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ABSTRACT 
 

Brain-Computer Interface (BCI) otherwise known as a Brain-Machine Interface (BMI) is an 
emergent technology whose goal is to create a real-time and direct communication pathway 
between the brain and external devices such as computers, robots, artificial limbs and wheelchairs. 
In BCI, cerebral or brain activities control these devices by transmitting and receiving signals from 
the brain. BCI is applied in healthcare to improve the communication capabilities of people living 
with disabilities or locked in syndrome such as traumatic brain disorders, Amyotrophic Lateral 
Sclerosis (ALS), spinal cord injury, brain stem stroke and other severe motor disabilities. BCI also 
increases the independence of disabled individuals by improving their muscle control. 
Consequently, BCI improves the quality of life of disabled persons by allowing this group of people 
to live a normal and comfortable life. In spite of the benefits of BCI, the technology is not widely 
deployed in healthcare. This is because of the numerous challenges associated with it. One of the 
basic limitations of BCI is that the signals received from the brain are prone to interference. 
Furthermore, legal and ethical concerns such as the risk of infection or hemorrhage, psychological 
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harm caused when a patient’s intention to control an external device fails as well as privacy and 
confidentiality of patients’ data are some of the challenges faced by BCI in healthcare. 
Nevertheless, significant attention has not been paid to the challenges that hinder the 
implementation of BCI in healthcare.  
Aims: Consequently, this paper examines the general overview and components of BCI. The 
applications and challenges of BCI in healthcare are also appraised in this study. 
Methodology: Relevant literatures relating to the subject matter were reviewed. The literatures 
were sought in three scientific electronic databases namely CiteseerX, Science Direct and Google 
scholar. Furthermore, the Google search engine was used to search for documents and WebPages 
that contained relevant references for the study. The literatures reviewed were between 1974 and 
2018.  
Results: The study showed that BCI assists people living with disability to acquire relevant skills 
and knowledge, diagnose and manage depression, communicate, move and interact socially. The 
study also revealed that standardization, usability and legal issues are some of the challenges that 
affect the social acceptability of BCIs in healthcare. 
Conclusion: The study suggests that there must be a policy that will protect the privacy and 
confidentiality of patients’ data obtained from BCI. The study also recommends that the comfort 
and safety of patients must be considered during the operation of a BCI technology. Furthermore, 
the study suggests that the generation of personal identification number (PIN) can make BCI 
applications used in healthcare less prone to fraud. 
 

 
Keywords: Brain; computer; brain computer interface; healthcare; motor disabilities. 
 
1. INTRODUCTION  
 
There are different interfaces that facilitate the 
interaction of human beings with the computer. 
Typical examples of these interfaces include 
keyboard, mouse, pen and touch screen 
technology. These devices characteristically 
involve physical interaction with human beings 
such as touching. However, in recent times, 
other ways of establishing connection between 
human beings and the computer without touching 
have been developed. This mode of interaction is 
usually referred to as human-computer touchless 
interface or natural user interface [1]. Human-
computer touchless interface provides 
capabilities for facial recognition, voice 
recognition and motion capture. Hence, 
physically disabled or locked in syndrome 
patients may find it difficult to interact or 
communicate with the computer either through 
speech, gesture, or touch [2]. Locked in 
syndrome otherwise known as pseudocoma is a 
term that is used to describe a condition in which 
a patient cannot move or communicate verbally 
as a result of the complete paralysis of nearly all 
voluntary muscles except for the movements and 
blinking of the eyes. It is caused by the infarcts of 
the anterior part of the pons cerebri [3]. 
 

One of the major ways of facilitating 
communication between locked in syndrome 
patients and the computer is through brain 
computer interface (BCI) otherwise known as 

brain machine interface (BMI). There are diverse 
definitions for BCI. Generally, a BCI can be 
defined as a computer based system that 
acquires and processes brain signals. 
Traditionally, a BCI is defined as a direct 
connection between a computer and the brain. 
Nicolas-Alonso and Gomez-Gil [4] define a BCI 
as a hardware and software communication 
system which enables human beings to interact 
with their surroundings without the involvement 
of peripheral nerves and muscles, and by using 
control signals generated from 
electroencephalographic activity. In Jung’s terms, 
a BCI is a system which takes a bio-signal 
measured from a person and predicts in real time 
or on a single-trial basis an abstract aspect of the 
person’s attention or intention as well as 
neurological and cognitive states [5]. A BCI 
according to Mak and Wolpaw [6] is a 
communication or a control system that allows 
real-time interaction between the human brain 
and external devices such as wheelchair, robot 
and artificial limb. These devices transmit and 
receive signals from the brain which they use to 
restore damaged sensory organs, control 
external devices and gather information on user 
intentions. Mak and Wolpaw [6] emphasized that 
a BCI allows a person to communicate with or 
control the external world without using 
peripheral nerves and muscles. Succinctly, the 
major function of a BCI system is to measure and 
analyze brain signals, interpret the measured 
data and translate the interpreted data into 
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actions that can be used to control the computer 
and other external devices [7,8]. A BCI can also 
be used to repair the cognitive and sensory-
motor functions of human beings. It provides 
communication capabilities to its users and                
also assists users suffering from motor 
disabilities to control assistive devices such as 
wheelchairs, artificial limbs or mouse cursor                 
by mere mental thoughts. It is however     
important to note that a BCI is not a mind reading 
machine.  
 
