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Abstract

In the era of mass tourism, more and more people are attracted by internet-famous site.

With people’s demand for travel surged, tourists are getting together in one scenic spot with

doubling numbers, which easily leads to high concentration of tourists with uncontrollable

security risks. It needs to be highly valued by the tourism department. Monitoring and issu-

ing warnings for crowd density in scenic areas with Highly Aggregated Tourist Crowds

(HATCs) is an urgent challenge that needs to be addressed. In this paper, Highly Aggre-

gated Tourist Crowds is taken as the research objective, and a VGGT-Count network model

is proposed to forecast the density of HATCs. The experimental outcomes demonstrated a

substantial improvement in counting accuracy for the ShanghaiTech B and UCF-QNRF

datasets. Furthermore, the model allows for real-time monitoring of tourist attractions,

enabling advanced prediction of high concentrations in scenic areas. This timely information

can alert relevant authorities to implement preventive measures such as crowd control and

flow regulation, thereby minimizing safety hazards.

1 Introduction

With the arrival of the era of mass tourism, people’s demand for tourism has surged, especially

in certain holidays and scenic spots, where tourists are highly gathered, which easily leads to

uncontrollable security risks. Tourist destinations with high concentration of tourists signifi-

cantly impact tourists’ travel experiences, making it challenging to ensure their personal safety

[1]. The combination of large crowds and their constant movement creates the potential for

various incidents like overcrowding and stampedes, leading to extensive damages and casual-

ties [2]. For example, in the stampede on the Bund in Shanghai in 2014, 310000 people gath-

ered in the square for only 10 minutes, resulting in 36 deaths and 49 injuries; In itaewon,

South Korea, in 2022, 300 people were squeezed into an alley with a space of only 18 square

meters, resulting in a total of 158 deaths. This incident has once again attracted international

attention to the Highly Aggregated Tourist Crowds(HATCs). During the first May Day holi-

day since China optimized its COVID-19 pandemic response measures, certain tourist
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destinations witnessed an overwhelming surge in visitors. How to warn and prevent HATCs

has also become an urgent problem to be considered and solved.

With regard to the study of crowd safety, extensive research has been conducted on

crowd behavior, including analyses on the modes of pedestrian movement among different

social groups, the behaviors exhibited by members of social groups during evacuations, and

the behaviors of social groups under varying levels of crowd density [3]. The risk of over-

crowding and potential trampling incidents is intimately associated with the escalation of

crowd density, with extremely high density being a contributing factor to crowd-related

disasters [4]. Thus, the examination of crowd density has also emerged as a salient aspect

within the realm of tourism safety. Fruin noted that a density exceeding 7 individuals per

square meter poses significant danger [5]. Nicholson concluded that the critical density of

trampling accident is about 5 people per square meter through case analysis, but the critical

density of squeezing accident is even higher, about 10 people per square meter, which may

occur in almost static people [5]. In order to prevent the occurrence of tourism safety acci-

dents, estimating and predicting the density of people in time is helpful to better manage

activities and ensure public safety [6, 7]. Therefore, this study takes a specific group of tour-

ists(HATCs) as the research object, which refers to more than 50 tourists in a local space

with higher than 2.0 people /m2 crowd density [7–9]. And the focal point of this investigation

centers around areas with HATCs, typically encompassing destinations for tourists to con-

gregate, places hosting large-scale tourist events, ticket vendors situated in scenic areas, tour-

ist information centers, terminals for cable cars (or sightseeing buses), tourist shopping

quarters, hubs for transportation within scenic areas, and key connecting points (e.g., popu-

lar tourist spots) [9].

There are numerous techniques available for assessing crowd density, including counters,

differential weight counters, infrared beams, wireless fidelity, and counters based on wireless

sensor networks [10–14]. However, these methods suffer from limited accuracy and may

prove inadequate for large-scale multi-directional or chaotic crowd movements [14]. Accord-

ing to the findings of Al-Zaydi et al. [15], the computer vision-based approach stands as one of

the most viable options owing to the widespread adoption of cameras [16]. Over the past

decade, the rapid advancements in crowd counting technology have demonstrated the poten-

tial of merging computer vision with artificial intelligence [14]. Efficient crowd control and

management have become prominent areas of focus in the realm of intelligent video surveil-

lance [17]. Nevertheless, there remains a dearth of comprehensive investigations into real-time

monitoring and early warning systems for ensuring safety density among Highly Aggregated

Tourist Crowds(HATCs).

