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Small modular reactors require multi-physics coupling calculations to balance
economy and stability, due to their compact structures. Traditional tools used for
light water reactors are not effective in addressing the several modeling challenges
posed by these calculations. The lumped parametermethod is commonly used in the
thermal analysis for its high computational speed, but it lacks accuracy due to the
thermal model is one-dimensional. While computational fluid dynamics software
(CFD) can provide high-precision and high-resolution thermal analysis, its low
calculation efficiency making it challenging to be coupled with other programs.
Proper Orthogonal Decomposition (POD) is one of the Reduced Order Model (ROM)
methods employed in this study to reduce the dimensionality of sample data and to
improve the thermal modelling of gas-cooled microreactors. In this work, a non-
inclusive POD with neural network method is proposed and verified using a transient
heat conduction model for a two-dimensional plate. The method is then applied to
build a reduced order model of the gas-cooled micro-reactor core for rapid thermal
analysis. The results show that the root mean square error of the reactor core
temperature is less than 1.02% and the absolute error is less than 8.2°C while the
computational cost is reduced by several orders of magnitude, shortening the
calculation time from 1.5-hour to real-time display. These findings proved the
feasibility of using POD and neural network in the development of ROMs for gas-
cooled microreactor, providing a novel approach for achieving precise thermal
calculation with minimized computational costs.
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1 Introduction

Advanced small modular reactors (SMRs) have attracted extensive research due to their
diverse applications, which were initially motivated by military needs and have been gradually
expanded to many civilian fields. Due to their compact structures, SMRs require multi-physics
coupling calculations to balance economy and stability during reactor designing, which presents
several modeling challenges that cannot be addressed effectively by the traditional tools used for
light-water reactors. Taking the integrated design of a gas-cooledmicroreactor as the example, the
lumped-parameter method, which is based on one-dimensional models of physical transport
phenomena, is typically used in the thermal-hydraulic analysis. Such a method has high
computational efficiency but at the cost of accuracy and resolution. The computational fluid
dynamics (CFD) software, on the other hand, is widely used to accurately simulate reactor cores
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and handle complex geometries, but the enormous computational cost
makes it difficult to be coupled with other programs. Therefore, this
work focuses on developing a highly accurate thermal model with
largely reduced computational cost to serve as a better alternative to the
coarse thermal model currently used in integrated simulation.

Reduced-order modeling (ROM) is a powerful modeling technique
that can significantly reduce the computational cost while maintaining
accuracy. It works by creating a low-dimensional subspace, which is
based on the dominant features extracted from the sample data, to
approximate the full-state system. This leads to faster calculations from
the reduced number of degrees of freedom in the subspace.

An efficient method for creating ROM is the proper orthogonal
decomposition (POD)—also known as the Karhunen–Loève expansion,
principal component analysis, or empirical orthogonal function (Lorenz,
1956). The POD was first proposed by Pearson (1901) for extracting the
main components of big data. Sirovich (1987) used “snapshot” to reduce
the dimensionality of the eigenvalue problem, making the POD more
efficient and practical for use in various engineering problems, such as in
signal analysis, pattern recognition, andfluid dynamics (Liang et al., 2002).

The POD-based ROM can be categorized into two methods: the
inclusive and non-inclusive on the basis of whether they require the
governing equation of the original system. ROMbased on the POD and
Galerkin projection is a representative intrusive method which projects
the equation onto the subspace basis vector generated by the POD
(Hazenberg et al., 2015; Zhang and Xiang, 2015; Gao et al., 2016; Stabile
et al., 2017; German and Ragusa, 2019; Star et al., 2019; Sun et al., 2020).
By contrast, the non-intrusive ROM is constructed by combining the
POD with interpolation methods such as the RBF (Xiao et al., 2015b),
Kriging (Chen et al., 2015), and Smolyak (Xiao et al., 2015a).With the
rapid development of deep learning, the construction of non-intrusive
reduced-order models using neural networks has become a research
frontier in recent years. Although the intrusive method offers greater
interpretability, its application is limited due to its requirement for
accessing the full state equation, as well as instability and non-linear
efficiency issues (Amsallem and Farhat, 2012; Washabaugh et al., 2012;
Yu et al., 2018). Given the complexity of microreactors, the non-
inclusive method based on neural networks is selected to build a
reduced-order model in this study. Next is a brief overview of the
research status of POD with neural networks.