The use of BCI is highly significant in healthcare. 
For instance, it has been applied in the design of 
a drowsiness detection system [9]. It has also 
been used to assist partially or fully-disabled 
people for navigation through robotic arms and 
legs. It helps paralyzed individuals to use their 
heads to play games [10]. BCI aids patients to 
navigate through the web with their brains [11]. 
BCI technologies have also been used to restore 
vision to the blind by connecting an external 
camera to their brain [12,13]. Hence, BCI can be 
seen as a major technological breakthrough for 
individuals that are physically challenged. BCI 
technologies are however bedeviled by several 
limitations despite their numerous advantages. 
For instance, ethical issues such as the risk of 
infection or hemorrhage, psychological harm 
caused when a patient’s intention to control an 
external device fails, frequent mistakes from a 
BCI used for typing, unintended movement of a 
robot arm or a wheel chair as well as privacy and 
confidentiality of patients’ information are some 
of the major challenges of BCI in healthcare. In 
addition, the reliability of BCI system is a major 
limitation confronting the effective use of BCI 
systems in the healthcare system. This is 
because the error rate of BCI technology is high. 
This is usually as a result of low signal strength 
extracted from the brain [11]. Other challenges 
confronting BCI technologies range from legal 
issues, usability problems to low social 
acceptability in the society. Nevertheless, not 
much attention been paid to the challenges that 
limit the implementation of BCI in healthcare. 
Consequently, this paper examines the general 
overview and the basic components of a 
standard BCI. This study also takes a look at the 
various techniques of extracting signals from the 
brain. The advantages as well as the limitations 
of BCI technologies are examined in this study. 
Ethical issues relating to BCI are viewed in line 
with the healthcare ethical principles of Tom 
Beauchamp and James Childress. Furthermore, 
legal and usability challenges of BCI are major 
points discussed in this paper. 

The remainder of the paper is organized as 
follows: section 2 presents the research 
methodology, section 3 deals with the general 
overview of BCI; section 4 reviews the 
components of BCI. Section 5 is an overview of 
signal acquisition methods in BCI. Section 6 
discusses the applications of BCI in healthcare, 
while section 7 examines the challenges of BCI 
in healthcare. Section 8 provides a list of 
recommendations that will facilitate the effective 
use of BCI in healthcare while section 9 
concludes the study. 
 

2. METHODOLOGY 
 
Relevant literatures relating to the subject matter 
were reviewed. The literatures were sought in 
three scientific electronic databases namely 
CiteseerX, Science Direct and Google scholar. 
Furthermore, the Google search engine was 
used to search for documents and WebPages 
that contained relevant references for the study. 
The literatures reviewed were between 1974 and 
2018.  
 

3. OVERVIEW OF BCI 
 
The term brain-computer interface (BCI) was first 
introduced by Vidal Jacques J. in 1973 [14]. 
However, this technology can be traced to the 
early electrophysiology laboratory and the first 
reading of electroencephalography (EEG) by 
Hans Berger in 1921 [15]. Nonetheless, Dr. Grey 
Walter was reported to have been the first to use 
BCI technology to connect electrodes to the brain 
of a patient undergoing surgery [16]. BCI is 
multidisciplinary field that draws its research links 
from neuroscience, applied mathematics, 
psychology, clinical rehabilitation, engineering, 
psychology, clinical neurology and computer 
science [17]. It is a branch of Computer Science 
that springs up from Artificial Intelligence majorly 
from Robotics Engineering and Human 
Computer Interaction. BCI is however the most 
recent development in the field of Human 
Computer Interaction [18]. 
 
A BCI has been succinctly defined as the direct 
connection and communication between the 
brain and the computer as well as other external 
devices such as intelligent wheelchairs [18,19]. A 
BCI can also be viewed as a device that 
translates the signals obtained from the brain into 
an action that can be performed by the computer. 
In other words, a BCI is only limited to systems 
that deploy signals from the brain, hence 
systems that are nerves, muscles or voice 
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activated are not considered as BCI [20]. The 
signals obtained from the brain could be 
electrophysiological, magnetic, or metabolic in 
nature [18]. In a BCI system, human intentions 
are usually obtained from these signals [6]. 
These signals according to Mak and Wolpaw [6] 
are translated into digital commands that are 
used to accomplish the intentions of the users 
such as the control of a computer cursor or a 
wheelchair. This task is usually achieved with the 
aim of advanced algorithms [21].  BCI is however 
not limited to the human brain [22]. In the late 
1960’s, BCI was used for a study that involved 
the brain of a monkey.  The monkey in this study 
was used for controlling a meter needle [23]. In 
addition, the brains of two rats were used to 
exchange information through an interface in 
2012 [24]. 
 
Diverse authors have classified BCI into different 
categories. For instance, Venthur [25] 
emphasized that BCI can be categorized into 
two. These include the attention based BCI and 
the motor imagery BCI. In the attention based 
BCI, the user employs different stimuli such as 
visual, tactile or auditory to produce brain 
patterns which are required to perform specific 
tasks [8]. However, the visual based attention 
BCI is the most prevalent [25]. The visual based 
attention BCI uses two brain patterns to evoke an 
action. These include event-related potentials 
(ERP) and steady-state visually evoked 
potentials (SSVEP). The difference between the 
ERP and SSVEP is that the stimuli in ERP are 
usually presented successively while the stimuli 
in SSVEP are presented continuously [25]. As 
the name implies, a motor imagery based BCI 
can be defined as a system that performs an 
action by the imagination of a motor movement 
such as the movement of a limb. Jung [5] and 
Minkyu et al. [26] classified BCI into three. These 
include active BCI, reactive BCI and passive or 
affective BCI. In active BCI, a user directly and 
consciously controls an application through the 
outputs obtained from the activity of the brain 
independent of an external event. In a reactive 
BCI, an application is indirectly controlled by the 
activity of the user’s brain in reaction to an 
external event while passive or affective BCI 
obtains the output for controlling an application 
from the spontaneous activity of the brain without 
the voluntary control of the user. A BCI according 
to Nicolas-Alonso and Gomez-Gil [4] can be 
categorized as synchronous and asynchronous. 
In synchronous BCI, the system gives a cue to 
users before a motor imagery is performed, 
hence it is also known as cue based BCI. In 

asynchronous BCI, the user is able to perform 
motor imagery in a self paced manner; this type 
of BCI is also known as self paced BCI.  BCIs 
can also be classified as independent and 
dependent [27]. According to Chan et al. [28], an 
independent BCI does not use the peripheral 
nerves or muscles to generate brain activity that 
is necessary to carry out a task while a 
dependent BCI depends on peripheral nerves or 
muscles to generate brain activity that is 
necessary to carry out a task. Another typical 
category of BCI is endogenous and exogenous 
BCI [4]. In endogenous BCI, the users are 
extensively trained on how to produce specific 
brain patterns required for performing a task 
while exogenous BCI do not require extensive 
training on the production of specific brain 
patterns. Typical examples of exogenous brain 
signals include SSVEPs and P300. Table 1 
summarizes the classification of BCI. 
 