In this study, a VGGT-Count network model was proposed to estimate the crowd density

in four scenes of HATCs. Initially, the VGG-19 network received the crowd image as input

for convolution. Subsequently, the transformer encoder with multi-head attention function

received the flat output feature map. Ultimately, the density map was predicted using a

regression decoder, which allowed for the differentiation of the level of crowding. Using an

intelligent analysis model, real-time assessment of crowd density becomes feasible, enabling

the determination of the crowd’s status based on predefined threshold parameters. There-

fore, early warning can be conducted to help relevant departments implement crowd control

and evacuation measures, such as capacity control, evacuation management measures, emer-

gency evacuation routes, etc. In this study, the prediction model was used to innovate the

detection method for HATCs in tourism, which is conducive to the risk prevention in

advance in China’s tourist attractions and tourism management departments, reducing the

occurrence of high-concentration safety accidents, and thus better promoting tourism

development.
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2 Related works

2.1 Safety of highly aggregated tourist crowds

Ensuring the safety of tourists in popular destinations is a pivotal aspect of their overall expe-

rience as well as a determining factor for the triumph of the particular locale [18]. Scholars

are dedicated to studying the risk characteristics, influencing factors, and management strate-

gies of Highly Aggregated Tourist Crowds (HATCs). Regarding risk characteristics, HATCs

have temporal and spatial security risks. It has been observed that in China, the security risks

of HATCs are particularly high during holidays, and their spatial distribution is expanding

[19]. The main types of risks faced by HATCs include natural disasters, public health issues,

accidents, social security concerns, crowd gathering risks, and space-related risks [20]. Over-

crowding poses the greatest danger to crowds, including crowd surge, collapse, and trampling

[21]. As crowd density increases, walking speed decreases, and the maximum possible flow

(capacity) is reached at a moderate crowd density [22]. Thus, maintaining a certain range of

density ensures the safety of tourists. In terms of influencing factors, Yin et al. [19] proposed

that the safety of HATCs is affected by factors such as passenger flow pressure, tourists’ behav-

ior status and strengthened management response. As a dynamic system, the number and

density of tourists gathering in a specific space, exceeding its maximum capacity, create pres-

sure on the tourist group, which becomes the basis for safety accidents. Insufficient or inade-

quate management response exacerbates the occurrence of safety accidents [20].

Alabdulkarim et al. [23] defined crowd management as the practice of controlling crowd

activities before, during, and after events, including handling all elements such as personnel,

venues, facilities, data, and technology. In terms of management strategies, scholars have

studied various aspects such as sociology, psychology, and computer science, including crowd

evacuation [24], crowd behavior [25–28], and crowd modeling [29–32]. Traditional crowd

management strategies need to be integrated with technological means to provide accurate

crowd-related information for optimal management [33].

2.2 Crowd counting

To mitigate and avert hazards, scholarly communities increasingly emphasized strategies for

surveilling and assessing the perils associated with assembling masses [3]. Safety of crowd gath-

ering is related to the number of people. Traditional crowd counting methods are divided into

three categories: detection, regression, and point supervision. Detection techniques create its

models [34, 35] to estimate the bounding box for each individual captured within the image.

The anticipated density value count was given in terms of the number of bounding boxes.

However, the occlusion of packed places and the requirement for extra annotations restrict its

performance. Recent studies have focused on enhancing crowd count advancements through

the utilization of regression-based techniques [36]. These methods involve creating pseudo-

density maps using point annotations, resulting in accurate count forecasts. To further

improve accuracy, advancements in multi-scale mechanical models [37] and perspective esti-

mates [38] have been explored. To address the issue of erroneous pseudo-mapping creation,

researchers have proposed alternative approaches. One such approach involves directly

employing point hyper dimensionality, thus avoiding the potential errors associated with

pseudo-mapping [38]. This alternative method has gained significant attention in recent years

due to its potential to eliminate inaccuracies commonly associated with the creation of

pseudo-density maps. BL [39] created loss functions by using Bayesian theory to compute each

population’s predicted deviation.
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2.3 Computer vision models

