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Abstract 
 

Aims: The aim of this study is to determine the best estimator for estimating dynamic panel data model with 
serially uncorrelated disturbances and exogenous regressors. 
Methodology: In this study, properties of some Dynamic Panel Data estimators are investigated. These are 
Ordinary Least Squares (OLS), the Anderson-Hsiao(AH(d), Arellano-Bond Generalized Method of Moment 
(ABGMM) one-step, Blundell- Bond System (BBS) one-step, M- estimator,  MM estimators and proposed 
estimator, Modified Anderson-Hsiao with Arellano-Bond(MAHAB) estimator in the presence of 
autocorrelation. Also, this new estimator was proposed by modifying the existing estimators. 
Results: Monte-Carlo simulations were carried out at varying sample size (n) ranges from 10-200 and time 

period (T) ranges from 5-20 when autocorrelation ( ) is fixed at 0.3, 0.5 and 0.7. The estimators considered 
performed well except OLS and BBS for all time periods. 
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Conclusion: AH estimator performed relatively well when the time period is small while ABGMM estimator 
outperformed all other estimators when sample size (n) is large for all the time periods considered. ABGMM 
shows the largest improvement as sample size (n) and time periods (T) increase. The MAHAB estimator 
outperformed all other estimators in small and large sample size irrespective of time period in the presence of 
autocorrelation. 
 

 
Keywords:  Dynamic panel data; Monte Carlo simulation; autocorrelation; time series data; absolute bias and 

root mean square error. 
 

1 Introduction  
 
Panel data set is a cross-section or group of entities that are surveyed periodically over a given time span. These 
data consist of repeated observations on some subjects at different occasions,   generated by pooling time-series 
observations across a variety of cross-sectional units. The units may be individuals, households, firms, regions 
or countries. Analysis on panel is classified as Micro panels (involve a number of households or individuals) 
and Macro panels (involve a number of countries).  There are several benefits panel data over conventional 
cross-sectional and time-series data as described by [1,2]. Among the benefits are accurate inference of model 
parameters is obtained when dealing with panel data. Also, it has more degrees of freedom and sample 
variability than cross-sectional data, time-series data for T=1 and N=1 respectively, hence improving the 
efficiency of econometric estimates. [3] extended standard error components model to take into account serial 
correlation.  
 
Heteroscedastic as well as serially correlated disturbances in one way error component was examined in a panel 
data regression model both in static and dynamic [2]. The problems of autocorrelation due to the presence of 
lagged dependent variable among the regressors and individual effects characterizing the heterogeneity among 
the individuals leads to certain issues which are dealt with by different estimation techniques. The estimation of 
fixed effects dynamic panel data models has been one of the major challenges in Econometrics in the last three 
decades.  
 
A number of techniques for modeling dynamic panel data have been proposed and compared with Instrumental 
Variable (IV) and Generalized Method of Moments (GMM) estimators [4]. Therefore, this study will examine 
the performance of different estimators from small samples to large samples with different time dimension. [5] 
favorably compared the AH estimator against various GMM estimators. 
 
Arellano M and Bond S [6] made a deduction on the Anderson-Hsiao estimator against different Generalized 
Method of Moments (GMM) estimators and inferred that the Generalized Method of Moments (GMM) 
procedures produce substantial efficiency gains. Their results also showed that GMM1 performed better than 
GMM2 in both their bias and root mean square error.   
 
Judson R and Owen L [7]  considered four estimators: an instrumental variables estimator proposed by [8], two 
Generalized Method of Moments estimator proposed by [6] and a corrected Least Square Dummy Variables 
estimator (LSDVC) derived by [5]. Their results confirmed some research work conclusions about OLS and 

LSDV estimators: (1) in both cases, the bias of  are more severe than that of . (2) OLS showed biased 

estimates even for large T and (3) the bias of the LSDV estimator increases with  and decrease with T. Their 

result also showed that the bias of LSDV estimate is not unsubstantial when T =20, but when T increase to 30, 
the average bias becomes smaller although the LSDV does not become efficient. However, all the estimators’ 
performs better with a larger N and T, and the one-step GMM also performs better than the two-step GMM 
estimator. Their result also showed that LSDV performs just as well as the viable alternatives when T=30, 
GMM is the best when T ≤ 10 and GMM or AH may be chosen when T=20.  
 