For a system to be considered a BCI, it must 
possess the following characteristics: 
 

i. It must obtain its signals solely from brain 
activities.  

ii. A BCI system must provide relevant 
feedback to its users so that the users will 
know if their intentions have been 
successfully carried out or not.  

iii. A BCI system must possess a high 
response time, that is, there must be no 
delay between the time the user presents 
his intention and the time the system 
performs the action. In other words, the 
interaction between a BCI system, the 
outside world and its users must be in a 
real time manner [29,30]. 

 

3.1 Techniques of BCI 
 
There are different types of paradigms in BCI. 
These paradigms include event related potentials 
(ERP), slow cortical potentials (SCP), 
sensorimotor rhythms, motor imagery, oscillatory 
EEG activity and Visual Evoked Potential (VEP). 
 
3.1.1 Event related potentials (ERP) 
 
Hoffman et al. [31] described an ERP as 
stereotyped, spatio-temporal patterns of brain 
activity that occurs in a time-locked event usually 
after the presentation of a stimulus, before the 
execution of a movement, or after the detection 
of a novel stimulus. An ERP can simply be 
defined as an electrophysiological response to 
an internal or external stimulus [32]. A typical 
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Table 1. Classification of BCI 
 

Types of BCI  Description 
Attention based BCI  
 

Produces brain patterns through visual, tactile or the auditory 
system 

Motor imagery Works by the imagination of a motor movement 
Active BCI User directly and consciously controls an application through 

the outputs obtained from the activity of the brain 
Reactive BCI 
 

An application is indirectly controlled by the activity of the 
user’s brain 

Passive BCI 
 

Obtains the output for controlling an application from the 
spontaneous activity of the brain without the voluntary control 
of the user 

Synchronous or cue based Users are given  cue to before a motor imagery is performed 
Asynchronous or self paced based Users perform motor imagery in a self paced manner 
Independent   
dependent 
 

Does not depend on peripheral nerves or muscles to 
generate brain activity 
depends on peripheral nerves or muscles 

Endogenous  
 

The users are extensively trained on how to produce specific 
brain patterns 

Exogenous  
 

Do not require extensive training on the production of specific 
brain patterns 

 
example of an ERP is the P300 speller. The 
P300 is a communication device that allows 
users to spell characters. The P300 speller was 
first introduced by Farwell et al. [33] in 1988. The 
classical P300-Speller layout is presented to the 
user on a 6 × 6 matrix of symbols comprising of 
26 letters of the alphabet and 10 digits (0-9) on a 
computer screen as depicted in Fig. 1. 
 

 
 

Fig. 1. A classical P300 speller [34] 
 
Fazel-Rezai [32] emphasized that the P300 
speller is involved with the process of memory 
modification or learning; it is relatively fast, 
effective for most users, straightforward and 
does not require intensive training. However, 
Cecotti [34] pointed out that most P300 spellers 
are not robust and they do not meet user’s 
requirements due to un-adapted end user 
interface.  

3.1.2 Slow cortical potentials 
 
Slow cortical potentials (SCP) are slow voltage 
shifts in electroencephalography (EEG) that are 
below 1 Hz [35]. SCPs are usually associated 
with changes in the level of cortical activity of the 
brain [4].  For instance, when the value of the 
SCP is positive, it implies that there is a 
reduction in the activity in the individual cell while 
a negative SCP indicates an increased neuronal 
activity [36]. One basic advantage of the SCP is 
that it can be used by both healthy and paralyzed 
users to control external devices. SCP however 
requires extensive training procedures.  
 
3.1.3 Visual evoked potentials (VEP) 
 
Visual Evoked Potential (VEP) usually occurs in 
the visual cortex of the brain after receiving a 
visual stimulus. Hence, classical VEPs are not 
suitable for paralyzed individuals with oculomotor 
impairments. A typical example of VEP is the 
Steady State Visual Evoked Potential (SSVEP). 
SSVEP are usually acquired from visual    
stimulus that is obtained from light-emitting 
diodes (LEDs), cathode-ray tube (CRT) monitors 
or liquid crystal display (LCD) [4]. However, 
LEDs perform better than LCD or CRT because 
they produce a large number of visual stimuli             
[4]. The visual stimulus represents an action 
such as prosthesis movement, icons and/or 
alphabet letters selection. SSVEP allows users to 
select their targets by eye gaze while the brain 
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pattern corresponding to the frequency of the 
visual stimuli is generated in the user’s brain            
and is translated and executed as the user’s 
desired command [8]. Hence, SSVEP is 
inappropriate for patients with advanced stages 
of Amyotrophic Lateral Sclerosis (ALS) or with 
uncontrollable eye or neck movements [4]. 
However, SSVEP is only suitable for users with 
healthy vision and eye movements [37]. The 
advantages of SSVEP include high signal-to-
noise ratio, minimum training prerequisites and 
reliable communication paradigm for non-
invasive BCI [37]. There are also spellers based 
on SSVEP.  SSVEP spellers are based on 
oscillating visual stimulus [38]. SSVEP spellers 
perform better and are more reliable than the 
P300 speller. A typical example of a SSVEP 
speller is the Bremen-BCI speller. The Bremen-
BCI speller has a graphical user interface (GUI) 
that is composed of a virtual keyboard with 32 
characters located in the middle of the screen 
[34]. The GUI is composed of five white boxes at 
the outer edges and upper left corner of the 
screen. These boxes represents “left”, “right”, 
“up”, “down”, and “select” [34]. Fig. 2 depicts the 
Bremen-BCI speller.  
 