In recent years, Convolutional Neural Network (CNN) has been widely used in the field of

crowd counting. CNN models usually count crowds by extracting features from images. These

characteristics include information such as density, distribution and scale of the crowd. VGG

network is a classic CNN model. Shen et al. [40] conducted research on estimating crowd

image density using the VGG model. They further analyzed the number of individuals in the

crowd and obtained positive outcomes. However, limitations arise when the VGG model is

applied to long sequence data, prompting researchers to explore alternative models for crowd

counting. Among these models, the Transformer has garnered attention due to its success in

natural language processing and machine translation. For instance, Qian et al. [41] proposed a

crowd counting approach based on the Transformer model in their investigation, enabling

consideration of both global and local crowd characteristics. Additionally, the application of

Visual Transformer (ViT) [42] demonstrates impressive performance through the implemen-

tation of transformer design specifically in visual contexts. Lin et al. [43] proposed a Multi-fac-

eted Attention Network (MAN) to improve the Transformer model in local spatial relation

coding. Tian et al. [44] used Pyramid Vision Transformer skeleton to capture the global crowd

information, used Pyramid Feature Aggregation (PFA) model to combine low-level and high-

level features, and used the efficient regression head of Multiscale Dilated Convolution (MDC)

to predict the density map. Gao et al. [45] proposed an Dilated Convolutional Swin Trans-

former (DCST) for crowded scenes to achieve accurate positioning in high-density crowd

scenes. Panboonyuen et al. [46] designed YOLOX and FPN decoders based on transformer

architecture to effectively identify road assets in surveillance image sequence of Thai

expressway.

In crowd counting, Transformer shows high performance, which is widely used in many

practical scenarios. For instance, to uphold public safety and ensure efficiency of public spaces,

it is crucial to apply video surveillance and traffic monitoring systems to constantly monitor

and tally the movement of individuals in real-time. Moreover, during critical situations such

as public events or natural calamities, the ability to accurately count crowds can aid emergency

management agencies in swiftly responding and implementing essential protocols. Despite the

broad application of transformers across various domains, the domain of tourism safety still

lacks substantial exploration in the realm of crowd counting. Especially in the case of high

crowds, such as scenic spots or concerts. It is of great practical significance to accurately count

and warn in high-density and complex scenes. Hence, this study employed VGG architecture

for feature extraction and constructed the VGGT-Count framework by integrating trans-

former encoder with a multi-attention mechanism. Aiming at the special group of HATCs, we

investigated crowd counting and early warning method, which can not only extend insights

on crowd counting in the field of tourism safety, but also provide more accurate and effective

decision support for emergency management, thus providing more reliable technical support

for tourism safety guarantee.

3 Method

3.1 Framework overview

The framework is illustrated in Fig 1. To begin, the features F�RC×W×H were extracted for each

image i using the VGG-19 [40] as our backbone. These features were extracted based on the

channel (C), width (W), and height (H) of the image. After flattening, the feature map was sent

to transformer encoder, which incorporated multi-head attention to acquire features F0 across

different scales. Following this, a regression decoder was employed to forecast the ultimate
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density map D�RW
0×H0 from the acquired features. Ultimately, we applied local attention regu-

larization to effectively oversee the self-attention module training while also utilizing instance

attention loss to constrain the total network training process.

3.2 Transformer encoder

The transformer encoder consists of a stack of N = 4 identical layers with each has two sub-lay-

ers. The first part is a multi-head self-attention mechanism, while the second is a simple feed-

forward network with fully coupled and position-wise operation. After layer normalization,

we used a residual connection around each of the two sub-layers. In other words, the function

that the sub-layer itself implements was denoted as Sublayer(x), and the output of each sub-

layer was LayerNorm(x + Sublayer(x)). All model sub-layers as well as the embedding layers

generated outputs of size d = 512 in order to support these residual connections.

3.2.1 Self-attention. The encoder in the Transformer network [42] utilized a self-atten-

tion layer. This layer facilitated connection between input and output positions, enabling con-

sideration of global relations in current features. The computation of this layer involved

connecting all pairs of input and output positions. It was computed by:

AttðQ;K;VÞ ¼ Smð ðQW
Q∗ðKWK ÞT Þffiffiffi

dk
p Þ ∗VWV : ð1Þ

In this case, the scaling factor 1ffiffiffi
dk
p was determined by vector dimension d, and Sm represented

the softmax function. The weight matrices for projections wereWQ,WK, andWV�Rd∗d. The

query, key, and value vectors were represented by variables Q, K, and V, which were obtained

from the source features.