Nerlove M [9] compared the Least Trimmed Squares estimators (LTS), M-estimator, Yohai MM-estimator, S-
estimator and Ordinary Least Squares. The simulation results showed that the S-estimator, M-estimator methods 
perform better than Least Trimmed Squares and MM-estimator methods. The result also showed that the S-
estimator has a reasonable efficiency, with the influence of high leverage outliers, and demonstrate high 
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breakdown.  For 10% breakdown S-estimator increases its efficiency. MM-estimation performed the best overall 
against a comprehensive set of outlier conditions. However, his results also showed that when the percentages of 
outliers are increased, the performances of the estimators were reduced.  
 
Alma Ö G [10] compared the Anderson-Hsiao estimator using lagged levels as instrument (AH (l)), Anderson-
Hsiao using lagged differences as instrument (AH (d)), Arellano-Bond GMM estimator (first and second step), 
Blundell-Bond GMM estimator (first and second step). Their simulation result revealed that AH(l) and AH(d) 
performed reasonably when the time period is small and when time period is moderate while first-step Arellano-
Bond GMM estimator  performs better than all other estimators when the time period is large. Meanwhile, the 
first-step Blundell-Bond system GMM estimators do not perform well when the panel sample size is large.  
 
In this study it was found that MAHAB estimator is the appropriate choice in a dynamic panel data model with 
serially correlated disturbances and exogenous regressors. The rest of the paper is organized as follows: section 
1 gives the brief description of SEM models and the interpretation of the terms. Section 2 describes materials 
and methods, in section 3 and 4 simulation study and results of the simulation study respectively. Section 5 
concludes the paper.   
 

2 Materials and Methods  
 
This work considers one-way error component model with presence of serial correlation in a random effects. 
The different degrees of autocorrelation were introduced via random effects one-way error component model 
and the coefficient of the serial correlation is taken to be mild, moderate and high. This is in line with the works 
of [4,11,7] to mention but few. Most of the previous works done on Dynamic panel data focused on the absence 
or no serial correlation of the disturbance term. 
 

2.1 Frameworks of some estimators of dynamic panel data models considered  
 
Consider:  Ordinary Least Square estimators, 
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Also, let  xyW 1 . Then the OLS estimator of the parameter vector    


is given by 

 

  yWWW 
1 .                                                                                                                                (2) 

 

The standard errors under homoscedasticity are obtained from     ,var
12  WWs with

 2
2




NT
ees , where  .Wye   The general heteroskedasticity consistent standard errors are 

obtained from       11   WWWeediagWWW . Since  01,  itiyCov    OLS estimator is biased. It is 

also inconsistent in direction of both N and T. 
 
Anderson TW and Hsiao C [8] proposed an instrumental Variable (IV) estimator that is consistent for fixed T 
and N tends to infinity. Anderson and Hsiao (IV) estimator was applied to the model in first differenced form  
 

   1,1,2,1,1,   tiittiittititiit vvxxyyyy                                                                 (3) 

 
which cancelled the individual fixed effects assumed to possibly correlate with the exogenous variables 

  0 itx  and it resulted in the “loss” of one cross-section from the actual estimation. 
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The use of level Instruments 2ty  was also suggested, or the lagged difference 3,2,   titi yy  as an instrument 

for the differenced lagged endogenous regressor 2,1,   titi yy . 

 
Anderson-Hsiao (AH) estimator, 
 

  PyXXPXAH 
1̂     Where    ZZZZP

1                                      (4) 

 

The symbol l or d indicates the use of levels or differences as instrument 
    dAHlAH  ˆ,ˆ

 
 
AB estimator is similar to the one suggested by AH but exploits additional moment restrictions, which enlarges 

the set of instruments. The dynamic equation to be estimated in levels is itiittiit vxyy 



1,  where 

the individual effect i  is eliminated by differencing 

 

    .1,1,2.1,1,   tiittiittititiit vvxxyyyy                                     (5) 

 
The instruments available were looking into for instrumenting the difference equation for each year. For t=3 the 
equation to be estimated is 
 

    23231223 iiiiiiii vvxxyyyy                                                                    (6) 

 

Where the instruments (again assuming x being at least predetermined) 21, ii xy   and 1ix are available. For t=4 

the equation is 
 

    .34342354 vivixxyyyy iiiiii                                                           (7) 

 

The instruments 212,1, ,,, iii xxyiy   and 3ix  are available. 

 
Arellano-Bond (AB) estimator, 
 

  .ˆˆˆ 11
YWVWXXWVXWABGMM  

                                                                            (8) 

 
Where the one-step GMM estimator makes use of a covariance matrix taking autocorrelation into account. 
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1

                                                                                          (9) 

 
The two-step GMM estimator makes use of the residuals of the first-step estimation to estimate the covariance 
matrix as suggested by [12]: 
 

iTi

N

i
iTi WFVVFWV  



ˆˆˆ
1

.                                                                                           (10) 

 
The BB System GMM: When the instruments are weak the GMM estimator suggested by AB is known to be 
rather inefficient because of the use of the information contained only in differences. The BB suggests making 
use of additional level information beside the differences to make it an efficient estimator. 
 