 
 

Fig. 2. The GUI of Bremen-BCI speller [34] 
 
3.1.4 Sensorimotor rhythms 
 
Sensorimotor rhythms, is also referred to as mu 
and beta rhythms because it consists of mu and 
beta rhythms, which are oscillations in the brain 
activity localized in the mu or Rolandic band  (7–
13 Hz) and the beta band (13–30 Hz) [4]. 
According to Nicolas-Alonso and Gomez-Gil [12], 
sensorimotor rhythms are related to motor 
imagery without any actual movement [4].  
 
3.1.5 Motor imagery 
 
Motor imagery is usually based on the 
imagination of the right or left hand or foot 
movement which results in the production of 

event related synchronization or de-
synchronization over the sensorimotor cortex 
[39]. Motor imagery BCIs are more accurate than 
ERP but they require more training. It is 
important to note that there are motor imagery 
based spellers. A typical example of a motor 
imagery based speller was proposed at the 
Artificial Intelligence and Robotics Laboratory 
(AIRLab), Department of Electronics and 
Information, Politecnico di Milano, the Technical 
University of Milan, Italy [34]. The AIRLab speller 
has 27 characters; it also contains features that 
support word suggestions and disabled 
improbable symbols [34]. Fig. 3 shows the GUI of 
the AIRLab speller. Cecotti [34] emphazed that 
the speller has two mental states which include 
imagined right hand movement and imagined 
right foot movement. The speller has a circle 
which contains an arrow used for selecting 
characters. The arrow turns clockwise when a 
right hand movement is imagined while the 
rotation of the arrow stops and moves to the 
desired field when a foot movement is imagined 
[34]. 
 

 
 

Fig. 3. The GUI of the AIRLab speller [34] 
 
3.1.6 Oscillatory EEG activity  
 
Oscillatory EEG activity results from a network of 
neurons which causes feedback loops. Examples 
of oscillatory EEG activity include the Rolandic 
mu-rhythm, in the range 10–12 Hz, and the 
central beta rhythm, in the range of 14–18 Hz 
[18]. 
 

4. COMPONENTS OF BCI 
 
A typical BCI is usually composed of four 
essential elements namely signal acquisition, 
signal processing, data manipulation and 
feedback. The elements of a typical BCI system 
are briefly discussed below: 
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4.1 Signal Acquisition 
 

Signal acquisition according to Mak and Wolpaw 
[6] can be defined as the measurement of the 
neurophysiological state of the brain.  It is also 
the process of obtaining electrical signals from 
the brain. Electrical signals can be obtained 
either from the scalp, the surface of the brain, or 
from neural activity via electrodes [18]. The 
signals obtained are usually amplified because 
the signal strength received from the brain is 
usually low.  
 

4.2 Signal Processing 
 
This involves the analysis of the acquired signals 
in order to get control signals.  Signal processing 
can be done in three basic ways which include 
pre-processing, feature extraction and signal 
classification or signal translation.  
 
4.2.1 Signal pre-processing 
 
Signal pre-processing involves the enhancement 
of the signals obtained from the brain. 
 
4.2.2 Feature extraction 
 
Feature extraction is basically the process of 
extracting specific features from brain signals. 
Feature extraction is usually done to remove 
electrical noise and undesirable signals from the 
acquired signals. There are diverse methods of 
extracting features in BCI. Typical examples of 
these techniques include parametric and non-
parametric techniques [4]. Examples of 
parametric approaches include the 
Autoregressive (AR) and the Adaptive 
Autoregressive (AAR) methods. The AR model 
according to Jeyabalan et al. [35] is more 
attractive than the AAR methods because it has 
the capability to summarize information concisely 
and translates them into feature vectors [35]. 
However, AR is unsuitable for non-stationary 
signals while the AAR techniques are suitable for 
revealing non-stationary time variations of brain 
signals [4]. Another method of extracting signals 
in BCI is Principal Component Analysis (PCA). 
PCA can be described as statistical method that 
relies on orthogonal transformation to convert a 
set of correlated observations into a set of 
uncorrelated variables called principal 
components [4]. PCA computes the covariance 
matrix, C, of a training data p= [p1………..pn] as 
shown in Equation (1): 
 

� = ∑ (�� −�)(�� − �)
�
���                            (1) 

Where C is the covariance matrix, pi is the 
training sample, n is the number of samples and 
m is the mean vector which is computed as: 
 

� =
�

�
∑ ��
�
���                                                (2) 

 

PCA then computes the eigen values of the 
eigen vectors of the covariance matrix. It is 
important to note that the eigenvectors with the 
highest eigenvalue represents the principal 
components of the training dataset p [4]. The 
number of principal components is however 
usually less than or equal to the number of 
original dataset. Consequently, PCA is used for 
reducing the dimension of features. 
 

4.2.3 Signal classification 
 

Signal classification involves the translation of 
the filtered signals into device commands which 
are responsible for carrying out the users’ 
intentions [18]. Examples of signal classification 
methods include Linear Discriminant Analysis 
(LDA). LDA is a simple classifier that is used to 
classify patterns into two or more classes.   For a 
two class pattern classification, LDA defines a 
linear discrimination function which represents a 
hyperplane in the feature space while in feature 
classification that involves more than two 
classes; several hyperplanes are used [4]. This 
can be mathematically expressed as shown in 
Equation 3. 
 