Wang et al. (2018) applied the POD and long short-term memory
(LSTM) to build a reduced-order model for ocean circulation and flow
around a cylinder. The results showed that ROMprovides high accuracy
in numerical prediction, and the CPU time is greatly reduced. Similarly,
Ooi et al. (2021) and Wu et al. (2020) used the convolutional neural
network to study the flow around a cylinder and compared it with other
machine learning methods, such as the regression tree, k-nearest
neighbor, etc., which also proved the computational advantages.
Unlike the inclusive method, the non-inclusive method can utilize
the solution domain as an input parameter as well. For instance,
Hasegawa et al. (2020) employed the POD and machine learning to
study the unsteady flow around bluff bodies of variable cross sections
and proved that these could predict the flow patterns of unknown
shapes. To address the challenge of physical constraints in black box
models, Swischuk et al. (2019) proposed combining a “particular
solution” to modify the results obtained from machine learning to
provide a new idea to improve the interpretability of the surrogatemodel.

In the nuclear industry, the application of ROM based on the POD
can be divided into three categories: design and calculation, control

optimization, and sensitivity analysis. In the design and calculation
field, Sartori et al. (2016) used ROM to perform physical and thermal
coupling calculations for a single channel of lead-cooled fast reactor.
Star et al. (2021) coupled the RELAP code and ROM to conduct three-
dimensional thermal coupling calculations for open and closed
pipelines. Kang et al. (2022) used non-inclusive ROM to predict the
flow field between reactor rod bundles. In control optimization, Lorenzi
et al. (2017) utilized ROM to model the coolant pool of the lead-cooled
fast reactor to demonstrate the application of ROM in system-level
simulation code. Sensitivity analysis requires many repeated
calculations that make it a suitable application for the low-cost
calculation capabilities of ROM. For example, Alsayyari et al. (2020)
used ROM to perform sensitivity analysis on a simplified molten salt
reactor reference model to successfully obtain the relationship between
various neutronics and thermal parameters of the system.

In the past three decades, the application of ROM in the nuclear
industry has continued to improve with advancements in the model
reduction theory and research on the applicability of the POD in
heat transfer, Navier–Stokes equation, and neutron transport
equations. However, most of the reduced-order models are still at
the verification stage to demonstrate their great potential but with
limited practical use, especially in the reactor core field. In light of
this, this work aims to explore ROM for the gas-cooled microreactor
core which balances accuracy and computational efficiency. This
new approach could provide valuable insights and serve as the basis
for reactor coupling calculations, simulation control, and intelligent
operation and maintenance of nuclear power plants.

This article first briefly introduces the research background and
previous progress. Section 2 covers the theory of ROM, which
includes the calculation of basis and coefficients when using
POD and neural network. The following two parts verify and
apply ROM using a two-dimensional (2D) plate transient heat
conduction problem and thermal analysis of a gas-cooled
microreactor. The final part is the conclusion about this work.

2 Method of ROM based on POD

POD aims to find a set of optimal orthogonal basis vectors
φ1(x),φ2(x), . . . ,φk(x) (where φi(x) is a column vector) in the
least squares sense, such that the value to be solved of the original
system at any time on any node can be expressed as a linear combination
of this basis set (Chatterjee, 2000). For instance, considering the node
temperature at the domain x, the representation is given as

T x, t( ) � α1 t( )φ1 x( ) + α2 t( )φ2 x( ) +/ + αk t( )φk x( ), (1)
where φi(x) is the POD basis and αi(t), i � 1, 2,/, k are the
corresponding coefficients.

In fact, the representation of Eq. 1 is not unique, as the function
φi(x) can be represented using different sets of basis functions, such
as Legendre polynomials, Chebyshev polynomials, Fourier series,
and so on. The sequence of time-functions αi(t) is different for each
kind of basis. For the POD, the basis vectors are especially
orthogonal, which means this set of basis satisfies

φk1
x( ) · φk2

x( ) � 1 if k1 � k2
0

{ , (2)
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ak t( ) � T x, t( ) · φk x( ). (3)
Another characteristic of POD basis is that it consists of a set of

ordered column vectors, which makes the approximate accuracy
increase as more bases are selected.

