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Abstract

Near-term forecasting of infectious disease incidence and consequent demand for acute

healthcare services can support capacity planning and public health responses. Despite

well-developed scenario modelling to support the Covid-19 response, Aotearoa New Zea-

land lacks advanced infectious disease forecasting capacity. We develop a model using

Aotearoa New Zealand’s unique Covid-19 data streams to predict reported Covid-19 cases,

hospital admissions and hospital occupancy. The method combines a semi-mechanistic

model for disease transmission to predict cases with Gaussian process regression models

to predict the fraction of reported cases that will require hospital treatment. We evaluate

forecast performance against out-of-sample data over the period from 2 October 2022 to 23

July 2023. Our results show that forecast performance is reasonably good over a 1-3 week

time horizon, although generally deteriorates as the time horizon is lengthened. The model

has been operationalised to provide weekly national and regional forecasts in real-time.

This study is an important step towards development of more sophisticated situational

awareness and infectious disease forecasting tools in Aotearoa New Zealand.

Author summary

The emergency phase of the Covid-19 pandemic has ended, but Covid-19 continues to

put significant additional load on stretched healthcare systems. Forecasting the number of

hospital cases caused an infectious disease like Covid-19 over the next few weeks can help

with effective planning and response. The ability to forecast reliably requires timely, high-

quality data and accurate mathematical models. We have developed a model for forecast-

ing the number of Covid-19 cases and hospitalisations in Aotearoa New Zealand. The

model works in two stages: firstly predicting the number of new cases and secondly esti-

mating the proportion of those cases that will need hospital treatment. The model pro-

duces a range of likely values, which is important because is impossible to predict with

100% accuracy. We show that the model does a reasonably good job of predicting hospita-

lisations up to 3 weeks ahead. The model has been used by public health agencies in

Aotearoa New Zealand to help with healthcare capacity planning.
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Introduction

New Zealand used a combination of border controls and public health and social measures to

suppress or eliminate transmission of SARS-CoV-2 in 2020 and 2021. By the end of 2021, high

vaccine coverage had been achieved, with around 90% of those aged over 12 years having had at

least two doses of the Pfizer/BioNTech BNT162b2 vaccine. Up to this time, there had been only

around 3 confirmed cases of Covid-19 per 1,000 people and 0.01 Covid-19 deaths per 1,000

people. In February 2022, the B.1.1.529 (Omicron) variant began to spread in the community

and subsequently caused a series of large waves dominated by a series of subvariants [1, 2].

A range of epidemiological models have been used to provide situational awareness and

policy advice to inform the New Zealand Government’s pandemic response. These have pri-

marily consisted of increasingly complex mechanistic models of transmission dynamics,

including factors such as age structure, vaccination status [3], social contact networks [4], wan-

ing immunity [5], reinfection [6], dynamic behavioural change, new variants [2]. This level of

detail requires making relatively strong assumptions on the mechanisms underlying observed

dynamics and is hence most appropriate for scenario analysis, which does not aim to make

accurate long-term predictions but rather to deliver insights into key mechanisms affecting

epidemic dynamics and a systematic approach to exploring the likely consequences of alterna-

tive strategies or policy decisions.

Near-term forecasting is another use of epidemiological modelling, distinct from medium-

term or long-term scenario analysis. Here the focus is on accurately predicting epidemic

dynamics and consequent demand for acute healthcare services over a time horizon of a few

weeks [7]. Assuming no dramatic changes in the mechanisms driving observed epidemic

dynamics over the short term, higher-level models can be used, which summarise the com-

bined effects of underlying transmission mechanisms in terms of coarse-grained parameters

that can be empirically estimated. This class of model includes so-called ‘semi-mechanistic’

models, typically based on the renewal equation [8–11]. These models require fewer detailed

assumptions and are less sensitive to parameter uncertainty and model mis-specification. On

the other hand, they aim to maintain sufficient mechanism and flexibility to respond realisti-

cally to changing trends in epidemiological data and be fitted, evaluated, interpreted and

updated in real-time. They also account for known lags affecting epidemiological data streams,

such as delays from infection to symptom onset, testing, hospital admission or death [12, 13].

