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Abstract 

 
This study brings novelty to the area of corporate distress modelling in Zimbabwe by exploring company-

specific indicators of corporate distress, unlike most of the previous studies, which used financial 

performance indicators. Using a binary logistic regression on a time series dataset collated between 2010 and 

2017, this study establishes book value, book value per share, average debt to equity and equity per share as 

very significant determinants of corporate distress on the Zimbabwe Stock Exchange (ZSE). Future studies 

incorporating artificial intelligence and a combination of both the traditional financial ratios and market-

based indicators is recommended to expand the scope of the study. 

 

 

Keywords: Financial distress; logit; listed corporates. 

 

1 Introduction 

 
Large corporates are an integral part to economic growth. The existence of Stock exchanges could also be 

considered a pivotal aspect in sustainable economic growth. This is so because companies that list on a stock 

exchange are regulated and operate under good corporate governance [1]. The healthier the large corporates that 

Case Study 

mailto:lmuparuri@gmail.com


 

 
 

 

Muparuri and Gumbo; AJPAS, 12(4): 1-14, 2021; Article no.AJPAS.68127 
 

 

 
2 

 

are listed on the stock exchanges the more are the chances of advancing in economic growth. A corporate’s 

levels of liquidity influences how far it is from bankruptcy and gives a good  measure the financial health of a 

corporation [2]. Healthy listed corporates do attract Foreign Direct Investments that are very instrumental in 

economic development [3]. Financial distress is there for a phenomena that needs early detection in any 

economy to avoid corporate failures that lead to economic downturns due to liquidations and filing for 

bankruptcy [4]. 

 

The history of corporate failures dates back to centuries ago and continues to be a topical area of research 

globally. The World War 1 saw the  Great depression that came as a result of the after war poor credit risk 

management, the energy crisis of 1970s , the dot com bubble of year 2000 after the introduction of the internet 

and the 2007-2009 famous  global financial crisis are some of the well-known recorded in history financial 

distress occurrences. These resulted in companies filing for bankruptcy protection and in some cases closure. At 

the wake Covid-19 pandemic, we are seized with the “Great lockdown” financial crisis resulting from 

lockdowns affecting businesses and reduced capacity utilisation. 

 

The definition of financial distress can be complex, depending on the industrial, geographical or regional norms. 

In general, financial distress is understood to occur when a company is unable to meet its financial obligations. 

According to (Hayes, 2020), this phenomenon is usually a result of high fixed costs, a large degree of illiquid 

assets or revenues sensitive to economic downturns. This forces a company to negotiate payment plans with its 

creditors. Failure of the restructuring may lead to corporate failure. The costs of restructuring is also unbearably 

high to corporates making it impossible for a corporate to come back to life again [5]. 

 

According to (Altman, 1968) corporate failure is defined by a case of a company that filed for bankruptcy 

protection under Chapter 11 of the Bankruptcy Act of 1938 in America .This paper seeks to determine and 

analyse the variables that drive a corporate into financial distress. This study looks at historically distressed and 

non-distressed corporates listed on the Zimbabwe Stock Exchange (ZSE) between the years 2010 and 2017.  

 

The significance of this study is to enhance early warning signals for corporate institutions to monitor potential 

distress parameters and metrics in advance, which will trigger mitigatory measures. This enhanced risk 

monitoring and management framework might play a pivotal in promoting economic growth. 

 

2 Literature Review 
 

2.1 Corporate distress and listed companies 
 

According to (Business insider, 2019) globally, over 20 000 companies filed for bankruptcy in an annual basis. 

With the current global COVID 19 pandemic, several firms in the world are likely to face some forms of 

financial distress due to mandatory lockdowns that have resulted in loss of production times and reduced 

capacity utilisations. Canada’s Cirque du Soleil on the 29th of June 2020 filed for bankruptcy protection, the 

company owes over USD 900 million in debt and the pandemic has affected its operations in the entertainment 

industry (Reuters, 2020).  

 

The number of distressed companies in South Africa increased from zero distressed corporates in April 2020 to 

195 distressed corporates by May 2020 due to the effects of the Covid-19 pandemic. A projection into 2021 

suggested about 220 bankruptcies would be reported (Bowmans, 2020). 

 

For an economy to thrive there has to be a lot more listed companies to attract investors to a wider pool of 

potential corporates to invest. Early Warning Systems (EWS) are necessary to hedge against delisting due to 

bankruptcy [6,7]. 