Consider a physical field of interest q that is controlled by a
mapping function: q: X × T × P → R, where X represents the
spatial domain, T represents the time domain, and P is the
input parameter domain. Thus, field q is dependent on the input
parameter and varies with time and space conditions. The mapping
relationship is generally determined by the physical laws and
governing equations, which are often in the form of complicated
partial differential equations. These governing equations are
discretized into a series of separated points to approximate the
solution fields by most traditional numerical solutions that result in
large degrees of freedom, especially for three-dimensional and time-
varying systems. This leads to high computational requirements. By
reducing the dimensionality of the spatial domain, the POD can
effectively reduce the computational cost. Next is a brief
introduction of the calculation of POD basis φi(x) and
coefficients αi(t).

2.1 Calculation of POD basis

The calculation of POD basis relies on a method known as
“snapshot,” proposed by Sirovich (1987), which is only dependent
on sample data. Consider a distribution q(·, t; p) of field q at time
t ∈ T and parameter p ∈ P. q(t; p) ∈ Rnx , also known as
“snapshot,” is a finite dimensional approximation of q(·, t; p)
with nx as the dimension of discretization of the spatial domain.
Snapshot is viewed as the true value that can be obtained from
experiments or numerical models. A set of snapshots is collected at
different times t1,/, tnt ∈ T and input parameters p1,/, pnp ∈ P to
make up a matrix S ∈ Rnx×ns , which contains the snapshots as its
columns, where ns � ntnp (Swischuk et al., 2019). Thus, each row of
the matrix represents the value of each discrete point at different
times or input parameters, while each column corresponds to the
field distribution of all discrete points under the same condition, that
is, the snapshot.

According to the theory of POD, the matrix can be written as

S � UΣVT, (4)
where

UUT � I VVT � I Σ � diag σ1, σ2,/, σp( ), (5)
with σ1 ≥ σ≥/≥ σp ≥ 0 and p � min(nx, ns). U and V are the left
and right singular vectors of S, respectively, and σi represents the
singular values of S. The dimension of S will be reduced by selecting
partial columns of U as basis vectors to form a new subspace to
approximate S. The selection is determined by the value of the
corresponding σ, which represents the contribution degree of the
vector. Since the values of σi are arranged in the descending order,
the first few vectors already contain the main features of the sample
data. For example, by extracting the first k columns ofU and the first
rows of V, and retaining the corresponding σ, we can obtain an
optimal approximation of S in the sense of square error, which is
expressed as

S ≈ Sk � Uk ΣVT( )k (6)
where Uk � (φ1,φ2,/,φk) ∈ Rnx×k, which is called the POD basis.
A typical approach (Holmes et al., 2012; JinXiu et al., 1998) to
determine k is

∑k
i�1σ i∑r
j�1σ j

> 99.9%, (7)

where r is the rank of matrix S. The value is also called energy of the
eigenvalue. Eq. 6 can also be written as

A � ΣVT( )k � UT
k S. (8)

Matrix A ∈ Rk×n is the projection coefficient of the sample data
on the POD basis, then the original problem is transferred from
solving q(x, t, p) to A(t, p). Since Uk is known, one can obtain the
discretization results of S at the spatial domain if A with different
times and input parameters is computed. The dimensionality or
degree of freedom of A(t, p) is k, which is much smaller than that of
q(x, t, p) (which is nx), making it possible to realize rapid
computation.

When the input conditions remain invariant, the field
q(ti)|i � 1, . . . , nt{ } becomes a typical transient problem, which is
only dependent on time. Uk represents the spatial mode of the
sample while A contains time variations. The original system can be
predicted by extrapolating the column vector of A. On the contrary,
the problem becomes stable if the time variable remains invariant,
which allows for quick calculation of results for different inputs.

2.2 Calculation of POD coefficients

The non-inclusive method is used to establish a surrogate model
that maps input parameters, such as time, pressure, or power, to the
coefficients of the POD basis through fitting, interpolation, or other
methods, to avoid the need to access and discretize of the governing
equation. In fact, Eq. 8 is used to project S onto the basis Uk, which
gives a set of coefficients for the sample conditions. Thus, a map
from the input to coefficients already exists. The coefficients for
different parameters can be obtained by fitting this relationship,
which is the main idea behind all kinds of non-inclusive methods,
such as neural networks.

The artificial neural network, also called neural network in short,
is a mathematical model in machine learning that imitates the
structure of biological neural networks and can be used for
function approximation or estimation. Neurons, which are the
computing nodes in a neural network, are interconnected to
form a network structure that enables non-linear, parallel, or
local computation. A typical neural network comprises three parts:

1 Architecture. It refers to the variables and their topological
relationships, which include excitation values and weights of
neurons. Figure 1 shows a typical architecture of a neural network.