Blundell-Bond (BB) estimator, 
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  .ˆˆˆ 111 WyVWXXWVXWSSYGMM                                                                 (11) 

 
The first step GMM estimator makes use of a covariance matrix taking this autocorrelation into account, 
enlarged for the level equations while the second step GMM estimator uses residuals of the first step estimation 
to estimate the matrix as suggested by [12]. 
 
M-estimators were proposed by [13]. M-estimation for regression is a relatively straightforward extension of M- 
estimation for location and scale. It represents one of the first attempts at a compromise between the efficiency 
of the Least Squares estimator and a resistance estimator - Least Absolute Value (LAV) estimators. Newton-
Raphson and Iteratively Reweighted Least Squares (IRLS) are the two methods to the M-estimates nonlinear 
normal equations. 
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IRLS express the normal equations as   
 

WyXWXX  ̂                                                                  (13) 

 
where W is an n x n diagonal matrix of weights 
 

The initial vector of parameter estimates 0̂  are typically obtained from OLS, 

 
M estimator:  
 

  WyXWXX 
1

1̂                                                                                                                        (14) 

 
MM estimation was introduced by [11] and it combines a high breakdown point with a good efficiency 
(approximately 95%) relative to the Ordinary Least Squares estimator under the Gauss-Markov assumptions. 
The MM refers to the fact that Multiple M-estimation procedure is used to calculate the final estimate. It has 
also become most common robust regression technique for linear regression. 
 
Modified Anderson-Hsiao with Arellano-Bond(MAHAB) estimator: This is the proposed estimator by 

modification of Anderson-Hsiao  and Arellano-Bond estimator given below.  For simplicity, considering 0
 

 

ititiit yy   1,                                                                                                          (15) 

 

121,   itiitti vyy                                                                                                     (16) 

 
Subtracting equation (16) from equation (15) 
 

  1211   ititiiitititit vvyyyy                                                           (17) 

 
Equation (17) compactly written as follows  
 

ittiti yy   1,,                                                                                                  (18) 

                                                                               
Firstly, equation (18) was differentiated to eliminate the individual effects. The periods (T) for which there 

exists valid instruments using logic are 2,,2,1 , Tiii yyy 
 

The instrumented equation then becomes 
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FvWFxyWFyW                                                                                                   (19) 
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premultiplying the matrix F  results in transforming the original observations into differences. Because 

  ,2 FFFuVar   the covariance matrix FFV   is used as a first step approximation to the covariance 

matrix. 
 
The two-step GMM estimator uses the residuals of the first-step estimation to estimate the covariance matrix as 
suggested by [14, 15,16]: 
 

                                                                                                               (20) 

 
Finally, the resulting estimator is 
 

  WyWVXWXVXW 11ˆˆ 
                                                                                        (21) 

                                                      
Integrating the blinded model/ estimation with the instrument form 
 

  XPyPXX
1ˆ  , where   ZZZZP

1                                                                                    (22) 
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Premultiply to get and replacing in the formula for A-H estimator 
 

  WPyPWVXWPXXPWV 111ˆ                                                                                             (23) 

                                   

3 Results and Discussion 
 
3.1 Simulation study 
 
Monte-Carlo experiments were carried out to compare the behaviour of different estimators under different 

circumstances. The parameter   and   were compactly given as  =
1),(  for the value of .1 the 

parameters that are varied in the simulation are autoregressive coefficient ( ,  ) and the autocorrelation 

coefficient (  ,  ). The values of )7.0,5.0,3.0( , )7.0,5.0,3.0( , )9.0,5.0,2.0( and 

)9.0,5.0,2.0(  for  combination of the sample size(N=10, 20, 50,100) and Time period (T=5, 10, 15, 20) 

with 1000 replications were  varied in the study. The assessments of the various estimators considered in this 
work were based on the RMSE of parameter estimates. 
 
