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Abstract

In this paper, a fractional-order mathematical model for n species competing, in a chemostat,
for a single resource is proposed. The global dynamics was studied using Lyapunov theory, for
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1 Introduction

The chemostat is an experimental device used to analyze the growth of populations of microorganisms.
It was introduced simultaneously by A. Novick and L. Szilard [1] in the 1936s and by J. Monod
[2] in the 1950s. The mathematical growth of a species of bacteria in the chemostat is due to C.
Spicer [3]. From this date there are many articles relating to the competition of several species. For
the purpose of this introduction, let us say that it is a reactor (a container) crossed by a flow of
liquid containing the nutritive substrate necessary for the growth of organisms. When the flow rate
of liquid passing through the reactor is constant, a classic mathematical theory of the chemostat
states that one species will eliminate all other species: this is the ”competitive exclusion principle”.
This principle has been popularized by Hardin [4] and has since then been widely mathematically
studied in the literature [5, 6, 7].
Different sophisticated tools were used, such as ω-limit sets [6], Lyapunov theory [8, 9, 10, 11],
LaSalle Invariance Principle [12, 13] and more recently a proof using elementary analysis and
comparing solutions of ordinary differential equations [14]. The theory of the competitive exclusion
principle is established in parallel with numerous articles that show coexistence [15, 16, 17, 18]
(obviously when the conditions of the exclusion theorems are violated). The book of H. Smith and
P. Waltman [13] contains all the information and references concerning this subject.

Consider n species competing for a single resource in a chemostat (see Fig. 1). The most
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Fig. 1: Competition in a continuous reactor

classical model for the growth of n populations of different species [13] is ṡ(t) = D
[
sin − s(t)

]
−

n∑
i=1

µi(s(t))xi(t),

ẋi(t) =
[
µi(s(t))−D

]
xi(t)

(1.1)

The variables s(t) and xi(t) are respectively the concentrations at time t of the resource and the
concentration of the different populations of microorganisms. The growth rate of species i in the
presence of a concentration s is:

µi(s)

where the µi functions are of ”Monod type”, i.e. defined for s positive, continuous, equal zero at
s = 0, increasing and bounded (Figure 2). Finally, D is the inflow and outflow (with constant
volume) in the reactor. In general, for a given D, there exists a unique index 1 ≤ i ≤ n and a
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constant λ̄ satisfying µi(λ̄) = D such that , for any non-negative initial condition with xi(0) > 0,
the equilibrium:

(s = λ̄, x1 = 0, · · · , xi−1 = 0, xi = sin − λ̄, xi+1 = 0, · · · , xn = 0)

is globally asymptotically stable . Local stability is easily demonstrated by calculating the eigenvalues
of the Jacobian, and the global stability using Lyapunov functions. This is the ”competitive
exclusion principle”: all species disappear except the one having the best growth rate for s = λ̄ (see
Figure 2 where λ̄ = λ1).

Fractional systems are appearing more and more frequently in the different fields of research.
However, the progressive interest in these systems and applications in engineering sciences are still
not well developed. Many biological phenomena (biological tissues) dependent on past history
(memory) and therefore it is possible that careful modelling may lead to equations including
fractional derivatives.

The present article is a contribution to the question of ”competitive exclusion principle”. More
precisely, I revisit the classical mathematical model for the growth of n species competing for a
single substrate in a chemostat but by considering the fractional-order time derivative instead of
the classical ordinary differential equations (1.1).
Fractional calculus is a domain of mathematics whose purpose is to extend the definitions of
traditional derivatives to non-integer orders. The fractional derivative represents the generalization
to non-integer orders of the derivative [19], just like the real exponent power function which
corresponds to the ”extension” of the full exponent power function. Several definitions have been
proposed for the non-integer derivation. It should be noted, however, that these definitions do not
always lead to identical results but are globally equivalent for a large number of functions. In this
paper, the Caputo derivative approach will be used due to its application advantages. The most
important advantage is that the initial conditions for fractional order is the same as that of integer
order, avoiding solvability issues.

D

λ1 λ2 λ3 λ4 λ5 s

Fig. 2: Growth rates and their break-even concentrations.
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2 Mathematical Model and Properties

First, let give some definitions that we use later in this paper. The definition of the Caputo fractional
derivative is defined as follows

Dα
Ch(t) = Jm−α[h(m)(t)] =

1

Γ(n− α)

∫ t

0

(t− s)m−α−1h(m)(s)ds (2.1)

where m is the first integer greater than α.