2 Activation rule. It refers to the functional relationship between the
input and output of hidden and output layer nodes, which
provides the non-linear ability of the neural network.

3 Learning rules. The learning process involves changing the
topological relationship and weight values to reduce the output
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error within an acceptable range. The rule for modifying the
variables is called the learning rule or learning algorithm. The
error back propagation (BP) algorithm proposed by Rumelhart
et al. (1986) has had themost extensive influence on learning rules
and is also used in this work.

The architecture depicted in Figure 1 represents a fully connected
feedforward neural network, where every node in each of the layers of
the network is connected to all the nodes in the next layer (for
simplicity, bias b is only connected to the first neuron of the first
hidden layer). Information is transmitted from left to right in a
feedforward network, with the input of each layer being the output
of the previous layer. The green nodes make up the input layer, where
the number of nodes equals the number of input parameters in the
sample and is referred to as the input vector. The blue nodes represent
the hidden layers, whose number of layers and nodes varies depending
on the specific problem and is related to the non-linearity of the neural
network. Typically, the number of hidden nodes is greater than the

number of input nodes, such as 1.2 to 1.5 times the number of input
nodes. Finally, the orange nodes form the output layer, where the
number of nodes equals the number of output parameters in the
model and is referred to as the output vector.

The data set is typically divided into three parts: the training set,
validation set, and test set. The training set is used to train the algorithm,
while the validation set is used to calculate the network’s accuracy or
error in order to optimize themodel parameters. The finalmodel is then
evaluated on the test set to measure its error under real conditions.

In this work, a simple neural network and the long short-term
memory (LSTM) network architecture are used to model stable and
transient fields, respectively. The LSTM is a type of recurrent neural
network that is specifically designed to prevent the output of the
network for a given input from either decaying or exploding as it
cycles through feedback loops (Yu et al., 2019). This architecture is
applicable to a number of sequence learning problems, such as
language modeling and translation, speech recognition, and timing
problems. The underlying algorithms for these types of neural
networks have not been reiterated in this study for they have
already been developed in many open-source frameworks.

In summary, the calculation process consists of the following
steps:

1 Collecting sample data through observations, numerical models,
or other methods to form a snapshot matrix S

2 Performing POD on S using Eq. 4
3 Extracting the POD basis using principal Eq. 7
4 Calculating the coefficients using Eq. 8 to create a data set with
input condition

5 Constructing a neural network model to learn from the data
set and

6 Predicting results for different input conditions using Eq. 6.

The reduced order model is validated and analyzed by
measuring its accuracy through deviation from the sample data

FIGURE 1
Neural network architecture.

FIGURE 2
2D plate geometric diagram.
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and comparing its computational efficiency with the acquisition
time of the sample data. Two methods are adopted in this work to
measure the accuracy, one of which is the root-mean-square error
(RMSE) of each snapshot, denoted as

RMSE n( ) �
�����������������
1
nx
∑nx

m�1 qROMm − qm( )2√
max q( ) −min q( ) , n � 1, 2, . . . ,N . (9)

Here, qROM is the result of ROM, q is the true value of snapshot, and
nx is the node number. N is the number of snapshots extrapolated
using ROM. The maximum and average of all predicted snapshot
errors are compared in the following sections. The other criterion is
the absolute error between ROM and the true value.

In terms of calculation cost, a speed ratio is defined in this work,
which is represented as

r � t
tROM

, (10)

where t refers to the computational time required for obtaining the
true value and tROM is the corresponding time for obtaining results
using ROM. It should be noted that the time required for collecting
the sample data and training the model is not considered in tROM,
which means tROM refers to the test time.

3 Verification for 2D transient heat
conduction

The method described in Section 2 is validated using a typical 2D
plate transient heat conduction problem. As shown in Figure 2, the plate
has a length of 0.3 m and awidth of 0.2 m and ismade of amaterial with
density ρ � 1000 kg/m3, and the specific heat c � 1000 J/(kg · K) and
thermal conductivity kx � ky � 100W/(m · K). The initial
temperature of the plate is 300 K where its left boundary is
adiabatic, bottom boundary has a heat flux of q � 1500W/m2, and
right boundary has convection with a heat transfer coefficient h �
50W/(m2 · K) and bulk temperature Tf � 20°C. To verify the
effectiveness of this method under different transient conditions,
different top boundary conditions are employed in Case1 and Case2.