The data generating process follows [12,13] 

 

itititiit vXyy 


 1

1,                                                                                               (24) 

 

ttiit xx   1,                                                                                                                         (25) 

 

Where   )5.0,5.0( uxit  

 

For the random effects specification, we generate  itiit vu    where i ~ N (0, 1) and error term itv  is 

generated by  
 

AR (1):   ittiit wvv  1,                                                                                                                 (26) 

 
Or by the MA (1) process 
 

1,  tiitit wwv                                                                                                                                  (27) 

 

3.2 Results from the simulation study 
 
The simulation result revealed that when N is small, the MAHAB estimator outperformed all other estimators 
for all the time periods except when N=10 and T=20, AH (d) estimator performed better than all other estimator 
for all the degrees of autocorrelation. When N=50, the MAHAB estimator performed better than all other 
estimators for T=5, but as T increases, the AH (d) estimator performed better than all other estimator for all the 
degrees of autocorrelation. When N=100, the MAHAB estimator outperformed all other estimators for time 
periods 5, 10 and 15 while ABGMM performed better than all other estimators as T increases to 20. But as n 
increases to 200, ABGMM outperformed all other estimators for all time periods and for all the degrees of 
autocorrelation in terms of absolute bias. 
 
For the estimate of β, the simulation result showed that when n is small, the MAHAB estimator outperformed all 
other estimators for all the time periods except when n=20 and T=10 and 15, ABGMM performed better than all 
other estimators for all the degrees of autocorrelation. When n=50, the MAHAB estimator performed better than 
all other estimators when T=5 and 20 while the robust estimators (M and MM) performed better at T=10, and 
AH (d) estimator outperformed better than all other estimators when T=15. As n increases to 200, the MAHAB 
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estimator performed better than all other estimators for all the time periods and for all the degrees of 
autocorrelation in terms of absolute bias. 
 
For the estimate of δ, the simulation result revealed that when n=10, AH (d) and ABGMM estimators performs 
better than all other estimator when T is 5. But as T increases, the MAHAB estimator performed better than all 
other estimators. When n=20, AH (d) estimator performed better than all other estimators when T=5 while the 
MAHAB estimator outperformed all other estimator when time periods is 10, 15 and 20. As n increases to 50, 
AH (d) estimator outperformed all other estimators at T=5.10 and 15 when ABGMM performed better than all 
other estimators when the time period is 20. When n is large, the MAHAB estimator outperformed all other 
estimators for all time periods except when n=100 and T=5 that AH (d) estimator performed better than all other 
estimators for all degrees of autocorrelation in terms of RMSE. 
 
For the estimate of β, the simulation result revealed that when n is small, ABGMM outperformed all other 
estimators for time periods 5 and 10, while the proposed modified estimator performed better than all other 
estimators for time periods 15 and 20 for all the degrees of autocorrelation. As n increases, the MAHAB 
estimator outperformed all other estimators for all the time periods and for all the degrees of autocorrelation in 
terms of RMSE. 
 

4 Conclusion 
 
The Simulation results on various generating mechanism showed that based on a root mean squares error 
criterion, the MAHAB estimator performed well against the existing estimators.  
 
Furthermore, the study also observed that when the value of the autoregressive parameter of the explanatory 

variable  is varies, the absolute bias and RMSE of the estimators improves as the values of  increases. The 
result of our findings showed that, as to be expected all estimators (with the exception Blundell-Bond System 
GMM and OLS) generally performed better with small T and large T. However, the MAHAB estimator seems 
to show the largest improvement as n and T increases. 
 
This study concluded that in estimating the parameters of dynamic panel models in the presence of 
autocorrelation of the error term, the MAHAB estimator is more preferable. It is recommended to use the 
MAHAB estimator when dealing with panel data models in the presence of serial correlation. 
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Appendix 
Table 1. RMSE of various estimators when n=100 and T=20 for model parameter (  ) 

 

        ARMA(1,1) RMSE (β) T=20,  n=100 δ=0.5 MM-EST. MAHAB  
OLS ABGMM1 SYS 1 AH(d) M-EST. 