 

The history of the ZSE dates back to 1896 although it has only been open to foreign investment since 1993. As 

at 2019, the exchange had about 17 stock broking members, and listing 63 corporate equities. The main indexes 

are ZSE industrial index, ZSE Mining index, ZSE Top 10 index, ZSE All share index. 1 

                                                           
1https://www.zse.co.zw/about-us/ 
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According to a report by African markets [8], over 15 companies had delisted from ZSE due to bankruptcy 

related problems between the years 2009 and 2015. Some of the reasons were due to the economic downturn 

experienced by the country while some of these where bankruptcy related to other business challenges. The 

number of listed companies fell from 78 to 63 listed counters. Then in 2015, some market watchers predicted 

that further delisting was to occur as the ZSE maintained stringent requirements not cognisant of the economy. 

Currently there are 68 listed counters on the ZSE from various sectors of the economy, including mining, 

agriculture, banking, retail and services industries (Chronicle, 2015). 

 

Performance data of listed stocks in some of the SADC regions was also collected 2for comparison purposes as 

at 2020 third quarter and is summarised in figure 1 below.  The ZSE recorded a huge loss of 35.50% in the 

period under observations compared to other countries, which averaged 1.1% gains. This further qualifies the 

need for this research in order to investigate some of the causes of such huge variance as they relate to corporate 

distress. 

 

 
 

Fig. 1. Quarter 3, 2020 SADC Listed Stocks Analysis 
Key: BSE: Botswana Stock Exchange, BVM: Mozambique Stock Exchange, DSE: Dar es Salaam Stock Exchange, ESE: 

Eswatini Stock Exchange, JSE:Johannesburg Stock Exchange,LUSE: Lusaka Securities Exchange, MSE: Malawi Stock 

Exchange, SEM: Stock Exchange of Mauritius Limited 

 

On a regional perspective, between 1998 and 2004, 273 companies delisted from the Johannesburg Stock 

Exchange (JSE) to end with 396 (JSE, 2004). According to a report by (Business live, 2019) a crisis on 

continued delisting on the JSE daily was reported. While some delisting was a result of mergers and acquisitions 

meant to grow the business, some of these where due to bankruptcy (Business live, 2019).  

 

2.2 Empirical review 

 
According to Altman et al.  [9], a comparison of statistical methods versus Neural Networks (NN) was done.  In 

their study, which was carried on over 1000 corporates at various stages of distress, the results proved that both 

methods had good predictive strength of over 90%. However, the NN suffered over-fitting on the training 

sample and use of illogical weights. The authors recommended the use of a combined methodology using both 

statistical and artificial intelligent methodologies. From their study, it was noted that combining both Neural 

Networks and traditional statistical methods can yield a more robust model that capitalises on the strengths of 

both methodologies in predicting corporate failures.  

 

Another research by Lee and Choi, [10] focused on building different distress prediction models by sector. 

Retail, Manufacturing and Construction industries were used from companies in Korea. The different models 

from each sector proved to be accurate by 6 to 12% as compared to a single model that predicts for all 

                                                           
2https://www.cosse.africa/wp-content/uploads/2020/12/CONSOLIDATED-DATA-SADC-STOCK-EXCHANGES-AS-OF-Q3-2020.pdf 
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companies without splitting per sector. This study used backward propagation Neural Networks (BNN) that is a 

branch of artificial intelligence. Compared with traditional statistical method of multivariate discriminant 

analysis, the BNN proved to be more accurate than the latter. Industry-specific modelling was therefore 

suggested to be a better measure of distress prediction in their study. 

 

Wang et al. [11] had some deviations from the conventional methods that focused on financial ratios only to 

predict distress disregarding non-financial data. Data from China Security Market Accounting Research 

Database (CSMARD) was used to build a model that focused on the quality of the non-financial parameters in 

distress prediction. The methodology used was a regularized sparse-based random subspace with Evidential 

Reasoning Rule stemming from Artificial Intelligence. This method proved to be superior to traditional 

statistical methods. From their study, we see that non-financial data matters in building accurate models. It 

carries significant information that depicts behaviour that is crucial for distress prediction that may not be 

evident from purely financial data.  