The finite volume method (FVM) is used to obtain the
numerical solution, which is regarded as the true value. The
mesh model is illustrated in Figure 2, with 30 grids in length and
20 grids in width, resulting in a model with 600 grids and 704 nodes.
While the additional source method is used to deal with the
boundary conditions, reducing the number of nodes to
600 finally. The time step is 10 s. Nodes A, B, and C are three
specific locations selected for comparison with the FVM.

3.1 Case 1: time-varying boundary

In case 1, the upper edge temperature is the time-varying
boundary condition with the representation as

T_top � 400 1 − 0.5 sin
π

240
t( ). (11)

A total of 400 snapshots are obtained by the finite volume model
with t � 10, 20,/, 4000 to generate sufficient sample data and
constitute the snapshot matrix S. The matrix S is decomposed by
Eq. 4, and the first four vectors are selected as the POD basis since
they account for 99.9% of the energy, as listed in Table 1.

The coefficients α(t) ∈ R400×4 are obtained by projecting the
snapshot matrix onto the POD basis, which is used as the training
data set for the neural network model. In this work, the LSTM is
selected to combine with POD and build the ROM, as it can fit or
predict models using historical data, which is especially applicable to
time-related variables. The architecture of the proposed POD-LSTM
model is shown in Figure 3, which is implemented using Python and
Keras. The input of the model are coefficients from the previous four
steps and the output is the coefficient at time t. The term “DENSE”
represents the fully connected layers. Therefore, the relation between
the input and the output can be represented as

α t( ) � f α t − 1( ), α t − 2( ), α t − 3( ), α t − 4( )( ), (12)
where f(·) is a mapping function.

In this case, the first 60% of the data (0 s–2,400 s) is selected as the
training set and the last 40% (2,400 s–4,000 s) as the test set, and then
20% of the data in the training set is divided to be the verification data.
The shape of the input vector is (4,4) and the number of nodes in the
three hidden layers are 64, 32, and 4, with activation functions of Tanh,
Tanh, and Linear, respectively. A batch size of 16 and 50 epochs is used,
with the mean square error serving as the loss function, ADAM as the
optimizer, and a learning rate of 0.0005 during training.

The temperature distribution of the plate at t = 4,000 s calculated by
the reduced-order model as shown in Figure 4A. The temperatures of
nodes A, B, and C are shown in Figure 4B to compare the errors, which
vary with time. The maximum RMSE is 0.73% and the maximum
absolute error is 1.82°C, which indicates that the results obtained from
the reduced-order model are in good agreement with those from the
finite volume model. As for the computational speed, the FVM model
consumes 83.98 s while the training time of the reduced-order model is
9.63 s and the prediction time is 0.02 s, resulting in the speed ratio of
r � 4199. It should be admitted that collecting the sample data is time-
consuming and equivalent to the time required for the FVM model.
However, once the reduced-order model is established, it can
significantly reduce the computational cost.

TABLE 1 Energy ratio of first k eigenvalues of case 1.

First k eigenvalues 1 2 3 4 5

Energy ratio 88.831% 98.818% 99.875% 99.934% 99.991%
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FIGURE 3
LSTM architecture for 2D plate heat conduction.

FIGURE 4
Temperature comparison in case 1. (A) Plate temperature in case 1 (t = 4,000 s). (B) Node A, B, and C temperature in case 1.
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3.2 Case 2: multiple time-varying boundary

The upper boundary temperature in case 2 comprises nine
different time-varying conditions, which can be expressed as

T_top � M 1 − 0.5 sin
π

240
t( ), (13)

withM � 200, 300, . . . , 1, 000. The snapshotmentioned in Section 2.1 is
only related to time, while the temperature in this case has two
parameters: time t and amplitude M. Thus, the snapshot matrix is a
combination of all sub-matrixes at the same M in the row vector
direction, which is shown in Eq. 14. Subscript p represents different
parameters, that is, different M in case 2. Then, the POD basis can be
obtained using Eq. 4 as in the previous case.

Sp1 �
T11 t1, p1( ) / T11 tn, p1( )

..

.
1 ..

.

TMN t1, p1( ) / TMN tn, p1( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

S � Sp1 / SpJ( ) �
T11 t1, p1( ) / T11 tn, pJ( )

..

.
1 ..