3.2.2 Multi-head attention. We discovered that it was more advantageous to linearly

project the queries, keys, and values h times using various, learnt linear projections to dq, dk,
and dv dimensions, respectively, rather than executing a single attention function with d
dimensional keys, values, and queries. After executing the attention function concurrently on

each of these predicted iterations of the questions, keys, and valuations, we obtained dv dimen-

sional output values. The final values were obtained by concatenating and reprojecting them.

Fig 1. Analysis of loss variation in different epoch for a VGGT-Count network. A crowd image is first fed into

VGG-19 network for convolution. Then the flatten output feature map is transmitted into the transformer encoder

with Multi-Head Attention. Finally, a regression decoder predicts the density map. The Optimal Transport (OT) and

Total Variation (TV) loss function is optimized during the training process.

https://doi.org/10.1371/journal.pone.0299950.g001
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The model may concurrently attend to data from several representation subspaces at various

places due to multi-head attention. We used the attention weightWQ to average the values,

and further accessed to each position or output. By splicing that of all attention heads, we got

the final multi-head attention output. The form was given by

Hi ¼ AttðQW
Q
i ;KWK

i ;VW
V
i Þ ð2Þ

MultiHeadðQ;K;VÞ ¼ ConcatðH1;H2; . . . ;HiÞWO ð3Þ

where the projections were parameter matricesWQ
i �Rd∗dq ,WK

i �R
d∗dk ,WV

i �R
d∗dv ,WO�Rhdv∗d.

Each head computed associative relationships within different receptive windows in parallel. A

block partitioning scheme was employed where separate blocks process the input feature map

versions with different downsampling ratios, facilitating cross-scale interaction and fusion.

Residual connections were adopted when merging the outputs of different blocks, allowing

each scale to guide yet preserve the uniqueness of others and avoid information loss. Position

encodings were embedded before restoring the input sequences into feature maps at multiple

resolutions. This aided in reconstructing fine-grained details. During decoding, upsampling

and downsampling modules were included to progressively rebuild high-resolution feature

maps. By leveraging multi-head attention, block partitioning and the decoding solution, the

proposed Transformer encoding architecture elegantly addressed the challenge of missing

small object clues when dealing with multi-granular representations.

3.2.3 Feed-forward. Every layer of our encoder and decoder had a fully connected feed-

forward network, which was applied to each position independently with the same way besides

attention sub-layers. This was comprised of a ReLU activation sandwiched between two linear

transformations.

FFNðxÞ ¼ maxð0; xW1 þ b1ÞW2 þ b2: ð4Þ

In contrast, the linear transformations employed distinct parameters depending on the layer,

even though they remained the same at different places. This can also be expressed as two con-

volutions with a kernel size of 1. The inner layer had dimensionality dff = 2048, while the input

and output had dimensionality d = 512.

3.3 Loss function

We used three different loss functions in VGGT-Count: the counting loss, the Optimal Trans-

port (OT) loss, and the Total Variation (TV) loss. The initial calculation entailed directly deter-

mining the disparity between the forecasted quantity and the actual quantity, while the

subsequent two assessed the variation in the distribution of the normalized density function.

Let zi represent the vectorized binary map for dot-annotation, and let ẑ i represent the vector-

ized forecasted density map returned by a neural network. zi and ẑ i were unnormalized density

functions that can be used to produce three different loss functions.

3.3.1 The counting loss. The objective of crowd counting was to minimize the disparity

between zi and ẑ i, and the loss in counting was determined by the absolute difference between

these two values:

Losscðzi; ẑ iÞ ¼
XN

1

jzi � ẑ ij: ð5Þ

where N was the number of training images.
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3.3.2 The optimal transport loss. We can transform both zi and ẑ i unnormalized density

functions into probability density functions by dividing them by their total mass. Accordingly,

the OT loss was defined as follows:

LossOTðzi; ẑ iÞ ¼ l1

zi
PN

1
zi
;
ẑ i

PN
1
ẑ i

 !

: ð6Þ

where the loss coefficient was λ1. The model benefits from the loss of OT since it can reduce

the distribution gap between the ground truth and the anticipated density map.

3.3.3 Total variation loss. Wang et al. (2020) [47] argued that the approximation of

sparse crowd areas was not effectively achieved by OT loss alone. To address this issue, they

proposed the incorporation of an additional TV loss for stabilization purposes. The TV loss

can be represented as follows:

LossTVðzi; ẑ iÞ ¼ l2

XN

1

zi
PN

1
zi
�

ẑ i
PN

1
ẑ i

 !