Some approaches to epidemic forecasting incorporate more mechanistic assumptions

about transmission based on the standard susceptible-exposed-infectious-recovered (SEIR)

epidemiological modelling framework [14, 15]. This allows the effect of immunity in reducing

transmission rates to be explicitly accounted for, which may improve forecast performance.

However, the downside of this is that it typically requires additional data or assumptions

about, for example, case ascertainment rates, effectiveness of vaccine-derived and infection-

derived immunity, and waning immunity [16, 17]. An advantage of a simpler approach is that

the combined effect of immunity and other factors affecting the time-varying reproduction

number, such as contact patterns and population heterogeneity, is inferred empirically from

the data in real-time.

Some forecasting frameworks incorporate independent data, for example from behavioural

surveys, about changes in the average number of contacts per person [17–19] or contact rates

between different age groups [11, 20]. Such data can allow the effects of potential behavioural

change and age structure to be built into forecasts and their associated uncertainty. However,

this type of data is not available in Aotearoa New Zealand.

Aotearoa New Zealand currently lacks dedicated forecasting tools for Covid-19 and other

infectious diseases [21]. In this study, we present a method for forecasting Covid-19 cases,

PLOS COMPUTATIONAL BIOLOGY Near-term forecasting of Covid-19 cases and hospitalisations in Aotearoa New Zealand

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011752 January 8, 2024 2 / 15

on Covid-19 hospital occupancy are publicly

available at https://github.com/minhealthnz/nz-

covid-data/tree/main/cases.

Funding: This research was funded by a grant from

the New Zealand Department of the Prime Minister

and Cabinet and Ministry of Health to MJP, LW and

OJM. The funders played no role in the

methodology design, data analysis, preparation of

the manuscript or decision to publish. The Ministry

of Health was responsible for collecting and

supplying the data analysed in the study. URL of

funders’ websites: https://www.dpmc.govt.nz/

https://www.health.govt.nz/.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011752
https://github.com/minhealthnz/nz-covid-data/tree/main/cases
https://github.com/minhealthnz/nz-covid-data/tree/main/cases
https://www.dpmc.govt.nz/
https://www.health.govt.nz/


hospital admissions and hospital occupancy in Aotearoa New Zealand. The model has been

developed specifically for New Zealand’s Covid-19 surveillance systems and data collection

and reporting standards. The method is being used operationally by Te Whatu Ora (Health

New Zealand) with support from Precision Driven Health to provide intelligence to health

planners around the country. The model is a semi-mechanistic model for disease transmission

based on the renewal equation [8, 10]. We use a Bayesian particle filter approach [12] to esti-

mate the time-varying reproduction number and forecast the number of reported cases. This

is coupled with Gaussian process regression models for the distribution of cases across age

groups and the age-specific case hospitalisation ratio to forecast hospital admissions. Hospital

occupancy is estimated using empirical data on age-specific length of hospital stay. We evalu-

ate model performance by comparing forecasts generated from data supplied on a specific date

to subsequently reported data.

Methods

Data

We used Ministry of Health data on reported cases of Covid-19 in New Zealand between 25

January 2022 and 24 July 2023. The dataset contained unit record data on age, report date and,

for a subset of cases, self-reported symptom onset date. For hospitalised cases, data was avail-

able on the admission date and the number of days for which the patient was receiving hospital

treatment for Covid-19, referred to as length-of-stay. This dataset was generated by the Minis-

try of Health by linking self-reported positive test results (mostly from self-administered rapid

antigen tests) with hospital data from the National Minimum Dataset (NMDS) and Inpatient

Admissions (IP) database based on national health index (NHI) number. In this dataset, hospi-

tal admissions are categorised by the Ministry of Health as either Covid-19-related or inciden-

tal (i.e. those who had tested positive but were not being treated for Covid-19), using clinical

codes (for NMDS) or health specialty (for IP). There are significant time lags in reporting this

information and as a result the number of Covid-19-related admissions recorded on a given

day can vary from one update to another, and is typically incomplete for the most recent 1–2

weeks of data (see Fig A in S1 Text).