.

TMN t1, p1( ) / TMN tn, pJ( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

Unlike Eq. 12, the coefficients in case 2 include the influence of
parameter M, thus the fitting relationship becomes

α t( ) � f α t − 1( ),M, t( ), (15)
where f(·) is a mapping function.

The sample data consist of 1,800 snapshots with t �
10, 20,/, 2, 000 and M � 200, 300, . . . , 1, 000. The first five
bases are retained for they meet principal Eq. 7 as shown in
Table 2.

In total, 80% of the data set is used for training, and the
remaining 20% is the validation set. The test data is the
temperature when M = 350 and 1,100, which are not included

TABLE 2 Energy ratio of first k eigenvalues of case 2.

First k eigenvalues 1 2 3 4 5 6

Energy ratio 88.510% 98.639% 99.761% 99.887% 99.985% 99.996%

FIGURE 5
Node A, B, and C temperature in case 2. (A) M = 350 and (B) M = 1,100.
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in the snapshot matrix. The shape of the input vector is (1,7) and
the number of nodes in the three hidden layers are 100, 32, and
5 with activation functions of Tanh, Tanh, and Linear,

respectively. The batch size is 8 and epoch is 100, loss
function is the mean square error, optimizer is ADAM, and
learning rate is 0.001. The temperature of the plate at t =

TABLE 3 Computational cost comparison in case 2.

Time/s FVM Data set generation Training time Prediction time Speed ratio r

M = 350 72.59 288.45 25.76 0.010 7,259

M = 1,100 42.61 288.45 25.76 0.005 8,522

FIGURE 6
Layout and CFX model of reactor core. (A) Layout. (B) Fuel assembly. (C) CFX model for reactor core. (D) Subregion of reactor core.

FIGURE 7
Temperature of core (1,000 EFPD, 488.7°C). (A) Fuel. (B) Monolith.
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0–2,000 s is calculated using ROM and compared with the FVM
results.

The temperature comparison is as shown in Figures 5A, B. The
maximum RMSE is 5.63% and maximum absolute error is 4.07°C
when M = 350, and the maximum RMSE is 5.50% and maximum
absolute error is 12.72°C when M = 1,100. The accuracy of the
temperature for M = 1,100 is slightly worse than that for M = 350,
which indicates that the ability of extrapolation is not very
satisfactory, as for all predictions are based on the known sample
data. The computational cost comparison is represented in Table 3,
which shows ROM can achieve fast calculations.

3.3 Analysis

In summary, the reduced-order model has demonstrated
excellent accuracy and computational efficiency in case 1, while
there is still room for improvement in accuracy for the more
complex transient problem in case 2. It is worth noting that the
distinction between transient and stable states is not evident, as they
merely represent different input parameters for the neural network.
Extrapolation remains a significant challenge for this method, as the

neural network can only provide reasonable predictions based on
known sample data. Despite being appropriate for time-series
problems, even the LSTM model has limitations in addressing
this challenge, as errors may accumulate gradually over
prediction time. It is worth noting that the reduced-order model
constructed using the POD and neural network method does not
involve any governing equations or physical laws. Instead, it relies on
a vast amount of sample data and optimization algorithms.
Therefore, using different samples and algorithms to construct a
reduced-order model could lead to better results for the two cases.
But the acceleration effect of the reduced-order model underscores
its potential for efficient predictions, once the model has been
optimized to meet the desired accuracy requirements.

4 ROM for gas-cooled microreactor
thermal analysis

4.1 CFD model for gas-cooled microreactor
core

4.1.1 Layout of reactor core
This work presents the detailed modeling of a horizontal compact

high-temperature gas-cooled reactor with a designed thermal power
of 5 MWth. The reactor is composed of fuel assembly, control rod
assembly, reflector, boron carbon brick, and other components. The
core layout and fuel assembly configuration are illustrated in Figures
6A, B, respectively. The active zone of the horizontal core comprises
hexagonal fuel assemblies that are organized into four layers in the
axial direction, with each containing 60 fuel assemblies. As such, the
entire reactor contains 240 fuel assemblies, with varying degrees of
enrichment at different positions. The core has a total radial diameter
(to the outer edge of the reflector) of 210 cm and a total axial length of
220 cm. The active zone has an equivalent diameter of 131 cm and a
length of 164 cm. The core side reflector consists of 12 groups of
regulating control rods, while a single group of control rods is located
at the center. The coolant is single-phase helium, which is not coupled
with reactivity and does not undergo any chemical reactions with the

FIGURE 8
Neural network architecture for fuel rods zone.