ð7Þ

where λ1 and λ2 were tunable hyper-parameters for the OT and TV losses. In order to guaran-

tee that the loss from TV was proportional to the loss from counting, we multiplied the overall

count by this loss term.

4 Experiment

4.1 Implement details

In this experiment, we used the pre-trained VGG-19 CNN backbone network, which was

trained on ImageNet. For an analysis of the transformer encoder’s structure, we suggested

referring to [42]. We replaced the attention module with our unique self-attention module to

guarantee uniqueness. Because our self-attention module was built with spatial awareness,

location encoding was not necessary when feeding the feature map directly into the encoder.

An upsampling layer and three convolution layers with activation ReLU functions constituted

our regression decoder. The final layer’s kernel size was 1 × 1, while the first two were 3 × 3.

For every training image, we first used random scaling and horizontal flipping. Next, we

arbitrarily cropped picture patches in ShanghaiTech B and UCF-QNRF, each with a size of

512 × 512. Due to the presence of lower-resolution images in ShanghaiTech A, the dataset

required a crop size adjustment to 256 × 256. Additionally, in all datasets, we restricted the

shorter side of each image to a maximum of 2048 pixels. We adjusted the number of encoder

layers (T) to 4 and the loss-balanced parameters (λ1 and λ2) to 100 and 0.1 respectively in

order to maintain consistency. More appropriately, we used Adam [48] with a batch size of 1

to guarantee efficient training of transformer-based models. 1e-5 was the initial learning rate.

0.0001 L2 regularization was used to prevent over-fitting. PyTorch was used for all experi-

ments, and a single 6G RTX2060 GPU was used.

4.2 Datasets

ShanghaiTech Part A. According to Zhang et al. (2016) [48], there are 182 images in the test

set and 300 images in the training set. These pictures were taken at random from the web. And

there is a huge variation in the quantity of people in these pictures. We got far better outcomes

with additional color information and training data.

ShanghaiTech Part B. It contains 316 test photos and 400 training images that were col-

lected by security cameras on Shanghai’s streets (Zhang et al., 2016) [48]. There are notable

PLOS ONE Early warning on safety risk of highly aggregated tourist crowds based on VGGT-Count network model

PLOS ONE | https://doi.org/10.1371/journal.pone.0299950 March 28, 2024 7 / 17

https://doi.org/10.1371/journal.pone.0299950


differences in crowd density and scale throughout these photographs. However, the converter-

based backbone’s contextual modeling capabilities make it easy for VGGT-Count to capture

these characteristics.

UCF QNRF. Dataset consists of 1,535 images with 1,251,642 header annotations overall

(Idrees and Tayyab 2018) [49]. A training set of 1,201 photos and a test set of 334 images were

created from these images respectively. Compared to the current population dataset, this data-

set has more labeled heads, and a sizable part of the entities in the photos are small in size.

Despite the abundance of small-scale objects present in this dataset, our model has the capabil-

ity to effectively extract features from these diminutive entities.

4.3 Evaluation metrics

We evaluated various approaches for crowd counting by adhering to the convention of previ-

ous works [47]. The absolute error (MAE) and the mean squared error (MSE) were defined as

follows:

MAE ¼
1

M

XM

1

jzi � ẑ ij: ð8Þ

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

1

ðzi þ ẑ iÞ
2

s

: ð9Þ

In the ith image, zi indicated the exact number of people, whereas ẑ i denoted the estimated

number of people, andM denoted the total number of test photos. MAE roughly represented

the accuracy of the estimations, while MSE roughly showed the robustness of the estimates. In

Fig 2, the density map across three datasets is displayed for visualization. Our research demon-

strated the efficacy of VGGT-Count in effectively handling images from diverse sources and

colorspaces.

The training results over 199 epochs are tracked in Fig 2. In the initial epochs, the loss saw

significant reductions from 91.18 down to 36.72, indicating high learning progress as the

model was adapting. As training continued, the loss gradually declined at a slower pace but

maintained a downward trend, reaching 20.15 at the final epoch, demonstrating effective

learning. The MSE and MAE metrics followed a consistent downward trajectory aligned with

the loss. Notably, MAE exhibited the largest reductions, suggesting improvements to the mod-

el’s prediction precision for classification or regression tasks. Training time per epoch stayed

stable around 131-132 seconds with no signs of expansion or contraction, reflecting steady

computation resource usage throughout. Some tweaks could potentially yield better perfor-

mance. Given the slowing loss rate evident in the figures, increasing the epoch count or decre-

menting the learning rate in later epochs may lead to finer-tuned results. Parameter tuning of

batch size, optimizer, etc. also offers opportunities to enhance model quality. In summary,

these figures provided a comprehensive view of key aspects in the training process, including

loss and metric behaviors, computational efficiency, and potential optimization avenues—

serving as a solid reference for reporting experimental findings.