The Laplace transform of the Caputo fractional derivative is given by

L(Dα
Ch(t)) = λαH(s)−

m−1∑
k=0

h(k)(0)λα−k−1. (2.2)

Recall the Mittag-Leffler function defined by the following infinite power series:

Eα,β(z) =

+∞∑
k=0

zk

Γ(αk + β)
. (2.3)

The Laplace transform of the Mittag-Leffler function is given by

L[tβ−1Eα,β(±αtα)] =
sα−β

sα ∓ α
. (2.4)

Let α, β > 0 and z ∈ Z. The Mittag-Leffler functions satisfy the equality given by Theorem 4.2 in
[20]

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
. (2.5)

Here, Dα denotes the Caputo fractional derivative of order 0 < α ≤ 1 defined for an arbitrary
function h(t) by [21] as follows:

Dαh(t) =
1

Γ(1− α)

∫ t

0

(t− x)−αh′(x)dx.

Consider n populations of different species competing for a single resource in a chemosat. The
proposed model for this competition is given by the following n+ 1-dimensional dynamical system
of fractional differential equations:

 Dαs(t) = D
[
sin − s(t)

]
−

n∑
i=1

µi(s(t))xi(t),

Dαxi(t) =
[
µi(s(t))−D

]
xi(t)

(2.6)

with positive initial condition (s(0), x1(0), · · · , xn(0)) ∈ Rn+1
+ . The operating parameters D > 0

and sin > 0 are the inflow-outflow rate and the input resource density (substrate concentration).
The variable s(t) describes the substrate concentration at time t. For 1 ≤ i ≤ N, xi(t) denote the
concentration of the i-th species and µi(·) is the specific growth rate function of species i. Without
any loss of generality, assume that all yield coefficients are equal to 1.

Assumption 1. µi(·) are non-negative C1(R+) increasing bounded functions such that µi(0) = 0
and µ′

i(s) > 0 for all 1 ≤ i ≤ n.
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Remark 1. The classical Monod function satisfies the assumption 1 (Fig. 2) and then can be used
to express the growth rate.

µi(s) =
µ̄is

ki + s
(2.7)

µ̄i represents the maximum specific growth rate. ki is the Monod (half-velocity) constant.

Rn+1
+ , the closed non-negative cone in Rn+1, is positively invariant [22, 23, 24, 25, 26, 15, 17,

16, 27, 28, 12, 29, 18, 13] by the system (2.6). More precisely,

Proposition 1.

1. For all initial condition (s(0), x1(0), · · · , xn(0)) ∈ Rn+1
+ , the solution of system (2.6) is

bounded and has positive components and thus is defined for all t > 0.

2. System (2.6) admits a positive invariant attractor set of all solution given by Ω = {(s, x1, · · · , xn) ∈

Rn+1
+ / s+

n∑
i=1

xi = sin}.

Proof. 1. The positivity of the solution is proved by the fact that :
If s = 0 then Dαs = Dsin > 0 and if xi = 0 then Dαxi = 0, for all 1 ≤ i ≤ n.
Next we have to prove the boundedness of solution of (2.6). By adding all equations of

system (2.6), one obtains, for T = s+

n∑
i=1

xi − sin, a single equation for the total density:

DαT (t) = Dαs(t) +

n∑
i=1

Dαxi(t) = D(sin − s−
n∑

i=1

xi(t)) = −DT. (2.8)

Solve Eq. (2.8) by applaying the Laplace transform (2.2) , one obtains

λαL(T (t))− λα−1T (0) = −DL(T (t))

that can be written as below using the Laplace transform properties (2.4) and equality (2.5),

(λα +D)L(T (t)) = λα−1T (0).

Then

L(T (t)) =
λα−1

(λα +D)
T (0) = tα−1Eα,α(−Dtα)T (0)

where 0 < α ≤ 1 and Ea,b(z) is the two parameter Mittag-Leffler function with parameter a
and b [6,18] . Since Mittag-Leffler function is an entire function, thus Eα,α(−Dtα) is bounded
for all t > 0. Therefore, I have

lim
t7→+∞

T (t) = 0. (2.9)

Thus, closed set Ω is positively invariant and attracting to the system (2.6).