We also accessed Ministry of Health data on the total number of confirmed Covid-19

patients occupying an admitted bed (hospital occupancy). These data are from the Daily Hos-

pital Capacity survey, which provides a count of the total number of Covid-19 patients in hos-

pital each day and as such does not suffer from any significant reporting lag or revisions to

historical data. These data are publicly available at https://github.com/minhealthnz/nz-covid-

data/tree/main/cases and updated daily.

From the unit record data, we calculated the number of daily reported cases and number of

new daily hospital admissions in 10-year age bands (Fig A in S1 Text). Hospitalisations that

were classified as “not Covid-19-related” were excluded. We estimated the number of daily dis-

charges from hospital by assigning each hospitalised case a pseudo-discharge date using their

admission date and Covid-19-related length-of-stay. This is an approximation because some

patients may have been admitted for non-Covid-19-related treatment and were only treated

for Covid-19 later during they stay. However, we only use discharge data for visual comparison

of model outputs, not for model fitting or validation.

We calculated the onset-to-report distribution for cases that were reported in the 70 days

prior to the date the data was supplied and had an onset date recorded (Fig B in S1 Text).

Cases with report date more than 7 days prior or more than 14 days after onset date (< 0.2%

of the cases that had onset date recorded) were excluded.
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We calculated the Covid-19-related length-of-stay distribution in each 10-year age band

and the report-to-admission distribution for cases reported between 56 and 126 days prior to

the date the data was supplied (Fig B in S1 Text). We did not include cases reported less than

56 days prior to this date in these calculations because of lags in recording hospitalisation

data and right-censoring of patients who had not yet been discharged. Cases with Covid-

19-related length-of-stay longer than 56 days (approximately 0.5% of admissions) were

excluded. Cases with admission date more than 7 days prior to report date were excluded.

This was a significant proportion (approximately 7%) of admissions but it is likely that many

of these were initially admitted for non-Covid-related treatment and were only later treated

for Covid.

Model

We used a model consisting of two components. The first was a semi-mechanistic disease

transmission model that was fitted to data on reported daily cases. We used this to produce

simulated time series for cases, which can be projected forwards in time. The second compo-

nent was a hospitalisation model that we used to estimate the time-varying, age-specific case

hospitalisation ratio (CHR). We then applied this to the simulated time series for cases to pro-

duce simulated time series for admissions and hospital occupancy.

Reported cases represent only a fraction of all infections due to the fact that the majority of

cases are self-reported and intensive case finding and contact tracing programmes had been

wound down by the time of the study period in 2022–23. It is likely that high rates of mild and

asymptomatic infection and high levels of population immunity during the study period fur-

ther reduced case ascertainment. We did not attempt to estimate the total number of infec-

tions, which is difficult to do without serological data or regular testing of a representative

cohort [22, 23]. Instead, we estimated the case hospitalisation ratio directly based on the pro-

portion of cases in each age group that were hospitalised. This variable will be influenced both

by disease severity and by case ascertainment rates. However, the key output of interest (near-

term forecast hospitalisations) is insensitive to these factors once the number of cases and the

case hospitalisation ratio are known.

Transmission submodel. We modelled the number of cases It infected on day t using a

semi-mechanistic framework based on the renewal equation [8]

It � Poisson Rt

Xn

s¼1

It� sus

 !

; ð1Þ

where Rt is the time-varying instantaneous reproduction number and ut is the probability

mass function for the generation time distribution, assumed to be a discretised Weibull distri-

bution with mean 3.3 days and standard deviation 1.3 days [24, 25]. The reproduction number

was modelled as a Gaussian random walk

Rt � N ðRt� 1; sRÞ: ð2Þ

Reporting lags were accounted for via a distribution vt of times from infection date to report

date. This was the convolution of the incubation period distribution, assumed to be a discre-

tised Weibull distribution with mean 3.2 days and standard deviation 2.2 days [26–28], and

the empirical onset-to-report distribution (see Data section above). The expected number of
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cases reported on day t, in the absence of any day-of-the-week effect, was therefore

Zt ¼
Xn

s¼1

It� svs: ð3Þ

We modelled the number of observed cases on day t as

Ct � NegBin ðm ¼ oi½t�Zt; kcÞ; ð4Þ

where ωi[t] is an empirical day-of-the-week effect (i = t mod 7) and kc is a dispersion factor.

