 
individuals in current population. Higher selective 
pressure often leads to the loss of diversity in the 
population, which causes premature convergence but at 
the same time improves convergence speed. GA is much 
superior to conventional search and optimization 
techniques in high-dimensional problem space due to 
their inherent parallelism and directed stochastic search 
 implemented by recombination operators. 

Artificial neural networks and genetic algorithms are 
both abstractions of natural processes. They are 
formulated into a computational model so that the 
learning power of neural networks and adaptive 
capabilities of evolutionary processes can be combined 
(Pandey et al., 2010). Genetic algorithms can help to 
determine optimized neural network interconnection 
weights, as well as, to provide faster mechanism for 
training of the  neural  network.  Training  a  given  neural  



 

 
 
 
 
network generally means to determine an optimal set of 
connection weights. This is formulated as the 
minimization of some network error functions, over the 
training data set, by iteratively adjusting the weights. The 
mean square error between the target and actual output 
averaged over all output nodes serves as a good 
estimate of the fitness of the network configuration 
corresponding to the current input. Conventionally a 
back-propagation neural network (BPNN) updates its 
weights through a gradient descent technique with 
backward error propagation. This gradient search 
technique sometimes gets stuck into local minima. Gas, 
on the other hand, though not guaranteed to find global 
optimum solution, have been found to be good at finding 
“acceptably good” solutions “acceptably quickly” (Pandey 
et al., 2010). The GA-based weight optimization during 
training of an ANN follows two steps. The first step is 
encoding strings for the representation of connection 
weights. The second step is the evolutionary process 
simulated by GA, in which search operators have to be 
implemented in conjunction with the representation 
scheme. The evolution stops when the population has 
converged. A population is said to have converged when 
95% of the individuals constituting the population share 
the same fitness value (Rajasekaran and Pai, 2006). The 
whole process for neural network training using a genetic 
algorithm is shown below 
 
Step 1: Decoding each individual in the current 
population into a set of connection weights and construct 
a corresponding ANN with the weights. 
 
Step 2:  Evaluating the ANN by computing its total mean 
square error between actual and target outputs. 
 
Step 3:  Determining fitness of individual as inverse of 
error. The higher is the error, the lower is the fitness. 
 
Step 4:  Storing the weights for mating pool formation. 
 
Step 5: Implementing search operators such as cross-
over/mutation to parents to generate offspring‟s. 
 
Step 6: Calculating fitness for new population. 
 
Step 7: Repeating steps (3) to (4) until the solution 
converge. 
 
Step 8: Extracting optimized weights. 
 
 
THE GRAPHICAL USER INTERFACE TOOL 
 
A comprehensive tool capable of performing different 
analysis as required by the user is designed. The tool is 
coded using Matlab Version 7.1. A Graphical User 
Interface  is  designed  for  to  enable  the  user  to   have  
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seamless analysis of the data using different methods. 
Both traditional methods and methods based on artificial 
intelligence are available in the tool. 

The data required for analysis is fed through an Excel 
sheet in predefined format. This helps in standardizing 
the input methods and helps in avoiding user induced 
error. In this work, we have used the data format as used 
by APTRANSCO for collection of Dissolved Gas Analysis 
data. Once the Data is loaded, the basic information 
about the transformer like its capacity, location, Make, 
average, load, date of commissioning are displayed in the 
GUI. Similarly the concentration of different gases in the 
sample under study is also depicted. Upon clicking the 
Load button, the user is prompted to select a particular 
Excel work book and a specific sheet for analysis. Once 
the data is loaded, the user can select the method for 
analyzing the data. The functional icons present in the 
GUI can be described as below in reference to the Figure 
5. 
 
1- Functional icon used to load the data for analysis 
through a Excel spread sheet 
2- The Transformer location and other particulars 
like rating are displayed here. 
3- The Concentration of dissolved gases being 
analyzed is displayed here 
4- Functional icons used to execute different 
methods of analysis 
5- Results of the diagnosis are displayed here. 
 
Whenever the value of the gas being analyzed is in 
excess of a stipulated value as specified by that method 
of analysis, the diagnosis information is depicted in „RED‟ 
otherwise it is depicted in „GREEN‟. Alert Pop –Ups are 
also generated to warn about a specific Condition as 
depicted in Figure 6. 
 