 

In a study by Mousavi and Ouenniche, [12] the aim was to establish a fair assessment of different methodologies 

used in predicting corporate distress. Statistical models, survival analysis and contingent claim analysis models 

using slacks-based context-dependent DEA (SBM-CDEA) framework were used. The methods were first 

categorised into original, refitted and new models. The evaluation criteria used was calibration accuracy, 

information content, the correctness of categorical prediction, and discriminatory power. Analysis of the 

performance of these models was carried out on UK companies listed on the London Stock Exchange. Building 

models that take into account macro-economic factors was proposed as it may increase the model accuracy. 

 

Another frequently used methodology for distress prediction is Logistic regression. Several studies worldwide 

have chosen the methodology based on its simplicity and straight forwardness in presenting binary outcomes. 

The model development does not assume normality of the indicators and equal proportions for the binary 

outcomes of the response variable. In a study carried out by Brozyna, Mentel and Pisula, [13] the predictions 

and classifications that came out from a logistic regression model proved to be of high quality. Logistic 

regression is there for preferred for its robustness in classification and distress prediction [14] across the world. 

 

Various distress prediction models have been explored for various economic zones (UK, US, Europe, India and 

Pakistan). A model in the context of Zimbabwe will be the main objective of this study. Country specific 

modelling using country specific data presents a more accurate model that can help investors and decision 

makers make well-informed decisions. This model will also inform governments on when to offer bailout 

packages to those large corporates that require some financial assistance while restructuring efforts are being 

implemented for recovery [15]. Argenti, [16] also agrees that economic and geographic differences make the 

models developed for a specific country more accurate predictors of distress as they use country specific data. 

(Brigham & Gapenski, 1994) in turn cite that industry specific data produces more accurate results in predicting 

distress. 

 

2.3 Theoretical framework review 

 
A lot of research exists in the subject of corporate distress. In some cases, it is viewed in a negative sense as lack 

of liquidity while in some cases companies moved from insolvent state to solvency, distress therefore is viewed 

as an integral process of any business. Early work started with Edward Altman in 1968 through the Z Score 

model that challenged the compromise on the quality of predictions using the univariate model developed by 

Beaver who carried out a Multi-discriminant analysis of predictors. The model was a linear combination of all 

the financial ratios that might be considered as strong indicators of corporate distress. The overall model had an 

accuracy of 95%. 

 

3 Methodology 

 
Logistic Regression (Logit) analysis is the methodology of choice for this paper. In several studies such as [15], 

the methodology has proven to yield high levels of accuracy in determining the drivers of corporate distress. 

This is a method used for investigating the relationship of binary outcomes such as pass/fail or distress/non-

distress with explanatory variables [17]. In bankruptcy prediction, this model was first introduced in economics 

by Ohlson in 1980. For bankruptcy prediction, the binary response probability is usually the distress probability 
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and the explanatory variables are the different financial ratios and other categorical data. Unlike Multi 

Discriminant Analysis (MDA), this method does not assume multivariate normality and equal covariance from 

the two samples of failed and passed companies [18]. In this study, however we used company-specific 

indicators for the listed counters on the ZSE [19]. The model estimates the significant indicators by finding the 

values of the coefficients of regression for each of the independent variables. The Logit function is presented by 

the equations below: 

 

Z= ∑ 𝛽𝑖
𝑛
𝑖=1 𝑋𝑖+ε                                                     (1) 

 

ln ( 𝑃
1−𝑃) =Z= ∑ 𝛽𝑖

𝑛
𝑖=1 𝑋𝑖+ε                                                    (2) 

 

Odds ratio= 𝑃
1−𝑃 =exp (Z) =exp (∑ 𝛽𝑖

𝑛
𝑖=1 𝑋𝑖+ε)                                                 (3) 

 

P- Probability of distress 

Xi - The value of k-th distress indicator,  

βi - Coefficients of individual indicators, which represent their weights towards contribution to distress  

Z- is the linear combination of the indicators and the estimated weights 

 

The maximum likelihood method will be used to estimate the coefficients of the indicators.  