0.3 0.2 0.2 0.036223 0.029003 0.202796 0.513665 0.038517 0.044968 0.016232 
   0.5 0.036217 0.029003 0.179303 0.351116 0.038426 0.044971 0.016232 
   0.9 0.036214 0.029003 0.416322 0.238191 0.038392 0.044891 0.016232 
  0.5 0.2 0.036214 0.015211 0.251678 0.289181 0.040089 0.045773 0.016232 
   0.5 0.036211 0.029003 0.286583 0.256675 0.039085 0.045754 0.016232 
   0.9 0.036207 0.029003 0.306292 0.209408 0.038317 0.045667 0.016232 
  0.9 0.2 0.036187 0.029003 0.063073 0.119409 0.043239 0.046883 0.016232 
   0.5 0.036202 0.029003 0.331865 0.142532 0.043279 0.046173 0.016232 
    0.9 0.036206 0.029003 0.401434 0.146873 0.040395 0.045912 0.016232 
0.5 0,2 0.2 0.035407 0.029003 0.202796 0.470044 0.037941 0.044296 0.015757 
   0.5 0.035401 0.029003 0.179303 0.339268 0.037927 0.044242 0.015757 
   0.9 0.035396 0.029003 0.416322 0.237051 0.037873 0.044123 0.015758 
  0.5 0.2 0.035401 0.015211 0.251678 0.278249 0.039034 0.045159 0.015753 
   0.5 0.035396 0.029003 0.286583 0.250751 0.038354 0.045107 0.015755 
   0.9 0.035392 0.029003 0.306290 0.208231 0.037845 0.044993 0.015753 
  0.9 0.2 0.035381 0.029003 0.063073 0.124562 0.041466 0.045973 0.015750 
   0.5 0.035393 0.029003 0.331865 0.145881 0.041533 0.045416 0.015758 
    0.9 0.035392 0.029003 0.401434 0.147911 0.039417 0.045288 0.015756 
0.7 0.2 0.2 0.034404 0.029003 0.202796 0.424753 0.037081 0.043218 0.015664 
   0.5 0.034398 0.029003 0.179303 0.323621 0.037142 0.043114 0.015666 
   0.9 0.034393 0.029003 0.416322 0.233611 0.037102 0.042962 0.015668 
  0.5 0.2 0.034401 0.015214 0.251678 0.264403 0.037623 0.044056 0.015663 
   0.5 0.034395 0.029003 0.286583 0.242064 0.037395 0.043995 0.015663 
   0.9 0.034394 0.029003 0.306296 0.206128 0.037048 0.043868 0.015665 
  0.9 0.2 0.034389 0.029003 0.063073 0.128213 0.039787 0.044593 0.015666 
   0.5 0.034395 0.029003 0.331865 0.146347 0.039338 0.044242 0.015669 
    0.9 0.034392 0.029003 0.401434 0.148135 0.038324 0.044208 0.015670 

 

Table 2. RMSE of various estimators when n=100 and T=10 for model parameter (  ) 

 

      AR(1) ABSOLUTE BIAS (δ)  
T=10 

n=100 M-EST. MM-
EST. 

P-EST 

OLS ABGMM1 SYS 1 AH(d) 
0.3 0.3 0.2 0.010162 0.002366 0.000856 0.001943 0.006294 0.003315 0.000659 
   0.5 0.014119 0.002366 0.000856 0.001439 0.005037 0.012855 0.000656 
   0.9 0.017738 0.002366 0.000856 0.001375 0.011992 0.027358 0.000646 
  0.5 0.2 0.011296 0.002366 0.000856 0.001778 0.009465 0.002811 0.000617 
   0.5 0.015175 0.002366 0.000856 0.001407 0.001025 0.011307 0.000612 
   0.9 0.018785 0.002366 0.000856 0.001355 0.013855 0.026603 0.000615 
  0.7 0.2 0.012288 0.002366 0.000856 0.001704 0.013032 0.001193 0.000573 
   0.5 0.016157 0.002366 0.000856 0.001403 0.002276 0.009166 0.000552 
    0.9 0.019613 0.002366 0.000856 0.001339 0.014626 0.025221 0.000542 
0.5 0.3 0.2 0.010752 0.001971 0.000917 0.002038 0.006631 0.003568 0.000493 
   0.5 0.014645 0.001971 0.000917 0.001482 0.000812 0.010549 0.000489 
   0.9 0.018336 0.001971 0.000917 0.001278 0.017411 0.027317 0.000452 
  0.5 0.2 0.011918 0.001971 0.000917 0.001973 0.008596 0.003715 0.000359 
   0.5 0.015792 0.001971 0.000917 0.001467 0.001243 0.010266 0.000345 
   0.9 0.019141 0.001971 0.000917 0.001255 0.019169 0.026781 0.000303 
  0.7 0.2 0.012915 0.001871 0.000917 0.001933 0.010972 0.003333 0.000303 
   0.5 0.016797 0.001971 0.000917 0.001465 0.003106 0.009465 0.000301 
    0.9 0.019852 0.001971 0.000917 0.001236 0.018329 0.025473 0.000305 
0.7 0.3 0.2 0.011031 0.001583 0.000930 0.002018 0.005509 0.003682 0.000512 
   0.5 0.014684 0.001583 0.000930 0.001522 0.002739 0.009607 0.000588 
   0.9 0.018185 0.001583 0.000931 0.001179 0.011333 0.026221 0.000513 
  0.5 0.2 0.012212 0.001583 0.000930 0.002001 0.007298 0.004016 0.000442 
   0.5 0.015806 0.001583 0.000930 0.001523 0.004163 0.009485 0.000453 
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      AR(1) ABSOLUTE BIAS (δ)  
T=10 

n=100 M-EST. MM-
EST. 