TABLE 4 Comparison between ROM and CFX (fuel rods zone).

Input RMSE (%) Absolute error/°C

EFPD TreactorInlet/°C Maximum Average

3.3 408 0.40 3.1 1.7

250 295 0.47 5.1 2.1

550 485 1.02 8.2 3.6

650 210 0.64 7.2 3.9

750 332 0.08 1.1 0.4

1,000 314 0.53 5.6 2.5
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cladding and fuel structural materials. The reflectors are made of
graphite, which also acts as the neutron moderator and core structure
material.

4.1.2 Thermal analysis with CFX
A three-dimensional thermal modeling of the active zone in

the reactor core is conducted using ANSYS CFX 2020. This model

includes 1/12 of the entire core to take advantage of the
symmetrical characteristic, as depicted in Figure 6C, with a
mesh number of 2.77 million. Two significant boundary
conditions are considered in this model. The first condition is
the power density of fuel rods, denoted as Szonei. The subscript
“zone,” shown in Figure 6D, refers to the different parts of the
core. As mentioned, each fuel rod consists of four fuel assemblies
in the axial direction, and one fuel assembly contains 11 fuel
pellets. Therefore, the power distribution of each fuel rod has
44 points, resulting in the expression of power density
Szonei ∈ R8×44, that is,

Szonei � 1.0014Pzonei · Ptotal

60 × Vzonei
i � 1, 2, . . . , 8, (16)

where 1.0014 is an empirical factor used in the thermal calculation
of the CFX model to ensure energy conservation, Pzonei ∈ R8×44 is
the normalized power factor of each region, which is calculated by
a neutronics model and is dependent on the lifetime of the reactor.
Ptotal � 5MW is the design thermal power, and Vzonei is the volume
of fuel rods in each region, which is directly stored in the CFX
model. The number 60 represents the division of the core into four

FIGURE 9
Temperature contour comparison for fuel rods zone. (A) ROM. (B) CFX. (C) Error.

TABLE 5 Comparison between ROM and CFX (monolith zone).

Input RMSE (%) Absolute error/°C

EFPD TreactorInlet/°C Maximum Average

3.3 408 0.12 1.2 0.4

250 295 0.44 5.1 1.8

550 485 0.46 3.2 1.5

650 210 0.07 1.5 0.3

750 332 0.08 1.4 0.3

1,000 314 0.21 2.1 1.0
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layers in the axial direction, with each layer containing 60 fuel
assemblies.

The other boundary is the flow of the coolant. The outlet of the
reactor is at atmospheric pressure and outlet temperature is 750°C at
load tracking operation. Therefore, the flow of the coolant can be
represented as

Q � 1
12

· Ptotal

TreactorOutlet − TreactorInlet( )Cp
· 1 − Qbypass( ), (17)

where TreactorOutlet � 750°C, Cp � 5195J/(kg · K) is the specific
heat of helium, Qbypass � 0.12 is the portion of the bypass
flow, and the number 1/12 refers that only 1/12 of the core is
considered.

In summary, the state of the core is dependent on the
normalized power factor Pzonei ∈ R8×44 (which is relies on the
lifetime) and temperature of the coolant upon entering the
reactor TreactorInlet .For example, considering a lifetime of
1000 EFPD (effective full-power days) and a coolant temperature
of 488.7°C, the temperature of the core and monolith is shown in
Figure 7. The maximum temperature of the fuel and monolith are
981.2°C and 902.2°C, respectively. It is worth noting that the
temperature increases along the flow of the coolant in the axial
direction and zone 4 is the hot zone.

4.2 ROM for thermal analysis of reactor core

4.2.1 Generation of sample data
Zone 4 is selected to build a reduced-order model as this area is a

typical region. The first step is to collect sufficient sample data
accruing to the abovementioned steps.

4.2.1.1 Power density
There are only seven different power density distributions

calculated using the neutronics model due to computational
limitations, where EFPD � 0, 3.3, 250, 550, 650, 750, and 1, 000. To
generate more input parameters, Hermite interpolation is adopted
twice to the power factor, as it is a two-dimensional array. A small
random variable is added to each power factor according to certain
rules to ensure that the average power factor meets the
normalization requirements. Finally, 100 different lifetimes,
ranging from 5 EFPD–995 EFPD in iterations of 10 EFPD, are
used as input parameters.