The day-of-the week effect was estimated directly from the data as the relative difference

between daily reported cases Ĉt and the seven-day rolling average over a 15 week period:

oi ¼
1

N

X

t mod 7¼i

Ĉt
Ptþ3

s¼t� 3
Ĉs

; ð5Þ

where N is the number of weeks terms in the sum.

We fitted the model to the time series of reported daily cases Ĉt using a bootstrap filter as

follows [29]. We simulated M realisations (or particles) of the stochastic model defined by Eqs

(1)–(3) (i.e. M particles), with each particle consisting of time series for It, Rt and Zt. At each

time step, particle j was assigned a weight j using the likelihood of the observed value of Ĉt

under the distribution in Eq (4). The population of M particles was then resampled by draw-

ing, with replacement, from the full set of particles with weights j. For time steps after the last

available data point (i.e. the prediction period), each particle was simply simulated forwards in

time according to Eqs (1)–(3) with no filtering.

We initialised the model over a period of tinit = 20 days by drawing It from a Poisson distri-

bution with mean equal to the number of observed cases Ĉtþm, where m is the mean infection

to report time. The value of Rt at the end of the initialisation period (t = tinit) was drawn from

the estimated posterior for Rt based on the values of Is for s< t using the method of [8]. Model

results were not sensitive to the initialisation period because all model simulations were initia-

lised a minimum of 88 days prior to the forecast date.

Hospitalisation submodel. To estimate hospitalisations, we fitted models for the distribu-

tion of new cases by age and for the CHR in each 10-year age band. We fitted the log-trans-

formed ratio rit ¼ Ĉit=Ĉi 0t of cases in age group i to cases in a reference age group i0 (arbitrarily

set to be the 40–49-year group), and the logit-transformed CHR in age group i as independent

Gaussian processes over time:

log ðritÞ � GPðmðtÞ;Kðt; t0ÞÞ; ð6Þ

logit CHRit � GP ðmðtÞ;Kðt; t0ÞÞ; ð7Þ

where CHRit was defined as the proportion of cases reported on day t that were hospitalised

for Covid-19 using a 7-day centred rolling average. These models were trained using the fitrgp
package in Matlab2022b with a squared exponential kernel K and default hyperparameter set-

tings. We fitted the age distribution model to data in the 56 days prior to the most recent avail-

able data. To allow for reporting lags in hospitalisation data, we fitted the CHR model to data

between 84 and 21 days prior to the most recent available data.
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We then used the fitted models to predict the overall CHR on day t as

CHRt ¼

P
i rit CHRitP

i rit
ð8Þ

We included model uncertainty in rit and CHRit by independently sampling different tra-

jectories from the fitted Gaussian processes for each particle j.
We then simulated the number of new admissions At on day t by applying the predicted

CHR from Eq (8) to the output It of the particle filter:

At � NegBin ðm ¼ A∗
tCHRt; khÞ; ð9Þ

where kh is a dispersion factor, A∗
t ¼

P
t It� sws and ws is the probability mass function for the

distribution of time from infection to admission. This distribution was estimated as the convo-

lution of the assumed distribution for the time from infection to report vt and the empirical

distribution for the time from report to admission.

In order to predict hospital occupancy, we also needed to model hospital discharges. We

modelled the distribution of Covid-19-related length-of-stay for cases admitted on day t by

combining the empirical age-specific length-of-stay distributions with the modelled age distri-

bution of hospitalised cases. Specifically, the probability lst that an admission on day t will have

length-of-stay s days was calculated as

lst ¼
P

i l
ðageÞ
si ritCHRitP
i ritCHRit

; ð10Þ

where lðageÞsi is the probability that an admission in age group i will have length-of-stay s days.

We calculated the number of discharges Dt on day t by summing over day of admission t0:

Dt ¼
X

t0
Nt� t0 ;t0 ; ð11Þ

where Nst* Multinomial(At, lst) is the number of admissions on day t that have Covid-

19-related length-of-stay s. We calculated net change in hospital occupancy since day t0 as the

cumulative number of admissions minus the cumulative number of discharges since day t0.