P-EST 

OLS ABGMM1 SYS 1 AH(d) 
   0.9 0.018978 0.001583 0.000931 0.001156 0.014307 0.025271 0.000492 
  0.7 0.2 0.013202 0.001583 0.000930 0.001994 0.009351 0.004129 0.000435 
   0.5 0.016819 0.001583 0.000930 0.001528 0.005553 0.009283 0.000392 
    0.9 0.019634 0.001583 0.000931 0.001138 0.011675 0.023964 0.000323 

 

Table 3. RMSE of various estimators when n=200 and T=5 for  

 

      ARMA(1,1) RMSE (β) T=5 δ=0.7 n=200 MM-
EST. 

P-EST. 
OLS ABGMM1 SYS 1 AH(d) M-EST. 

0.3 0.2 0.2 0.050181 0.060110 0.470631 0.070608 0.053775 0.057329 0.039618 
   0.5 0.050169 0.052772 0.471389 0.043860 0.053737 0.057405 0.039618 
   0.9 0.050156 0.044209 0.472447 0.035059 0.053627 0.057462 0.039618 
  0.5 0.2 0.050208 0.058365 0.464691 0.097112 0.053760 0.057154 0.039618 
   0.5 0.050198 0.051537 0.464238 0.060793 0.053906 0.057159 0.039618 
   0.9 0.050171 0.043691 0.465746 0.029366 0.054139 0.057185 0.039618 
  0.9 0.2 0.050239 0.051524 0.44427 0.079152 0.053737 0.057919 0.039618 
   0.5 0.050218 0.046535 0.441243 0.064645 0.054305 0.057635 0.039618 
    0.9 0.050203 0.040488 0.441876 0.036184 0.053827 0.057303 0.039618 
0.5 0,2 0.2 0.049093 0.059604 0.440085 0.063842 0.052078 0.055762 0.038919 
   0.5 0.049083 0.052221 0.443087 0.043794 0.052132 0.055906 0.038919 
   0.9 0.049071 0.043808 0.445522 0.036846 0.051987 0.055992 0.038919 
  0.5 0.2 0.049118 0.057677 0.442375 0.094627 0.052426 0.055493 0.038919 
   0.5 0.049101 0.051017 0.443062 0.058544 0.052646 0.055646 0.038919 
   0.9 0.049084 0.043243 0.444572 0.029869 0.052881 0.055748 0.038919 
  0.9 0.2 0.049154 0.050873 0.421312 0.076898 0.052247 0.056183 0.038919 
   0.5 0.049135 0.045976 0.420230 0.063577 0.052451 0.055973 0.038919 
    0.9 0.049119 0.040014 0.422282 0.036950 0.052324 0.055799 0.038919 
0.7 0.2 0.2 0.047660 0.059072 0.404408 0.057927 0.050339 0.053909 0.038828 
   0.5 0.047651 0.051721 0.409247 0.044063 0.050149 0.054129 0.038828 
   0.9 0.047641 0.043397 0.413338 0.039239 0.049947 0.054256 0.038828 
  0.5 0.2 0.047682 0.056988 0.412498 0.087468 0.050878 0.053620 0.038828 
   0.5 0.047666 0.050479 0.414724 0.054767 0.051064 0.053871 0.038828 
   0.9 0.047651 0.042843 0.416590 0.029845 0.051075 0.054055 0.038828 
  0.9 0.2 0.047722 0.050213 0.392906 0.072278 0.050511 0.054177 0.038828 
   0.5 0.047703 0.045426 0.393619 0.060742 0.050535 0.054072 0.038828 
    0.9 0.047687 0.039564 0.396951 0.036830 0.050567 0.054021 0.038828 

 

Table 4. RMSE of various estimators when n=50 and T=5 for  

 

      MA(1) RMSE (β)  T=5, n=50 AH(d) M-EST. MM-
EST. 