Since all terms of the sum are positive, then the solution of system (2.6) is bounded.

2. The invariance of the attractor Ω is simply deduced from equality (2.9) .
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Definition 1. Assume that Assumption 1 is fulfilled. For a given constant dilution rate D > 0,
the unique solution of the equation µi(s) = D, when it exists, is denoted by λi = λi(D) and is
named the break-even concentration for the i-th species. If equation µi(s) = D has no solution, I
set λi = +∞.

Assumption 2. Assume that all species have different break-even concentrations and, in particular
(without loss of generality), are arranged by indices as follows

λ1 < λ2 < · · · < λn. (2.10)

In Fig. 2, a typical example is given where the growth rates with different break-even concentrations
and the dilution rate were represented.

Let write the statement of the Competitive Exclusion Principle [13].

Proposition 2. Assume that Assumptions 1 and 2 are fulfilled.

• If λ1 > sin then the system (2.6) admits a unique equilibrium point given by E0 = (sin, 0, · · · , 0)
and it is locally asymptotically stable.

• If λ1 < sin then the system (2.6) admits two equilibrium points given by E0 = (sin, 0, · · · , 0)
and E1 = (λ1, sin − λ1, 0, · · · , 0). The equilibrium point E1 is locally asymptotically stable
and the equilibrium point E0 is unstable.

Proof. The Jacobian matrix of system (2.6) at a point (s, x1, x2, · · · , xn) is given by:

J =



−D −
n∑

i=1

µ′
i(s)xi −µ1(s) · · · −µn−1(s) −µn(s)

µ′
1(s)x1 µ1(s)−D 0 · · · 0

µ′
2(s)x2 0 µ2(s)−D 0 0
...

...
...

...
...

µ′
n−1(s)xn−1 0 · · · µn−1(s)−D 0

µ′
n(s)xn 0 · · · 0 µn(s)−D



.

The Jacobian matrix of system (2.6) evaluated at E0 = (sin, 0, · · · , 0) is then given by:

J0 =



−D −µ1(s) · · · −µn−1(sin) −µn(sin)

0 µ1(sin)−D 0 · · · 0

0 0 µ2(sin)−D 0 0
...

...
...

...
...

0 0 · · · µn−1(sin)−D 0

0 0 · · · 0 µn(sin)−D


.

• If λ1 > sin then µi(sin) < D for all i = 1, · · · , n, therefore J0 admits n + 1 nonpositive
eigenvalues given by −D < 0 and µi(sin)−D < 0 for all i = 1, · · · , n. It follows that E0 is
then locally asymptotically stable.
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• If λ1 < sin then µi(sin) > D and then J0 admits at least one nonnegative eigenvalue. It
follows that E0 is then unstable.

The Jacobian matrix of system (2.6) evaluated at E1 = (λ1, sin −λ1, 0, · · · , 0) is then given by:

J1 =



−D − µ′
1(λ1)(sin − λ1) −µ1(λ1) · · · −µn−1(λ1) −µn(λ1)

µ′
1(λ1)(sin − λ1) 0 0 · · · 0

0 0 µ2(λ1)−D 0 0
...

...
...

...
...

0 0 · · · µn−1(λ1)−D 0

0 0 · · · 0 µn(λ1)−D


.

• If λ1 > sin then there is no equilibrium point E1.

• If λ1 < sin then µi(λ1) < D for all i = 2, · · · , n, therefore J1 admits n − 1 nonpositive
eigenvalues given by µi(λ1)−D < 0 for all i = 2, · · · , n. J1 admits also two other eigenvalues
solution of

λ2 +A1λ+A0 = 0,

where A0 = µ′
1(λ1)µ1(λ1)(sin − λ1) > 0 and A1 = D + µ′

1(λ1)(sin − λ1) > 0 and thus using
Routh-Hurwitz criterion, both eigenvalues have negative real parts. It follows that E1 is then
locally asymptotically stable.

Define the functions

gi(s) =
µi(s)(µ1(s)−D)(sin − λ1)

D(sin − s)
[
µi(s)−D

] , i = 2, · · · , n.

Assumption 3. It is possible to find constants ci > 0, for each i = 2 satisfying λi < sin such that

max
0<s<λ1

gi(s) 5 ci 5 min
λi<s<sin

gi(s)

The global stability of the equilibrium E0 and the equilibrium E1 are given in the following
theorem.