 

3.1 Data used  
 

Annual Time series data from ZSE3 were collected between the years 2010 and 2017. The data comprised of 

216 observations from 27 companies listed on ZSE.  Twelve independent variables were identified from stock 

market observed data. As seen in the descriptive statistics on table 1, the variability of the dataset was too wide 

and division by a factor was necessary for some variables to reduce the dimension variability. Book value was 

divided by a factor of ten million while total debt was divided by a factor of one hundred million. As previous 

studies have proved, variable transformation is not always mandatory for all observations as Logit 

transformation does not assume normality of the independent variables. This is done to improve model 

predictive accuracy and reduce skewness on data due to wide variability [20]. According to Okereke, [21], 

independent variable transformation by different constants produced a slope estimates that were a function of 

the divisor. What this means is the same divisor used in the transformation should be used in the estimation 

using the model so as to eliminate bias that may result from using the untransformed inputs in a model 

developed using transformed variables [22]. Further to that [23] agree that the coefficients are not affected by 

the transformation but the interpretation of the model should take into account the different transformations 

carried out on each independent variable [24]. The Augmented Dickey Fuller test for the existence of unit roots 

was carried out and the output showed that the variables were stationery at level. 

 

Table 1. Descriptive statistics 

 

Variable Observations Mean Standard Deviation Min Max 

bkvalue 216 154 million 576 million -2.98 million 7.47 billion 

eps 216 0.109 0.482 -0.715 3.59 

bvps 216 0.382 0.695 -0.00555 4.69 

tdebt 216 353 million 1.59 billion 527 000 12.8 billion 

avrgdebteq 216 3.30E 5.59 0.170 23.8 

 

3.2 Variables  

 
Multi-collinearity tests, Weight of Evidence(WoE) and Information Value(IV) as mentioned by Nehrebecka, 

[25] were calculated for each independent variable and out of the twelve variables, five values with the highest 

IVs where chosen for estimating the model parameters. According to Brozyna, Mentel and Pisula, [13] the 

                                                           
3https://www.zse.co.zw/market-statistics/ 
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higher the IV the higher the predictive strength of the indicator in determining the response, a cut off of 0.3 and 

above is said to be a good IV coefficient (see Appendix). These are the book value, the book value per share, 

equity per share, total debt and average debt to equity. The Fig. 2 describes the expected effects of the variables 

based on research done by other scholars like [26]. 

 

Table 2. Variables used 

 

Indicator Name Short code Type Description A priori 

Distress/Not Distress Distress Dependent The presence of financial bankruptcy 

=1 

Not applicable 

No financial bankruptcy=0 

Market capitalisation mktcap  Explanatory  A product of share price and the 

number of shares outstanding. 

+ 

Share price sharepr  The price of a single share  +/- 

Book value bkvalue  Net worth of a company + 

Operating income opincome  Net income realised after deducting 

Cost of goods 

+ 

Equity per share eps  Ratio of net profit/number of shares + 

Book value per share bvps  Ratio of net worth of a company to the 

number of outstanding shares 

+ 

Free Cash Flow to Equity FCFE  Amount of cash available=Cash from 

Operating Activities – Capital 

Expenditures + Net Debt Issued 

(Repaid) 

+/- 

Accruals accruals  The net effect of what is owed to the 

company by its debtors and what the 

company owes its creditors. 

+/- 

Total Debt tdebt  Total amount owed by the company  - 

Debt to Equity debteq  Ratio of total debt to Total Equity - 

Number of shares  sharesno Total number of shares  held by a 

company 

+/- 

Source: Author 

3.3 Causality tests 
 

In order to ascertain that there exists a causal relationship between the independent variables and the dependent 

variables, three causal conditions have to be met. This data will be tested for association, temporal precedence 

and spuriousness. 

 

3.3.1 Association test 

 

 In causal relationships, we want to establish if there is association between the independent variable and the 

dependent variable. This will be done using the Pearson Correlation Matrix.  

 

3.3.2 Temporal precedence 

 

If there exists a causal relationship between the dependent variable and the independent variable, there must be 

evidence that the independent variable causes the dependent variable; i.e a change in the independent variable 

occurs first to trigger a change in the dependent variable. In our case for example taking the variable book value 

we have the null hypothesis:  

 

H0: book value has causal effect on distress. 

 

The Wald coefficient test will be used as a comparable statistic for the Granger Causality test for binary 

outcomes. It will be carried out on all the indicators. 
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3.3.3 Spuriousness test  

 

The spuriousness condition is to establish if the causal effect on the dependent variable is indeed from the 

independent variable and no other factors. Individual logistic regressions will be carried out for each variable. 

 

4 Results and Discussion 

 
Book value, total debt, book value per share and equity per were found to be significant at 1% level as shown in 

Table 2. 