4.2.1.2 Temperature of inlet coolant
A trial calculation revealed that the effect of coolant temperature

on the results is approximately linear, so it is not necessary to design
too many different coolant temperatures. Considering the

FIGURE 10
Temperature contour comparison for monolith zone. (A) ROM. (B) CFX. (C) Error.
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maximum temperature limit of 550°C for the 316H stainless steel
used in the reactor pressure vessel and basket, the range of the
coolant inlet temperature is fixed at 200–500°C, with 50°C iteration.

To sum up, in combination with the distribution of power factor
and coolant temperature, a total of 700 sets of different input
conditions for core temperature are computed, which are taken
as the sample data for ROM after format processing. The number of
sample data is 36,774 and 19,602 for the fuel rods and monolith,
respectively, by extracting nodes coordinates and temperatures in
zone 4 (the nodes of the monolith are after selection). The following
sections discuss ROM for fuel and monolith, respectively.

4.2.2 ROM for fuel rods zone
Based on the collected sample data, the size of the snapshot

matrix is 36,774 × 700 with 700 corresponding eigenvalues, and the
first 12 eigenvalues meet the selection principle, accounting for
99.90% of the total. Therefore, the input shape for the neural
network is (700,353) and the output shape is (700,12). The
training set is composed of 80% of the data, the test set is
composed of 20%, and then 20% of data in the training set is
divided to be the verification data. The architecture of the model is
depicted in Figure 8, with three hidden layers having 64, 32, and
12 nodes, respectively, and activation functions of Tanh, Tanh, and
Linear. A batch size of 32 and 150 epochs are used, with the mean
square error serving as the loss function, ADAM as the optimizer,
with a learning rate of 0.0005 during training.

To verify the accuracy of ROM, the results from six cases are
compared with those obtained from the CFX model, as shown in
Table 4. Figure 9 presents the temperature contour for the fuel rod in
the case with maximum error. The results demonstrate that the
average root-mean-square error is 1.02% and maximum absolute
error is 8.2°C, indicating a good agreement between the ROM and
CFX results. Furthermore, while CFX requires 1.5 h for a single
computational core, the test time for the reduced-order model is less
than 0.01 s, implying that ROM can achieve real-time display.

4.2.3 ROM for monolith zone
The reduced-order model building process for the monolith

zone is similar to that of the fuel rods zone and is therefore not
repeated here. But the number of bases for this case is nine. All other
parameters are the same as for the previous fuel case, except that the
epoch for the monolith model is 200. As shown in Table 5 and
Figure 10, the maximum of RMSE is 0.46% and the maximum
absolute error is 5.1°C, which also meets the accuracy requirements.
The test time in this case is also less than 0.01 s.

5 Conclusion

This study introduces an approach to ROM that incorporates
both POD and neural networks. The method is tested on a 2D
transient heat conduction model, and the results demonstrate that
ROM is effective in terms of both accuracy and computational
speed, especially when dealing with time-varying boundaries.
However, for more complex boundaries or problems that
requires time-dependent predictions, the error rate increases due

to the requirement for a large amount of historical data.
Consequently, the model must be updated regularly to ensure
accurate predictions. It is worth noting that the reduced-order
model created using this approach does not distinguish between
the time parameter in transient problems and other variables in
steady-state problems. The key concept behind this approach is to
reduce data dimensions by capturing the essential features of the
sample data to enable fast calculations.

The Section 4 focuses on analyzing the thermal model of a gas-
cooled microreactor core using load tracking operation as the
reference condition, with future research aiming to consider
more complex scenarios such as transient states and accidents.
By employing a combination of POD and neural networks, a
highly accurate reduced-order model is developed. The results
demonstrate that ROM achieves a root-mean-square error of less
than 1.02% and an absolute error of less than 8.2°C when predicting
core temperature. Furthermore, the computational efficiency of the
reduced-order model is greatly improved, reducing the calculation
time from 1.5 h to real-time display. These findings provide
compelling evidence for the feasibility of using POD and
machine learning in the development of reduced-order models
for gas-cooled microreactors, offering a novel approach to
achieve precise thermal calculation while minimizing
computational costs. The research thus holds significant
implications for the intelligent operation and maintenance of
nuclear power plants, as well as for the many coupled
calculations involved in gas-cooled microreactors.
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