Theorem 1. Assume that Assumptions 1, 2 and 3 are fulfilled.

• If λ1 ≥ sin then the equilibrium point E0 = (sin, 0, · · · , 0) is globally asymptotically stable.

• If λ1 < sin then for any non-negative initial condition with x1(0) > 0, the equilibrium
point E1 = (λ1, sin−λ1, 0, · · · , 0) is globally asymptotically stable and the equilibrium point
E0 = (sin, 0, · · · , 0) is unstable.

Proof. • Assume that λ1 ≥ sin and let (s, x1, · · · , xn) to be a solution of the system (2.6).
Since Ω is an attractor of all solution of system (2.6) then consider the system (2.6) restricted

to the invariant hyperplane Ω and then by using the fact that s = sin −
n∑

i=1

xi, I obtain the

following reduced system

Dαxi(t) =
[
µi(sin −

n∑
i=1

xi)−D
]
xi(t), i = 1, · · · , n. (2.11)

7
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The relevant domain for (2.11) is the set Γ = {(x1, · · · , xn) ∈ Rn
+ /

n∑
i=1

xi ≤ sin}.

Define the Lyapunov function

V0(t) =
n∑

i=1

xi .

The equilibrium point E0 is the only stationary point and minimum point of V0(t), and
V0(t) 7→ +∞ at the boundary of the positive quadrant. Consequently, E0 is the global
minimum point, and the function is bounded from below.

The Caputo fractional derivative of V0(t) along solution of system (2.6) is given by

DαV0(x1, · · · , xn) =

n∑
i=1

Dαxi

=

n∑
i=2

[
µi(sin −

n∑
i=1

xi)−D
]
xi

≤
n∑

i=2

[
µi(sin)−D

]
xi

≤ 0

in Γ. If λ1 > sin then

E = {(x1, · · · , xn) ∈ Γ;DαV0(x1, · · · , xn) = 0} = {(x1, · · · , xn) ∈ Γ;x1 = · · · = xn = 0},

whereas if λ1 = sin then

E = {(x1, · · · , xn) ∈ Γ;x1 = · · · = xn = 0 or

n∑
i=1

xi = sin}.

As Ω is an attractor of all solution of system (2.6) it follows that the largest invariant set M
in E is

{(x1, · · · , xn) ∈ Γ;x1 = · · · = xn = 0}.

Therefore using the LaSalle corollary [31, 11], E0 is globally asymptotically stable (for other
applications, see [15, 12, 18]).

• Assume that λ1 < sin and let (s, x1, · · · , xn) to be a solution of the system (2.6) and define
the Lyapunov function [11]

V1(t) =
(sin − λ1)

D

∫ s

λ1

µ1(η)−D

sin − η
dη + x1 − x∗

1 − x∗
1 ln

(
x1

x∗
1

)
+

n∑
i=1

cixi .

The equilibrium E1 is the only internal stationary point and minimum point of V1(t), and
V1(t) 7→ +∞ at the boundary of the positive quadrant. Consequently, E1 is the global
minimum point, and the function is bounded from below.

The Caputo fractional derivative of V1(t) along solution of system (2.6) is given by

8
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DαV1 =
(sin − λ1)

D

µ1(s)−D

sin − s
Dαs+

(
Dαx1 − x∗

1
Dαx1

x1

)
+

n∑
i=2

αiD
αxi

=
(sin − λ1)

D

µ1(s)−D

sin − s

(
D

[
sin − s

]
−

n∑
i=1

µi(s)xi

)
+
(
1− x∗

1

x1

)[
µ1(s)−D

]
x1 +

n∑
i=2

αi

[
µi(s)−D

]
xi

= (µ1(s)−D)
[ (sin − λ1)

D(sin − s)

(
D

[
sin − s

]
− µ1(s)x1

)
+

(
1− x∗

1

x1

)
x1

]

− (sin − λ1)

D

µ1(s)−D

sin − s

n∑
i=2

µi(s)xi +

n∑
i=2

αi

[
µi(s)−D

]
xi

= (µ1(s)−D)
[
(sin − λ1)−

(sin − λ1)

D(sin − s)
µ1(s)x1 +

(
x1 − x∗

1

)]

+

n∑
i=2

(
− (sin − λ1)

D

µ1(s)−D

sin − s
µi(s) + αi

[
µi(s)−D

])
xi

Then

DαV1 = (µ1(s)−D)
[
1− (sin − λ1)

(sin − s)

µ1(s)

D

]
x1

+

n∑
i=2

(
− (sin − λ1)

D

µ1(s)−D

sin − s
µi(s) + αi

[
µi(s)−D

])
xi

= (µ1(s)−D)
[
1− (sin − λ1)

(sin − s)

µ1(s)

D

]
x1 +

n∑
i=2

(
αi − gi(s)

)[
µi(s)−D

]
xi.