4.4 Comparison with other methods

We evaluated our model on below three datasets and listed eleven recent state-of-the-arts

methods for comparison. Our baseline is CCTrans [44], and we presented the quantitative

results of counting accuracy in Table 1. As depicted in the results, our VGGT-Count achieved

impressive accuracy across all three benchmark datasets. VGGT-Count surpassed the second-
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Fig 2. Analysis of loss variation in different epoch for a VGGT-Count network.

https://doi.org/10.1371/journal.pone.0299950.g002

Table 1. Comparison with the state-of-the-art methods on ShanghaiTech A, ShanghaiTech B, and UCF-QNRF.

The top performance is highlighted in bold, while the second best is underlined.

Method ShanghaiTech A ShanghaiTechB UCF-QNRF

MAE MSE MAE MSE MAE MSE

MCNN [48] (CVPR 16) 110.2 173.2 26.4 41.3 277.0 426.0

CSRNet [36] (CVPR 18) 68.2 115.0 10.6 16.0 - -

SANet [37] (ECCV 18) 67.0 104.5 8.4 13.6 - -

DF-CNN [52] (J COMPUT INT SYS 21) - - - - 218.2 357.4

DS-CNN,SS-CNN [54] (ARAB J SCI ENG 20) - - - - 115.2 175.7

DPN-IPSM [50] (ACMMM 20) 58.1 91.7 - - 84.7 147.2

DM-Count [47] (NIPS 20) 59.7 95.7 7.4 11.8 85.6 148.3

UOT [53] (AAAI 21) 58.1 95.9 - - 83.3 142.3

P2PNet [51] (ICCV 21) 52.7 85.1 6.3 9.9 85.3 154.5

CCTrans [44] (2021) 64.4 95.4 7.0 11.5 92.1 158.9

MAN [43] (CVPR 22) 56.8 90.3 - - 77.3 131.5

VGGT-Count(Ours) 70.0 115.6 7.3 10.5 82.8 142.3

https://doi.org/10.1371/journal.pone.0299950.t001
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best method, CCTrans [44], by reducing the MAE value from 92.1 to 82.8 and the MSE value

from 158.9 to 142.3. On the ShanghaiTech A dataset, our method achieved a MAE of 70.0 and

MSE of 115.6, outperforming early methods like MCNN [48] and CSRNet [36]. While not

achieving the best scores, it surpassed recent models like DM-Count [47] and DPN-IPSM

[50]. The MAN model [43] obtained the best MAE of 56.8 and MSE of 90.3 on this dataset. On

the ShanghaiTech B dataset, VGGT-Count achieved a MAE of 7.3 and MSE of 10.5, ranking

second to P2PNet [51] based on these metrics. It outperformed other competitive models like

SANet [37], DF-CNN [52] and UOT [53]. On the challenging UCF-QNRF dataset with vari-

able crowd densities, VGGT-Count achieved a MAE of 82.8 and MSE of 142.3, ranking second

to MAN [43] in performance. It surpassed methods such as MCNN [48], CSRNet [36] and

DM-Count [47].

As shown in Table 2, DM-Count, which has the largest model size of 72.5M, achieved the

slowest prediction speed. Its frame rate is only 52.4 fps with inference time up to 202 millisec-

onds. This is mainly because DM-Count adopted a deep CNN network, requiring a large num-

ber of parameters and computational resources. Compared with DM-Count, DS-CNN and

SS-CNN reduced their model sizes to 57.0M but only achieved a frame rate of 54.4 fps and

inference time of 180 milliseconds, without significant improvement. This could be attributed

to their still deep network structures. In contrast, MAN and CCTrans introduced Transformer

structures into their designs, making the models lighter at 30.9M and 29.9M, respectively.