�(�) = ��� + ��                                        (3) 
 

Where w is the weight vector, x is the input 
feature vector and w0 is a threshold. LDA has a 
high rate of accuracy without high computation 
requirements [4]. 
 

4.3 Data Manipulation 
 

Data manipulation involves the management of 
the device commands in a way that will suit the 
output devices. 
 

4.4 Feedback 
 

The function of the feedback is to inform the 
users if their intentions have been carried out. 
There are two types of feedback in BCI [29].  
These include direct feedback and indirect 
feedback. The direct feedback provides 
information about the level of the brain activity 
while the indirect feedback provides information 
about the result of a self initiated BCI action such 
as the movement of a robotic arm [29].   
 

The components of a BCI are illustrated in Fig. 4. 
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Fig. 4. Components of BCI [40] 
 

5. SIGNAL ACQUISITION METHODS IN 
BCI 

 
There are three methods of acquiring signals 
from the brain.  These include the invasive BCI, 
partially invasive BCI and non-invasive BCI. This 
is as depicted in Fig. 5. 
 

5.1 Invasive BCI 
 
These are devices that use sensors, electrodes 
or chemical molecules implanted directly into the 
grey matter of the brain during neurosurgery            
to capture brain signals. The signals obtained 
from the electrodes in invasive BCI are called  
the electrocorticogram (ECoG) [41]. There               
are two types of ECoG. These include            
epidural electrocorticogram and subdural 
electrocorticogram. The epidural electrocortico-
gram are those signals that are obtained from 
electrodes placed on the surface of the cortex 
outside the dura mater of the brain while 
subdural electrocorticogram are signals obtained 
under the dura mater of the brain [4]. Invasive 

BCI has the most quality signal strength; they are 
more accurate and less noisy [42]. Invasive BCI 
are however very risky because they are prone 
to scar tissue build up. Hence, BCI researches 
have only been implemented in animal models 
[43]. There are however two types of invasive 
BCI. These include the single unit and the multi-
unit BCI [27]. Single unit invasive technique 
captures signal from a single area of brain cells 
while multi-unit invasive technique captures 
signal from multiple areas of the brain. Fig. 6 is 
an illustration of an invasive BCI electrode. 
 

5.2 Partially Invasive BCI 
 
Partially invasive BCI uses electrodes that are 
usually embedded in a thin plastic pad placed 
above the cortex as shown in Fig. 7. Hence, it 
can be said that in partially invasive BCI, the 
electrodes are implanted inside the skull but 
outside the brain. However, the signal strength in 
partially invasive BCI is lower than that of 
invasive BCI and the risk of forming scar tissue is 
lower than the invasive BCI [44]. 

 

 
 

Fig. 5. Methods of acquiring signals in BCI [30] 

BCI Signals 

Invasive Non 

Invasive 

Partially 

Invasive 

Single Unit Multi Unit 
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Fig. 6. Invasive BCI electrodes [31] 
 

 
 

Fig. 7. Partially invasive BCI electrodes [31] 
 
5.3 Non Invasive BCI 
 
In non-invasive BCI, medical scanning devices or 
sensors are usually mounted on a cap or a 
headband to read brain signals as illustrated in 
Fig. 8.  Thus, non-invasive BCI do not require 
intracranial surgery and implantation of a device 
in the brain. This type of BCI is usually 
considered the safest form of BCI because they 
do not involve a risk of infection or hemorrhage 
[45]. They are also less expensive than the 
invasive and partially invasive BCI. The strength 
of the signal generated in non-invasive is lower 
than the invasive and partially invasive BCI. The 
major disadvantage of non-invasive BCI is that 
the signals are attenuated in the process of 
passing through the skull, dura and scalp. This 
leads to loss of information [20]. Non-invasive 
BCI uses functional Magneto-Resonance 
Imaging (fMRI), Positron Electron Tomography 
(PET), functional near infra-red spectroscopy 
(fNIRS) MagnetoEncephaloGraphy (MEG), 
electroencephalography (EEG) and Single 
Photon Emission Computed Tomography 
(SPECT) to capture brain signals [46]. EEG has 
however been regarded as one of the most 
promising signals because they are easy to 
capture and analyze [47]. 

 

 
 

Fig. 8. Non invasive BCI electrodes [5] 
  

6. APPLICATIONS OF BCI 
 
BCI has been used applied in several ways to 
assist people living with depression, disability, 
disorders of consciousness (DOC) and 
communication problems.  Typical examples of 
people who fall into this category include people 
who suffer from cerebral palsy, brainstem stroke, 
spinal cord injuries, muscular dystrophies, or 
chronic peripheral neuropathies and Amyotrophic 
Lateral sclerosis (ALS).  These diseases usually 
result in the loss of muscle functions which 
results in a situation where the patients’ cognitive 
functions are preserved but totally locked in to 
their bodies [48].  However, BCI systems provide 
locked in syndrome patients with the ability to 
communicate words, letters and commands to a 
computer interface which translates them into a 
computing output that the user has the ability to 
control. Hence, BCI systems are used to reduce 
the cost of healthcare and to improve the health 
status of people with severe motor disabilities.  
This section critically examines the benefits of 
BCI in healthcare. 
 

6.1 Locomotion 
 
Locomotion refers to the ability to move from one 
place to another. However, people with severe 
motor disabilities such as ALS, polyneuropathy, 
amputees and paraplegia paralyzed patients find 
it difficult to move. Hence, BCI technologies like 
voice controlled wheelchair, remote and joystick 
controlled wheelchair, BCI-driven wheelchairs, 
robotic arms and legs as well as prosthetic 
devices such as prosthetic knee and hands have 
been developed to assist patients’ suffering from 
mobility challenges [30,49,50]. This increases 
their level of independence. 
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6.2 Entertainment 
 
BCI provides an opportunity for people with 
severe motor deficiency to play games in order to 
fulfill their psychological needs. BCI also 
provides opportunities for disabled patients to 
relax [51].  For example, a virtual reality game, 
MindBalance was developed at the University 
College, Dublin and Media Laboratory Europe for 
people with limited body movement. Mind 
balance uses EEG, cerebral data nodes and 
Bluetooth. In addition Tan and Nijholt developed 
the brain ball game that is used to reduce the 
stress level of patients [52]. 
 