The first term of the above sum is non-positive for 0 < s < sin and equals 0 if and only
if s = λ1 or x1 = 0. Since Assumption 3 is fulfilled, the second term is nonpositive for
0 < s < sin and equal to zero if and only if xi = 0 for i = 2, · · · , n. Since all parameters of
the model are non-negative, it follows that DαV1 ≤ 0. DαV1 = 0 if and only if xi = 0 for
i = 1, · · · , n or s = λ1 and xi = 0 for i = 2, · · · , n. Using the Krasovskii-LaSalle extension
theorem, the ω-limit set of the trajectory is E1. This completes the proof.

3 Numerical Simulations

The system (2.6) has the following form

Dα
Cy(t) = f(t, y(t)), y(0) = y0 (3.1)

There are several analytical and numerical methods have been proposed to solve such systems
(3.1). Diethelm and Freed [32] proposed the well-known algorithm called FracPECE, using the
classical predict, evaluate, correct, evaluate (PECE) type approach, but modified in order to solve

9
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fractional order derivative equations [30]. This approach combines fractional Adams-Bashforth-
Moulton methods.

Suppose that the time interval [0, T ] is discretized uniformly into N sub-intervals; define tj =
j dt, n = 0, 1, · · · , N , where dt = T/N is the time step. Let yj be the exact value of a function y(t)
at time step tj .
Firstly, let calculate the predictor yP

n+1 according to

yP
n+1 = y0 +

1

Γ(α)

n∑
j=0

bj,n+1f(tj , yj) (3.2)

where

bj,n+1 =
dtα

α

(
(n+ 1− j)α − (n− j)α

)
. (3.3)

Then f(tn+1, y
P
n+1) was evaluated, and use this to determine the corrector yn+1 by means of equation

yn+1 = y0 +
1

Γ(α)

( n∑
j=0

aj,n+1f(tj , yj) + an+1,n+1f(tn+1, y
P
n+1)

)
(3.4)

where

aj,n+1 =
dtα

α(α+ 1)

(
(n+ 2− j)α+1 − 2(n+ 1− j)α+1 + (n− j)α+1

)
. (3.5)

Finally f(tn+1, yn+1) was evaluated which is then used in the next integration step.

0 5 10 15 20 25 30
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0 2 4 6 8 10
0
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1.2

1.4

1.6
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2

Fig. 3: Left, sin = 5, D = 2, µ̄1 = 6, k1 = 1, µ̄2 = 5, k2 = 1, µ̄3 = 4, k3 = 1, µ̄4 =
3, k4 = 1, µ̄5 = 2, k5 = 1 and right sin = 5, D = 7, µ̄1 = 6, k1 = 1, µ̄2 = 5, k2 =
1, µ̄3 = 4, k3 = 1, µ̄4 = 3, k4 = 1, µ̄5 = 2, k5 = 1. As it can be seen on the figure on
the left, all components vanish, except the first one. The solution converge to E1.
For the figure on the right, all species go extinct and the solution converge to E0.

Numerical simulations were perfomed for system (2.6) using FracPECE algorithm. Five species

were considered. Classical Monod functions were used to express the growth rates µi(s) =
µ̄is

(ki + s)
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with µ̄i, ki > 0 which satisfy Assumption 1 and such that λ1 < λ2 < λ3 < λ4 < λ5 (Assumption 2).
α is chosen to be 0.8.
Two cases were considered. The first one (Fig. 3, left) performing the global stability of the
equilibrium E0 when λ1 ≥ sin. The other test (Fig. 3, right) perform the global stability of the
equilibrium E1 when λ1 < sin.

4 Conclusion

A fractional-order mathematical model for n species competing, in a chemostat, for a single resource
is proposed. The global dynamics was carried out, for any set of increasing growth rates. Obtained
results generalize and improve the well-known competitive exclusion principle in the chemostat,
that is at most one competitor population avoids extinction [13].
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