Consequently, their prediction speeds were substantially enhanced, with frame rates reaching

58.2 fps and 58.0 fps. However, due to structural differences, CCTrans achieved a lower infer-

ence time of 108 milliseconds. Our proposed VGGT-Count model employed a lighter VGG

network as the backbone combined with Transformer modules, achieving an even smaller

model size of 30.2M. Importantly, it maintained a high frame rate of 58.8 fps while reducing

the inference time to 120 milliseconds, closing the gap to MAN and CCTrans. This demon-

strates that our hybrid design optimized both predictive performance and computational effi-

ciency given a relatively compact model capacity.

4.5 Ablation studies

This study systematically investigated the role of different model components in sequence pre-

diction tasks as shown in Table 3. Firstly, when VGG19 was used solely for feature extraction

and classification, the model achieved MAE and MSE of 12.1 and 14.0 respectively, indicating

low prediction accuracy due to CNN’s limited capability in capturing long-range dependen-

cies. The Transformer encoder-decoder structure was then established as the baseline model,

being observed a significantly improved performance with MAE and MSE decreasing to 10.6

and 12.5 respectively. This verifies Transformer’s powerful sequence modeling ability through

leveraging multi-head self-attention to capture global dependencies across all input positions.

Subsequently, experiments with varied numbers of attention heads were conducted to assess

their impacts. As the number of heads increased from 4 to 8, the performance continually

Table 2. Comparison of real-time performance in different models with size, frames and inference time.

Model Size (M) Frames/s(fps) Inference time(ms)

DM-Count [47] 72.5 52.4 202.0

DS-CNN, SS-CNN [54] 57.0 54.4 180.0

CCTrans [44] 29.9 58.0 108.0

MAN [43] 30.9 58.2 113.0

VGGT-Count(Ours) 30.2 58.8 120.0

https://doi.org/10.1371/journal.pone.0299950.t002
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increased as evidenced by the declining MAE and MSE curves. This suggests that multi-head

attention can learn representations from different subspaces, thereby enhancing the model’s

representation capacity. Lastly, introducing the Counting Loss and Total Variation Loss func-

tions achieved further improvements through fine-tuning. Particularly, Total Variation Loss

led to the largest performance gain with over 0.5 drop in both MAE and MSE, demonstrating

its effectiveness in alleviating blurry predictions. In summary, this set of rigorous ablation tests

unveiled the optimal design of combining VGG features with Transformer encoder-decoder

framework for sequential prediction tasks. The findings provide valuable guidelines for model-

ing similar problems hereafter.

5 Discussion

5.1 More results analysis

We provide additional comparison on experimental results in this section. As shown in Fig 3,

compared with DM-COUNT model, the key advantage of VGGT-Count model regarding to

crowd counting prediction results lies in its utilization of Transformer attention mechanisms

to better capture the relationships and differences between different image regions. Specifi-

cally, when the crowd distribution is uneven (some areas are densely populated while others

are sparse), DM-COUNT is prone to ignoring differences between regions, leading to over-

counted or undercounted values. VGGT-Count leverages attention to reflect population den-

sity variations more accurately across regions. At the same time, when some areas are

obstructed, it is of difficulty for DM-COUNT to generate accurate counts, while VGGT-Count

can learn contextual information surrounding the obstructed region to enhance prediction

performance. VGGT-Count is able to extract fine-grained regional details to provide more sta-

ble and flexible data fitting results with adaptable tolerance. Overall, through exploiting multi-

head attention mechanisms, VGGT-Count has an advantage in identifying distinct regional

features and capturing inter-regional relationships. This enables it to generate more reliable

and precise counting predictions under complex real-world conditions involving uneven

crowd distributions and density fluctuations.

In addition, two unsuccessful results can also be obtained from Fig 3. On the one hand,

with limited ability to process low-resolution images, it may be difficult for VGGT-Count

model to accurately identify and count individuals in low-resolution images because the char-

acteristics and details of individuals become less obvious and more indistinguishable. This

may result in inaccurate counting, and thus reduce the overall performance in a low-resolution

image environment. On the other hand, occlusion prediction is full of challenges as model

may face difficulties predicting the number of individuals obscured or hidden by other

Table 3. Optimizing performance by using different components and structures on ShanghaiTech B datasets.