6.3 Restoration 
 
BCI technologies are also used to restore 
sensory and motor functions of individuals with 
neurological diseases in order to ease their 
psychological and social suffering. For instance, 
Krishnaveni et al. [13] reported that bionic eyes 
can restore the sight of people with loss of vision. 
Movement restoration can also be achieved 
through the use of prostheses [53]. In line with 
this, Muller et al. [54] developed a 
neuroprosthetic device for restoring the grasp 
function of people with spinal cord injuries. 
Furthermore, Hochberg et al. [29] emphasized 
that bidirectional feedback between a user and a 
BCI results in physical changes that restore 
motor functions and communication control to 
individuals who are neurologically compromised. 
  

6.4 Communication 
 
BCI systems are used for assisting locked in 
patients to communicate. BCI applications for 
communication include spelling devices (such as 
P300 speller), environmental control and 
Functional Electric Stimulation (FES) or 
prosthetic devices [55,56]. BCI devices also 
provide its users with the ability to select icons on 
a computer screen as well as perform basic word 
processing [57]. Furthermore, BCI applications 
allow individuals suffering from neurological 
disorders to use the World Wide Web through 
their brains [11]. 
  

6.5 Environmental Control 
 
BCI systems have been used to improve the 
quality of life of locked-in syndrome patients [58]. 
For instance, with BCI, patients can control 
domestic environmental devices such as 
thermostat, lights and television thereby 
increasing their level of independence [4]. 

6.6 Movement Control 
 
BCI systems have been used by patients with 
motor disabilities to control their movement. For 
instance, the movement of a cursor by a patient 
with his brain will enable him control his 
environment [59,60]. Furthermore, BCI 
technologies can be used to control the 
movement of a robot. For instance, Carmena       
et al. [61] used a primate to control the 
movement of a robot’s arm through BCI. 
 

6.7 Rehabilitation 
 
Regaining functional independence is very 
important for patients with neurological disorders 
and mobility issues such as stroke. Stroke is one 
of the major health issues affecting people 
globally. It is the leading cause of disability 
among adults and it usually results in a high level 
of dependence among the elderly [62]. However, 
one of the major methods of managing stroke 
patients is neurorehabilitation [63]. BCI is used 
for neurorehabilitation to assist stroke patients 
achieve optimal level of motor function and 
independence. However, the use of BCIs in 
neurorehabilitation is still in its early stage [30]. 
 

6.8 Education 
 
Education is the acquisition of knowledge, skills 
and values that makes an individual an 
independent and useful entity in the society. BCI 
is used to teach disabled individuals how to learn 
spelling, play games and use diverse 
applications such as word processors. In 
addition, BCI can be used to monitor the 
attention and concentration of individuals during 
learning processes [30]. 
 

6.9 Social Interaction 
 
In recent times, BCI technologies are becoming 
portable and less complex; consequently they 
are now used in mobile applications to obtain 
emotional data from users which can be added to 
social media posts [32]. Hence, this creates an 
awareness of the emotional state of the patient. 
  

6.10 Pain Management 
 
BCI technologies can serve as a useful tool for 
managing chronic pain. For instance, a study 
conducted by Yoshida et al. [64] showed that BCI 
applications have the ability to provide relief for 
patients with persistent neuropatic pain, thereby 
increasing their quality of life. 
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6.11 Depression Diagnosis and 
Management 

 
The assessment of depression is usually based 
on clinical observations and patients’ self-reports. 
However, BCI technologies are used to obtain 
emotional data from users. Hence, BCI can be 
easily used to diagnose depression in patients 
through the emotional data obtained from the 
patients. Hence, adequate treatment can be 
given to such patients in a timely manner. 
  
6.12 Schizophrenia Management 
 
Schizophrenia is a severe mental disorder that 
affects the ability of a person to think, feel and 
behave well. Studies have shown that EEG 
neurofeedback can be used to treat 
schizophrenia [65]. There is however limited 
research on the use of BCI systems to treat 
schizophrenia [5]. 
  

6.13 Monitoring of Sleep and Emotions 
 
BCI is used to monitor the sleep patterns as well 
as the emotions of patients. 
  

6.14 Reduces the Cost of Healthcare 
 
BCIs reduce the cost of healthcare by reducing 
the need for constant supervision by 
rehabilitation therapists [19]. 
 
7. CHALLENGES OF BCI IN 

HEALTHCARE 
 
The applications of BCI in healthcare range from 
pain management, social interaction, to 
rehabilitation, movement control and the 
provision of communication aids. BCI is however 
not a widely deployed technology in healthcare 
because there are numerous challenges that are 
associated with it. These challenges include 
ethical challenges, legal issues, design issues, 
safety usability issues, acceptability and 
appropriateness. Hence, this section critically 
examines the factors that hinder the effective use 
of BCI in healthcare. 
 

7.1 Ethical Challenges 
 
The term ethics is derived from the Greek word 
‘ethos’ which denotes customs, habits and 
morals of a people [66]. Ethics is a branch of 
philosophy that deals with the investigation of the 
values and virtues that are paramount to a 

society [67]. On the other hand, medical ethics is 
based on a series of ethical principles that are 
particularly relevant to medical practice and 
patient care [68]. Medical ethics are basically 
used to guide healthcare decisions, and the way 
healthcare providers interact with patients and 
their families. Beauchamp and Childress [69] 
introduced four basic principles of medical ethics 
which include respect for autonomy, non-
maleficence, beneficence and justice. This 
section discusses the ethical challenges 
confronting the efficient use of BCI in healthcare 
in line with Beauchamp and Childress [59] basic 
principles of medical ethics. This is because 
significant attention has not been paid to ethical 
issues that concern the implementation of BCI in 
healthcare [70]. 
 