 
RESULTS AND DISCUSSION 
 
The Data that is used to validate the approaches 
discussed in this work is obtained from APTRANSCO. To 
validate our proposed approach we are considering data 
from two Substations of Kurnool and Ananthapur as 
Sample Cases like 220/KV Transformer - AP CARBIDES 
(KURNOOL) and 220/KV Transformer - SS Ananthapur 
(Tables 2 and 3). In Table 2, analysis report as given by 
the testing station [220/KV Transformer - AP CARBIDES 
(KURNOOL)], with results being within limits is 
presented. In Table 3, analysis report as given by the 
testing station (220/KV Transformer - SS Ananthapur), 
with dissolved gases increased is presented, with one 
more sample to be sent after 3 months. 

The analysis with respect to the ANFIS system is 
primarily based on the values for Key Gas analysis. 
Based on the relation of fault gases, a decision can be 
made such as the presence of gas Acetylene  which  may  
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Figure 5. Snap shot of graphical user interface. 

 
 
  

  
                                (Case 1)                                                             (Case 2)  
 

Figure 6. Snapshots of Duval triangle for Cases 1 and 2 diagnoses as plotted by the tool. 

 
 
 
indicate fault arcing if it is above certain limit in the 
insulation oil. In addition, the identification of Hydrogen in 
the presence of Methane may indicate  corona  or  partial 

discharge. If corona developed into low energy sparking, 
a higher temperature is detected which lead to the 
additional presence of Acetylene.  On  the  other  hand,  if  
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Table 2. Case 1 [220/KV Transformer - AP CARBIDES (KURNOOL)] analysis as obtained through the proposed work. 
 

S/No Type of diagnosis Result 

1 Rogers Ratio Method Rogers Code:  1 0 1 0 - Low Energy Discharge with Continuous Sparking to Floating Potential. 

2 IEC Ratio Method IEC Code: 1 0 1- Low Energy Discharge 

3 DorenBurg Analysis Method Not in the Purview of Dorenburg Analysis 

4 Key Gas Method   All the Gases Are With In Permissible Limits-No Fault 

5 Duval Triangle Method Discharge of Low Energy (As indicated in Figure 6) 

6 TDCG Method 286.69 - All the Gases Are With In Permissible Limits-No Fault 

7 Fuzzy Rogers Analysis  Low Energy Discharges 

8 Fuzzy Key Gas Analysis Possible Arcing 

9 ANN Analysis Corona 

 
 
 

Table 3. Case 2 (220/KV Transformer - SS Ananthapur) analysis as obtained through the proposed work. 
 

S/No Type of diagnosis Result 

1 Rogers Ratio Method Not in the Purview of Analysis  

2 IEC Ratio Method IEC Code: 0 2 2- Thermal Fault of High Temperature Range -300 to 700°C 

3 DorenBurg Analysis Method Not in the Purview of Dorenburg Analysis 

4 Key Gas Method   CO above Normal Value Cellulose Insulation Break Down 

5 Duval Triangle Method Thermal Faults > 700°C (As indicated in Figure 6) 

6 TDCG Method TDCG Value: 3721 – High Level of Decomposition-Immediate Action suggested 

7 Fuzzy Rogers Analysis  Thermal Fault of High Temperature Range 300 – 700°C 

8 Fuzzy Key Gas Analysis High Temperature Oil Break Down ( HTOB) 

9 ANN Analysis High Temperature Oil Break Down ( HTOB) 

 
 
 
sparking escalates to Arcing, the presence of Ethylene 
can also be detected. Furthermore, when Arcing takes 
place in the presence of cellulose, the high temperature 
deterioration of the solid insulation also releases carbon 
monoxide and carbon dioxide into the oil. The results of 
the proposed method are presented in the form of Table 
4. The table consists of data of dissolved gases and the 
diagnosis provided by different methods. 

It can be observed from the results that the ANFIS 
system is capable of identifying a wide range of faults in 
comparison with that of a pure ANN based diagnosis. 

The diagnostic accuracy of the GA optimized ANN 
method in identifying different faults is given in the tables 
below. Table 5 indicates the performance in comparison 
with the training data and Table 6 the performance 
against the test data. 

The performances of the proposed GA- ANN and 
conventional DGA techniques for detecting corona-type 
PDs are illustrated in Table 7. This confirms the 
appropriate ability of the proposed systems for detecting 
PDs of the corona type which occur in the gas phase of 
voids or gas bubbles and are very different from PDs of 
the sparking type occurring in the oil phase. 

Tables 4 to 7 clearly suggest that the proposed method 
based on GA- ANN is capable of providing much higher 
accuracy of diagnosis in comparison to  the  conventional 

diagnosis method. 
 