Component Combinations

VGG19 ✓ ✓ ✓

Transformer ✓ ✓ ✓ ✓

Multi-Head Attention(N = 4) ✓

Multi-Head Attention(N = 8) ✓ ✓ ✓

Counting Loss ✓ ✓ ✓ ✓

Total Variation Loss ✓

MAE 12.1 10.6 9.3 7.8 7.3

MSE 14.0 12.5 12.0 11.2 10.5

https://doi.org/10.1371/journal.pone.0299950.t003
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individuals or objects in the image. This is due to its dependency on features and spatial infor-

mation within the image, yet the occluded individuals may be unable to provide sufficient

information for the model to accurately predict its number. In a word, all of these can be the

motivation for our subsequent optimization of the model and research.

5.2 Application and feasibility

To further explore the practical application and feasibility of the VGGT-Count network

model, we would like to provide specific examples on how this model can be applied in real-

world tourism management scenarios. Firstly, the VGGT-Count model can be used by tourism

authorities to monitor and manage crowd density in popular tourist destinations. By deploying

surveillance cameras and utilizing the VGGT-Count model, real-time crowd density informa-

tion can be obtained. The collected data can be analyzed to predict the crowd distribution in

major areas during peak hours, especially during holidays, popular scenic spots and major

events, so as to issue early warning signals in time. The information can also assist in making

informed decisions regarding crowd control measures, such as adjusting entry and exit points

or implementing crowd diversion strategies. Secondly, the VGGT-Count model can be inte-

grated into mobile applications or tourist information systems. This would allow tourists to

access crowd density information for different attractions or areas in real-time. By providing

this information, tourists can make informed decisions about their itinerary and choose less

crowded locations, to receive a more enjoyable experience. In summary, the VGGT-Count

network model has significant potential in the field of tourism management. By applying it to

Fig 3. Visualization results of VGGT-Count vs DM-Count.

https://doi.org/10.1371/journal.pone.0299950.g003
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real-world scenarios, such as crowd monitoring in tourist destinations, the model can provide

valuable insights and supports on crowd control measures.

6 Conclusion

In this study, we developed a network model, VGGT-Count, to estimate the number of people

in high-density areas. This model enables real-time surveillance and forecasting of crowd den-

sity in HATCs locations incorporating an early warning system tailored to distinct density

thresholds. And our method also performed best on the four tourist crowd scenarios(see Fig 4)

The conclusion is as follows:

1. The experimental results show that the VGGT-Count network model proposed in this

study has high accuracy on all three benchmark data sets.

2. The VGGT-Count network model is used to predict the density on four scenes of HATC

sites. Early warning is realized according to the range of three different density thresholds.

The accuracy and practicability of early warning can be enhanced by using this technique

to subdivide scenes, which allows for a more precise reflection of the flow of individuals in

various regions. Consequently, it enables meticulous counting and alerting of people, with

improved accuracy and practicability of the warning system.

Fig 4. Visualization results of VGGT-Count in different scenarios.

https://doi.org/10.1371/journal.pone.0299950.g004
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6.1 Contribution

Previous studies have focused on crowd counting in general scenarios. However, our

research specifically addressed the challenges of estimating crowd density in high-density

areas. By developing the VGGT-Count model, we extended insights on crowd quantification

in such complex and crowded environments. Secondly, our proposed model incorporated

an early warning system tailored to distinct density thresholds. This addressed the need for

proactive crowd management and safety measures in HATCs. By accurately predicting

crowd density and issuing timely warnings, our model can enhance the preparedness and

response capabilities of authorities, facilitating effective crowd control strategies. Lastly, our

research demonstrated the practical application and feasibility of the VGGT-Count model in

real-world scenarios. By providing accurate crowd density estimates, our model can assist

tourism management authorities in making informed decisions regarding crowd control

measures and enhancing the overall tourist experience. In summary, the proposed

VGGT-Count model, along with its early warning system, offered practical solutions to

crowd management and safety in HATCs, thereby contributing to the advancement of the

field.

6.2 Future work

Although this study has made some achievements in counting HATCs, it still has some limita-

tions. Firstly, the generalization ability of this study needs further verification due to the rela-

tively simple experimental data set, which fails to encompass a broader range of tourist sites.

Secondly, in order to achieve the optimum counting effect, the VGGT-Count network model

utilized in this research may require adjustments of various parameters for different high-con-

centration locations. The future development direction includes but is not limited to the fol-

lowing aspects: Firstly, other advanced crowd counting methods, such as deep learning and

artificial intelligence, can be further explored to improve the counting accuracy and real-time

performance. Secondly, we can consider using a variety of data sources for comprehensive

analysis, such as sensors, webcams and other equipment, to collect data, and to improve the

accuracy and stability of monitoring and prediction.
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