7.1.1 Respect for autonomy 
 
The term autonomy is derived from the Greek 
word “autonomonos”. “Auto” means self while 
“nomonos” means rule. Hence, the term 
autonomy means self-rule [71]. In healthcare 
parlance, autonomy refers to the ability of 
healthcare providers to involve the patients in the 
decisions that concern their care. Hence, Snyder 
and Gauthier [58] define autonomy in the context 
of healthcare as the capacity to make and 
communicate one’s decisions. Hence, it is 
important to involve patients by informing and 
educating them on all measures of their care. 
Hence, Erbguth [72] emphasized that not 
informing concerned patients on the expected 
benefits and potential risks of BCI is a lack of 
respect to autonomy. It is however difficult to get 
informed consent from individuals who have 
difficulty in communicating. 
 

7.1.2 Non-maleficience 
 
The principle of non-maleficence is derived from 
the ancient maxim primum non nocere which 
means “First, do no harm, benefit only” [71]. 
Hence, this principle is of the view that 
healthcare providers must not harm their 
patients. Harm in this respect refers to anything 
that worsens the condition of the patient such as 
the presence of pain, inadequate medical 
facilities and staff, inconvenience, expense, 
suffering, disease, disability, and death [71]. In 
addition, the best interest of the patient also 
includes the ability of healthcare providers to 
promote the well-being of the patient [68]. In   
general, BCI technologies are used to promote 
the well being of patients; however, the misuse 
associated with this technology remains largely 
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unexplored [73]. For instance, Ienca and 
Haselager [73] reported that BCI technologies 
are vulnerable to a cybercrime known as 
neurocrime. Neurocrime according to Ienca and 
Haselager [73] refers to cybercriminal activities 
enabled by the misuse of neural devices. 
Neurocriminal activities in BCI typically involve 
the modification or disruption of the functions in 
the devices that interface brain computation 
without the patients’ consent. Resultant harm 
caused by neurocrime include the deprivation of 
the patients to use their motor abilities, emotional 
instability such as fear and psychological 
distress, mental harm as well as threat to the 
patients lives. Furthermore, invasive BCI 
technologies such as electrocorticography 
(ECoG), electrodes are implanted epidurally or 
subdurally in the human brain. Nonetheless, 
ECoG are prone to cranial smearing, infection 
and hemorrhage [35]. In addition, the use of BCI 
can result in psychological harm when a patient 
fails to accomplish an intended task. 
Consequently, the use of BCI in healthcare is a 
challenge. 
 
7.1.3 Beneficence 
 
Beneficence according to Snyder and Gauthier 
[68] refers to the ability of healthcare providers to 
act in the best interests of the patient.  Synder 
and Gauthier [68] in this regard, refer to best 
interest as the ability of healthcare providers to 
prevent and remove harm from the patient. 
Conversely, Summers [71] emphasized that 
beneficence implies more than just avoiding 
doing harm. Summers [71] therefore viewed 
beneficence as a principle that involves taking 
positive and direct steps to helping others. 
Hence, to ensure beneficence in healthcare, 
healthcare professionals must sustain a high 
level of skills and knowledge in the use of current 
and best medical practices. However, one of the 
major challenges facing the use of BCI in 
healthcare is the high cost involved in training 
healthcare professionals. Hence, BCI 
technologies are not widely deployed in 
healthcare despite their significant impacts on 
healthcare delivery.  
 
7.1.4 Justice 
 
The principle of justice refers to the ability of 
healthcare resources to be distributed in a fair 
way among the members of society. However, 
BCI technologies are not readily available to 
those that need them. This is because of the 
individualized nature of the technology. For 

instance, Erbguth [62] reported that only one-
third of neurological centers in Germany offer 
invasive ventilation for patients with motoneuron 
disease. 
  

7.2 Legal Challenges 
 
Law in respect to technology can be defined as a 
method of managing technological risks [74]. 
Some of the legal challenges confronting the 
effective use of BCI include freedom of privacy, 
freedom of thought and liability issues [16]. 
 
7.2.1 Freedom of privacy 
 
Privacy refers to the right of individuals to 
prevent their information from being revealed to 
others; the claim of individuals to avoid 
surveillance or interference from other 
individuals, organizations or the government [75]. 
However, BCI technologies require the collection 
and processing of sensitive information from 
patients while monitoring neural activities in the 
brain. Hence, BCI systems are prone to attacks 
such as passive eavesdropping, active 
interception, denial of service, data modification 
[66]. 
 
7.2.2 Freedom of thought 
 
Thought can be viewed as an idea or opinion that 
is produced by reasoning. Freedom of thought on 
the other hand is referred to as the ability of an 
individual to think freely, change his religion and 
have a free conscience. It is however important 
to recall that BCI systems enable patients with 
motor disability to control assistive devices such 
as wheelchairs, artificial limb or mouse cursor by 
mere mental thoughts. Hence, Krausová [16] 
viewed BCI technologies as a threat to the 
freedom of human thought and a violation of 
human right. This is because the thought of the 
individual is limited to control a particular device 
at an instance. 
 
7.2.3 Liability issues 
 
This principle clarifies the individual that will bear 
the responsibility for a BCI failure in the case of 
software errors, mechanical failures such as 
accident, and unexpected harmful side-effects. 
  

7.3 Standardization Issues 
 
Standards are agreed-upon specifications that 
allow independently manufactured products, 
whether physical or digital to work together [76]. 
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However, there is no common file format for 
exchanging data obtained via BCI amongst 
healthcare providers and patients [18]. Hence, 
BCI applications are not interoperable. 
 