 

Table 3. Logistic Regression output 

 

Variables Distress 

bkvalueo10mil -0.307*** 

 (0.0932) 

Bvps 5.977*** 

 (1.950) 

tdebto100mil 0.0748*** 

 (0.0202) 

avrgdebteq 0.216*** 

 (0.0664) 

eps -38.26*** 

 (9.182) 

Constant -0.530* 

 (0.287) 

Observations 216 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 4. Association test results 

 

 
 

4.1 Model Diagnostics 
 

The model obtained in Table 6 had to be tested to satisfy all the conditions for causality as  detailed below. 

 

4.1.1 Association test 

 

From the Pearson’s correlation coefficient Table 4, it is evident that there exists a negative association between 

distress and book value, equity per share and total debt. An increase in these has a negative effect on distress, i.e 

reduction chances of distress. On the other hand, book value per share has a positive association implying an 

increase in book value per share yields an increase in the chances of distress. 
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4.1.2 Temporal precedence  

 

From the Wald coefficient statistic shown in Table 5 below, we fail to reject the null hypothesis at 1% level of 

significance and conclude that book value has causal effect on distress. We also fail to reject the null hypothesis 

for book value per share, equity per share and total debt as all these coefficients are significant at 1% leve. 

Hence, these parameters have exerted a causal effect on distress. 

 

Table 5. Temporal precedence test results 

 

Variables Wald Coefficient P Value  

bkvalueo10mil 0.0010 

bvps 0.0022 

avrgdebteq 0.0003 

eps 0.0001 

 

4.1.3 Spuriousness test  

 

From the individual logistic regressions carried out for each variable, the variable for total debt proved to be 

spurious as shown by the insignificant coefficient in Table 5 below. 

 

Table 6. Spuriousness test results 

 

 (1) (2) (3) (4) (5) 

Variables Distress Distress Distress Distress Distress 

bkvalueo10mil -0.0893***     

 (0.0272)     

bvps  0.0905***    

  (0.199)    

tdebto100mil   -0.0289   

   (0.0190)   

avrgdebteq    0.410***  

    (0.0720)  

eps     -17.61*** 

     (4.169) 

Constant 0.0567 -0.566*** -0.317* -1.590*** -0.153 

 (0.195) (0.161) (0.171) (0.217) (0.163) 

Observations 216 216 216 216 216 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

The variable for total debt had to be eliminated from the model and the resultant model is as shown in Table 7 

below. The output shows that distress is a function of book value, equity per share, book value per share and 

average debt to equity for corporates listed on the ZSE. 

 

The fitted model from equation 1 is as below. 

 

Z = -0.605 +0.244*average debt to equity-0.228*book value+5.471* book value per share-

35.563*equity per share 

 

The results show that at 1% level of significance, book value, book value per share, total debt, average debt to 

equity and equity per share are all significant determinants of corporate distress in the ZSE. At 1% level of 

significance, we can see that companies listed on the ZSE are generally not distressed as evidenced by the 

significant negative coefficient of -0.605. This could be a result of the economic reforms being implemented by 

the government in the past couple of the years. 
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Table 7. Non-Spurious Model Results 

 

variables Distress 

bkvalueo10mil -0.228*** 

 (0.0756) 

bvps 5.471*** 

 (1.860) 

avrgdebteq 0.244*** 

 (0.0670) 

eps -35.54*** 

 (8.828) 

Constant -0.605** 

 (0.285) 

Observations 216 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Companies with a larger book value are less likely to get into financial distress as seen by the negative 

coefficient of -0.228. However, the higher the book value per share the higher the chance of a company getting 

into financial distress as the coefficient is positive and significant with a value of 5.471. This is against a-priori 

as we expected to have an increase in book value per share to result in a reduced effect to get into financial 

distress. For Zimbabwean listed companies this could mean that listed companies are holding on to shares of 

less value which are not enticing to the market leading to low interest and trading on these. Hence a company is 

more likely to get into financial distress despite having a high book value per share. 

 

Companies with high levels of total debt seem to be more likely to get into financial distress which is consistent 

with the work of [27], as they are likely to be over borrowed as reflected also by the average debt to equity, 

which suggest that companies with a higher average debt to equity have higher chances of getting into default. 

The effect of equity per share on the likelihood of distress is consistent with a-priori where the higher the ratio 

the less likely is a company to get into financial distress.  