P-EST. 
OLS ABGMM1 SYS 1 

0.3 0.3 0.2 0.106431 0.116697 0.363142 0.952899 0.102783 0.102808 0.036214 
   0.5 0.106475 0.106656 0.380534 0.464541 0.103419 0.102636 0.036003 
   0.9 0.106515 0.092443 0.393002 0.253823 0.104602 0.102487 0.036413 
  0.5 0.2 0.105835 0.116085 0.339367 0.926208 0.103167 0.101755 0.035281 
   0.5 0.105895 0.105975 0.359424 0.499245 0.103604 0.101405 0.034137 
   0.9 0.105944 0.091822 0.375828 0.281829 0.104418 0.101058 0.033125 
  0.7 0.2 0.104415 0.115352 0.319733 0.848097 0.103128 0.099783 0.032173 
   0.5 0.104481 0.105191 0.338098 0.511573 0.103029 0.099296 0.032065 
    0.9 0.104529 0.091121 0.356224 0.302012 0.103461 0.103642 0.031068 
0.5 0.3 0.2 0.106474 0.106831 0.374752 0.433557 0.103422 0.102564 0.037582 
   0.5 0.106501 0.095521 0.392852 0.296849 0.104301 0.102480 0.035217 
   0.9 0.106524 0.081447 0.407798 0.204885 0.105526 0.102513 0.034101 
  0.5 0.2 0.105883 0.106041 0.353666 0.457262 0.103712 0.101332 0.033252 
   0.5 0.105930 0.094727 0.373942 0.332076 0.104018 0.101074 0.033102 
   0.9 0.105966 0.080776 0.392135 0.233323 0.104519 0.103415 0.032751 
  0.7 0.2 0.104459 0.105140 0.332805 0.461632 0.102909 0.103484 0.031292 
   0.5 0.104516 0.093853 0.352639 0.357631 0.103148 0.101179 0.031251 
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      MA(1) RMSE (β)  T=5, n=50 AH(d) M-EST. MM-
EST. 

P-EST. 
OLS ABGMM1 SYS 1 

    0.9 0.104554 0.080049 0.372442 0.257731 0.102966 0.103273 0.030288 
0.7 0.3 0.2 0.106511 0.096430 0.381164 0.253949 0.103816 0.102344 0.035178 
   0.5 0.106519 0.085116 0.400609 0.213694 0.104713 0.102557 0.034008 
   0.9 0.106532 0.071937 0.418106 0.168627 0.104943 0.102744 0.034005 
  0.5 0.2 0.105921 0.095573 0.362341 0.280227 0.103739 0.107146 0.035888 
   0.5 0.105952 0.084313 0.383555 0.245007 0.103917 0.105883 0.032881 
   0.9 0.105981 0.071286 0.403856 0.195496 0.104767 0.106802 0.031872 
  0.7 0.2 0.104490 0.094620 0.341966 0.298137 0.103025 0.098726 0.034186 
   0.5 0.104535 0.083444 0.362811 0.271539 0.102972 0.104793 0.032525 
    0.9 0.104569 0.070595 0.384546 0.220252 0.103080 0.099503 0.031293 

 

Table 5. Absolute bias of various estimators when n=100 and T=20 for  
 

      ARMA(1,1) RMSE (β) T=20,  n=100 δ=0.7 MM-
EST. 

P-EST 
OLS ABGMM1 SYS 1 AH(d) M-EST. 

0.3 0.2 0.2 0.036210 0.028716 0.048747 0.316261 0.038486 0.044933 0.018188 
   0.5 0.036212 0.028716 0.436517 0.253642 0.038371 0.044919 0.018188 
   0.9 0.036215 0.028716 0.413555 0.197932 0.038048 0.044876 0.018188 
  0.5 0.2 0.036204 0.028716 0.048747 0.222577 0.039391 0.045795 0.018188 
   0.5 0.036206 0.028716 0.048747 0.206769 0.038532 0.045757 0.018188 
   0.9 0.036209 0.028716 0.129234 0.182227 0.037806 0.045692 0.018188 
  0.9 0.2 0.036186 0.028716 0.048747 0.109866 0.042538 0.046505 0.018188 
   0.5 0.036204 0.028716 0.445736 0.128344 0.041234 0.045982 0.018188 
    0.9 0.036209 0.028716 0.048747 0.138938 0.038373 0.045966 0.018188 
0.5 0,2 0.2 0.035395 0.028716 0.048747 0.300971 0.037944 0.044237 0.018162 
   0.5 0.035395 0.028716 0.436517 0.250854 0.037813 0.044176 0.018162 
   0.9 0.035398 0.028716 0.413554 0.200442 0.037571 0.044085 0.018162 
  0.5 0.2 0.035391 0.028716 0.048747 0.216153 0.038588 0.045174 0.018162 
   0.5 0.035391 0.028716 0.048747 0.204766 0.038107 0.045103 0.018162 
   0.9 0.035393 0.028716 0.129234 0.184393 0.037421 0.044994 0.018162 
  0.9 0.2 0.035381 0.028716 0.048747 0.113274 0.040763 0.045736 0.018162 
   0.5 0.035393 0.028716 0.445736 0.130694 0.040103 0.045333 0.018162 
    0.9 0.035395 0.028716 0.048747 0.140536 0.038046 0.045371 0.018162 
0.7 0.2 0.2 0.034392 0.028716 0.048747 0.284354 0.037089 0.043136 0.017292 
   0.5 0.034392 0.028716 0.436517 0.245773 0.037053 0.043036 0.017292 
   0.9 0.034394 0.028716 0.413554 0.201288 0.036809 0.042902 0.017292 
  0.5 0.2 0.034391 0.028716 0.048747 0.208437 0.037486 0.044071 0.017292 
   0.5 0.034393 0.028716 0.048747 0.202732 0.037166 0.043989 0.017292 
   0.9 0.034391 0.028716 0.129234 0.185189 0.036766 0.043851 0.017292 
  0.9 0.2 0.034386 0.028716 0.048747 0.116022 0.039132 0.044488 0.017292 
   0.5 0.034394 0.028716 0.445736 0.132003 0.038733 0.044224 0.017292 
    0.9 0.034396 0.028716 0.048747 0.140772 0.037117 0.044278 0.017292 