 
Conclusion 
 
An automated tool using Matlab is designed for analyzing 
the dissolved gases in transformer oil and subsequent 
interpretation of possible faults. The tool is configured to 
be an expert system capable of performing a wide variety 
of analysis both in the conventional domain and by using 
AI tools. The comprehensive nature of the tool makes 
interpretation and decision making an informed one 
helping in early detection and diagnosis of transformer 
faults. To validate the performance of the tool data is 
obtained from APTRANSCO about analysis of dissolved 
gas done at different transformers spread over entire 
Andhra Pradesh. 

According to the IEEE standard (C57.104-1991), all the 
fault gases have their own norm value in normal and in 
faulty condition and the norm value varies due to different 
operating conditions, manufacturers and environmental 
factors such as humidity and weather. Due to this, 
different institutions from different countries have set their 
own sets of norm values in fault diagnosis. In this work, 
the IEEE norm value has been selected for Key Gas fault 
diagnostic method. It can  be  observed  from  the  results  
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Table 4. Diagnosis from different methods in the proposed tool. 
 

H2 CH4 C2H4 C2H6 C2H2 CO CO2 IEC IEC DUVAL ANN ANFIS 

1.74 0.31 0.14 0.11 0.1 53.31 230.98 101 DL DL CN ARC 

0.1 2.13 24.95 8.72 0.1 26.62 169.69 21 TF - 100 -200C TF > 700 C CN ARC 

0.27 17.85 0.96 20.93 0.1 25.39 370.03 - - TF<300C ARC ARC 

145.33 14.11 6.11 4.69 0.1 646.8 5401.06 - - DTF CN CN 

10.11 16.26 26.46 3.96 0.1 1502.54 5275.27 22 TF-300-700C TF  > 700 C HTOB CIB 

13.2 5.05 52.18 16.81 0.1 339.29 1798.63 - - TF  > 700 C CN ARC 

3.74 0.6 0.78 0.22 0.1 24 303 - - DTF ARC ARC 

3.39 13.99 67.64 8.45 0 277.02 2879.82 22 TF-300-700C TF  > 700 C CN CIB 

0 14 13.6 5.2 0 602 2955 21 TF - 100 -200C DT CIB CIB 

0.0 2.1 13.6 1.1 0.0 176 1694 22 TF-300-700C TF  > 700 C CN ARC 

0.0 3.6 0.5 1.2 0.0 670 1397 20 TF-100-200C TF<300C CN CIB 

1.0 20.0 91.0 10.2 0.03 412 3437 22 TF-300-700C TF  > 700 C CN HTOB 

0.0 31 2.0 27.6 0.08 90 1605 20 TF-100-200C TF<300C CN ARC 

0 0.7 1.2 0 0 69 497 - - DL NF NF 

0 0.9 0.2 0 0 21 248 - - DL NF NF 
 

Legend: TF- Thermal Faults; DL- Low Energy Discharge; DT- Thermal Discharge; CN-Corona; ARC- Arcing ;CIB-Cellulose Insulation Break Down; 
HTOB- High Temperature Oil Break Down; NF-No Fault. 

 
 
 

Table 5. Diagnostic accuracy (%) of GA- ANN compared with 
other methods for training data. 
 

Method PD Thermal Faults Discharges 

Rogers 9.0 61.5 60.8 

Doerenburg 42.5 69.2 74.1 

Duval 59.9 93.4 95.6 

IEC 32.3 79.6 82.7 

ANN 74.5 83.6 89.4 

GA-ANN 94.5 98.6 99.0 

 
 
 

Table 6. Diagnostic accuracy (%) of GA- ANN compared with 
other methods for test data. 
 

Method PD Thermal Faults Discharges 

Rogers 6.5 56.4 58.2 

Doerenburg 38.0 64.1 71.7 

Duval 55.6 89.7 91.5 

IEC 27,8 74.6 79.3 

ANN 71.7 79.5 85.3 

GA-ANN 89.6 94.3 96.5 

 
 
 
that the ANFIS system is capable of identifying a wide 
range of faults in comparison with that of a pure ANN 
based diagnosis. Similarly, the proposed method based 
on GA- ANN is capable of providing much higher 
accuracy of diagnosis in comparison to the conventional 
diagnosis methods. 

Table 7. Positive diagnostics of various DGA techniques 
and the GA- ANN systems for detecting corona-type PDs. 
 

Method Training data Test data 

Rogers 0/15 0/12 

Doerenburg 8/15 4/12 

Duval 14/15 10/12 

IEC 7/15 6/12 

ANN 10/15 9/12 

GA-ANN 12/15 10/12 
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