 

A unit increase in book value has a 0.228 increase in the likelihood of distress holding other variables constant. 

Equity per share has the highest magnitude contribution towards financial distress with a unit increase in Equity 

per share resulting in 35.563 decreases in the likelihood of distress. This makes equity the strongest determinant 

of financial health of any institution, which is consistent with a-priori. Book value per share ratio is 22 times 

stronger in determining the effect on financial distress as compared to average debt to equity ratio. 

 

5 Conclusion 

 
The main aim of this study was to analyse the predictors of corporate distress for ZSE listed companies. The 

objective was to determine the factors that drive a ZSE listed company to get into financial distress from a 

Zimbabwean perspective as evidence of limited study by Matenda, Sibanda et al. [27]. From this study, there is 

evidence that book value per share and average debt to equity contribute towards a company getting into 

financial distress amongst ZSE listed corporates. A company that aims at reducing its borrowing while 

increasing its equity will be able to reduce the chances of getting into financial distress. This is the evidence of 

high costs of debt that corporates in Zimbabwe suffer due to the current economic challenge. Currently the 

minimum lending rate is set by the central bank at 35%, which is extremely high making corporates very 

sensitive to debt which is different from the observation by Cortina et al. [28] of increase in low interest rates 

which make debt enticing.  

 

On the other hand, book value and equity per share tend to reduce the risk of getting into financial distress, thus 

a company that maintains high cash reserves has high chances of maintaining a healthy financial system that will 

support business and economic growth. This is normally the case with blue chip companies who have sufficient 

equity and do not have to borrow and hence maintain less finance costs. These companies are characterised by 

high liquidity and ability to achieve greater business flexibility, as they do not face the current liquidity 

challenges and the high costs of borrowing in the country.  
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Companies listed on the ZSE are therefore encouraged to keep a close eye monitoring on the movement of these 

indicators to guard against financial distress well on time through early reaction. As more research is being 

done, future studies should use a combination of corporate governance, macro-economic factors and other 

financial ratios not incorporated in this study due to data challenges and limited times frames.  

 

As the ZSE has a wide variety of economic sectors, sector based models would in turn yield more accurate 

determinants of financial distress according to the Korean study by Lee & Choi, [10]. Other methodologies 

mentioned in this research will be explored further for comparison of model adequacy. Implementation of 

country –specific risk based models for identifying determinants of financial distress is a pivotal instrument in 

guiding investors and economic development in Zimbabwe and Africa at large.  

 

This captures the idiosyncratic factors for the country under study [27] thereby invariably improving the 

accuracy of models than off the shelve models. Embracing of international standards by furthering this research 

through developing Probability of Distress model will also aid corporates to be trusted in the global space and 

get foreign investments for further development and maintaining healthy financial positions that promotes 

corporate expansions and economic growth. Early warning signs will definitely benefit corporates in making 

early decisions and carrying out remedial actions to avoid financial distress. 
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APPENDIX 
 

Table 8. Information Value Coefficients 

 

Variable Information value 

avrgdebteq 4.22 

 bvps  1.94 

eps 1.79 

debteq 1.61 

bkvalue 1.39 

sharesno 1.2 

opincome 1.15 

sharepr 0.77 

tdebt 0.49 

mktcap 0.45 

FCFE 0 

accruals 0 

 

Table 9. Spurious model 

 

 
 

Table 10. Spurious variable regression 
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Table 11. Non-Spurious model 

 

 
 

Table 12. Augmented Dickey Fuller Tests 
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. 

MacKinnon approximate p-value for Z(t) = 0.0005

                                                                              

 Z(t)             -4.258            -3.472            -2.882            -2.572

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =       214

. dfuller avrgdebteq  , lags(1)

. 

MacKinnon approximate p-value for Z(t) = 0.0009

                                                                              

 Z(t)             -4.127            -3.472            -2.882            -2.572

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =       214

. dfuller eps , lags(1)

. 

MacKinnon approximate p-value for Z(t) = 0.0013

                                                                              

 Z(t)             -4.021            -3.472            -2.882            -2.572

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =       214

. dfuller bvps , lags(1)

. 

. 

. 

MacKinnon approximate p-value for Z(t) = 0.0000

                                                                              

 Z(t)             -6.730            -3.472            -2.882            -2.572

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =       214
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