 

Table 6. RMSE of various estimators when n=100 and T=20 for  

 

      ARMA(1,1) ABSOLUTE BIAS (δ)  
T=20, 

 n=100 δ=0.3 MM-
EST. 

P-EST 

OLS ABGMM1 SYS 1 AH(d) M-EST. 
0.3 0.2 0.2 0.001414 0.000178 0.004742 0.000397 0.003522 0.005629 0.000274 
   0.5 0.000197 0.000178 0.377190 0.000516 0.002615 0.006318 0.000274 
   0.9 0.001405 0.000178 0.408636 0.000603 0.001208 0.006843 0.000274 
  0.5 0.2 0.001248 0.000178 0.152399 0.000626 0.011992 1.26E-05 0.000274 
   0.5 0.002250 0.000178 0.307599 0.000608 0.009138 0.003097 0.000274 
   0.9 0.003446 0.000178 0.376933 0.000612 0.006097 0.005466 0.000274 
  0.9 0.2 0.002352 0.008340 0.313771 0.000747 0.025008 0.013087 0.000274 
   0.5 0.003586 0.000178 0.364291 0.000714 0.023539 0.006905 0.000274 
    0.9 0.004746 0.000178 0.004742 0.000677 0.021665 0.001557 0.000274 
0.5 0,2 0.2 0.001286 0.000178 0.004742 0.000459 0.001971 0.005913 0.000249 
   0.5 2.82E-05 0.000178 0.377191 0.000537 0.002146 0.006215 0.000249 
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      ARMA(1,1) ABSOLUTE BIAS (δ)  
T=20, 

 n=100 δ=0.3 MM-
EST. 

P-EST 

OLS ABGMM1 SYS 1 AH(d) M-EST. 
   0.9 0.001565 0.000178 0.408636 0.000611 0.001460 0.006789 0.000249 
  0.5 0.2 0.001352 0.000178 0.152399 0.000635 0.009730 0.000879 0.000249 
   0.5 0.002375 0.000178 0.307590 0.000614 0.008246 0.003523 0.000249 
   0.9 0.003561 0.000178 0.376933 0.000618 0.005989 0.005738 0.000249 
  0.9 0.2 0.002544 0.008342 0.313771 0.000743 0.024286 0.012577 0.000249 
   0.5 0.003726 0.000178 0.364291 0.000709 0.021446 0.006024 0.000249 
    0.9 0.004812 0.000178 0.004742 0.000676 0.019308 0.000735 0.000249 
0.7 0.2 0.2 0.001125 0.000178 0.004742 0.000512 0.000749 0.006181 0.000215 
   0.5 0.000156 0.000178 0.377192 0.000557 0.001257 0.005966 0.000215 
   0.9 0.001733 0.000178 0.408636 0.000617 0.001046 0.006491 0.000215 
  0.5 0.2 0.001498 0.000178 0.152399 0.000643 0.007883 0.001553 0.000215 
   0.5 0.002512 0.000178 0.307590 0.000621 0.007294 0.003868 0.000215 
   0.9 0.003688 0.000178 0.376933 0.000622 0.004832 0.005765 0.000215 
  0.9 0.2 0.002745 0.008342 0.313771 0.000739 0.022681 0.011547 0.000215 
   0.5 0.003787 0.000178 0.364291 0.000703 0.018943 0.005246 0.000215 
    0.9 0.004905 0.000178 0.004742 0.000675 0.017043 0.000169 0.000215 
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