7.4 Reliability Issues 
 
According to Pattnaik and Jay Sarraf [46], the 
reliability of most BCI systems is poor. One of the 
factors that contribute to the poor reliability of 
BCI systems is the low strength of signal usually 
extracted from the brain. Hence, signal 
amplification is usually required in BCI 
applications. However, many of the amplifiers 
used in most BCI systems are not good [18]. 
 

7.5 Accuracy 
 
The percentage error rate is usually high in most 
BCI systems because of the low signal strength 
obtained from the brain. 
  

7.6 Time Consuming Training Process 
 
The successful use of BCI applications requires 
the acquisition of skills that must be effectively 
maintained [38]. Hence, patients with severe 
paralysis are required to be effectively trained on 
the use of BCI to operate a motor task. However, 
the training process is usually time consuming 
[77]. 
 
7.7 Usability Issues 
 
In general, usability refers to how easy it is for 
users to accurately and efficiently accomplish a 
task while using a system. Hence, usability 
expresses how well the user’s goal can be 
achieved with a system in a specific context. 
Mayhew [78] also defines usability as how well a 
system supports the user‘s real life tasks, how 
easy it is for diverse user groups to learn the use 
of a system, how efficient the system is for 
frequent users, how easy it is for occasional 
users to remember the functionalities of the 
system, how satisfied the users are with the 
system and how easy it is for the system users to 
understand what the system does. Most BCI 
systems however encounter low usability [32]. 
Some of the factors contributing to the low 
usability of BCI systems include aesthetics, 
battery life, device weight and rapid fatigue of 
users during the deployment of BCI which is 
usually caused by a high concentration on a 
mental task or prescribed stimuli [42] Hence, the 
social acceptability of BCIs is generally low. 
 

7.8 High Cost of Procurement and 
Maintenance 

 
The cost of procuring many BCI systems is high 
[61]. In addition, the cost of maintaining BCI 
applications is very high [20]. Hence, BCI 
applications are not generally affordable to 
individuals with motor deficiencies.  
  

8. RECOMMENDATIONS FOR THE 
EFFECTIVE USE OF BCI IN 
HEALTHCARE 

 
BCIs are generally used to promote the quality of 
life of severely paralyzed patients by enhancing 
their communication and locomotion capabilities. 
BCI technologies also restore motor functions in 
severe paralyzed patients. It facilitates social 
interaction amongst disabled individuals and their 
families. It can also be used in the management 
of pain. However, several challenges hinder the 
effective use of BCI technologies in healthcare. 
These challenges range from ethical issues, 
legal issues, accuracy to usability challenges and 
standardization issues. Hence, the social 
acceptability of BCI technologies is generally low. 
Consequently, this paper recommends the 
following for BCI stakeholders such as patients, 
healthcare providers, government, policymakers, 
and device manufacturers. 
 

i. Healthcare providers must give detailed, 
relevant and truthful information about BCI 
to patients, and patients should be made to 
make a voluntary decision on the use of 
BCI for their care without coercion or 
undue influence. Hence, the use of 
informed consent is very vital for the 
deployment of BCI systems on locked-in 
syndrome patients. 

ii. Patients must be educated on the 
applications and limitations of BCI. This is 
to avoid disappointments from the patients 
when a BCI system does not perform its 
task. 

iii. For non-invasive BCI, the electrode 
interface/ cap must be comfortable. 

iv. Healthcare providers and patients should 
be effectively trained on the use of BCI 
applications such as the spellers. 

v. Government and policy makers should 
make adequate laws to protect patients’ 
information obtained through BCI 
technologies from malicious individuals. In 
addition, a legal framework and effective 
policies that will protect the confidentiality 
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and privacy of patients’ data must be 
developed.  This should be done to 
eliminate the fears of being exposed since 
patients that deploy BCI are usually 
vulnerable. 

vi. Patients using BCI should be evaluated on 
a regular basis to estimate how well their 
abilities match with the technology. The 
branch of computing that deals with the 
evaluation of how a human ability matches 
with a technology is referred to as 
neuroergonomics. 

vii. This study also recommends the work of 
Palaniappan and Revett [79] and 
Palaniappan et al. [80] which emphasized 
that the generation of personal 
identification number (PIN) can make BCI 
applications used in healthcare less prone 
to fraud. This authentication measure 
confirms the users’ identity.  

 

9. CONCLUSION 
 
A BCI can simply be defined as the direct 
connection and communication between the 
brain and the computer as well as other external 
devices such as intelligent wheelchairs. BCI is 
applied in several fields such as Education, 
Entertainment and Healthcare. However, the use 
of BCI is highly significant in healthcare. This is 
because BCI systems reduce the cost of 
healthcare and improve the health status of 
people with severe motor disabilities. In line with 
this, this study focuses on the general concept of 
BCI, the techniques of BCI, signal acquisition 
methods in BCI and the benefits and problems of 
BCI in healthcare. The study was based on an 
extensive review of literature. The result of the 
review showed that BCI can be used to assist 
locked in patients to communicate,  restore the 
sensory and motor functions of individuals with 
neurological diseases, and it can also be used 
for neurorehabilitation to assist stroke patients 
achieve optimal level of motor function and 
independence. The study also revealed that BCI 
can be used to reduce pain, monitor the sleep 
patterns and emotions of patients and also 
assists patients to control domestic 
environmental devices such as thermostat, lights 
and television. The study however revealed that 
accuracy, reliability, standardization issues, 
privacy and neurocrime are some of the 
limitations of BCI in healthcare. The study 
however suggests that healthcare providers and 
patients should be effectively trained on the use 
of BCI applications, adequate laws should be 
enacted to protect patients’ information obtained 

through BCI technologies from malicious 
individuals and the generation of personal 
identification number (PIN) to reduce the 
perpetration of fraud in BCI health care 
applications are some of the ways of 
encouraging the use of BCI in healthcare. 
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