Hospital occupancy at time t = t0 was set so that the mean and standard deviation of the parti-

cles’ hospital occupancy were equal to the observed hospital occupancy on day t0 and the stan-

dard deviation in observed hospital occupancy in the week prior to t0 respectively.

Forecast generation and evaluation. In order to test the performance of the model

against out-of-sample data, we generated forecasts using data supplied on one of a series of

dates spaced at one-week intervals from 2 October 2022 to 23 July 2023. This ensured that

forecasts were based only on the data that was available at a given time point, at which

recent hospitalisation data was typically incomplete (Fig A in S1 Text). We then compared

forecasts generated at time tf with subsequently observed data at times [tf − 6, tf] (nowcast),

[tf + 1, tf + 7] (7-day forecast), [tf + 8, tf + 14] (14-day forecast), and [tf + 15, tf + 21] (21-day

forecast).

We quantified forecast skill by calculating the continuous ranked probability score (CRPS)

(see e.g. [30]) and bias. For a forecast specified by cumulative distribution function F(x) and

data x̂, the CRPS is defined as

CRPSðx̂Þ ¼
Z 1

� 1

ðFðxÞ � Iðx � x̂ÞÞ2dx ð12Þ

where I(.) is the indicator function. Bias is defined as biasðx̂Þ ¼ 1 � 2Fðx̂Þ. This metric lies
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between −1 and 1 and is equal to zero of the data coincides with the median of the forecast

distribution.

We calculated the CRPS on log transformed data using the transformation ~x ¼ lnðxþ 1Þ.

This better reflects the exponential nature of epidemic growth and decay, and leads to CRPS

values that are independent of the magnitude of the observed quantity [31], which will be very

different for cases compared to admissions for example. It also means the CRPS values can be

interpreted as a probabilistic measure of relative error [31]. For example, for a point forecast

xf, it follows from Eq (12) that

expðCRPSÞ � 1 ¼
jxf � x̂j

minðxf ; x̂Þ þ 1
ð13Þ

which is an approximation to the relative difference between the forecast xf and the data x̂.

Model parameters are shown in Table 1. The chosen values for the random walk standard

deviation σR and dispersion factors kc and kh were found to give a reasonable balance between

being responsive to changes in trends while avoiding overfitting (see Results section for sensi-

tivity analysis). Note that for the chosen values of kc and kh, the distributions for daily cases

and daily admissions are close to Poisson, which is the limiting case of a negative binomial dis-

tribution as k!1. However, we retained the more general negative binomial model to pro-

vide flexibility in modelling other datasets, which may have higher variation in these

quantities. Data and documented code to reproduce the results are available at https://github.

com/michaelplanknz/covid19_forecasting_public.

Results

Fig 1 shows the fitted Gaussian process regression models for the age distribution of reported

cases and the age-specific case hospitalisation ratio (CHR). The models were fitted to data sup-

plied on an example forecast date (16 April 2023) and then projected forwards in time and

compared to subsequently available data up to 7 May 2023. Overall, the fitted models made

good predictions for future, out-of-sample data, which generally fell within the 95% prediction

intervals and visually exhibited a similar level of temporal autocorrelation as simulated model

trajectories. There were some notable exceptions. For example the proportion of cases in age

bands in the under 20 years and 60 to 80 years range started to track outside the predicted

intervals 2–3 weeks after the forecast date (Fig 1a). The CHR in the 0–10 years age group devi-

ated outside the prediction interval for a period of time around 1–2 weeks after the forecast

date (Fig 1b). The fitted regression model for CHR in the 40–50 years age group represented

the data as a lower frequency signal with higher noise relative to the other age groups.

Table 1. Parameter values used in the model.

Parameter Value

Generation time mean (s.d.) 3.3 (1.3) days

Incubation mean (s.d.) 3.2 (2.2) days

Std. dev. in daily random walk step for Rt σR = 0.025

Dispersion factor for daily cases kc = 100

Dispersion factor for daily admissions kh = 100

Number of particles M = 105

Initialisation period for renewal equation model tinit = 20 days

https://doi.org/10.1371/journal.pcbi.1011752.t001
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Fig 1. Fitted Gaussian process regression models for: (a) the proportion of cases in each age group; (b) the case

hospitalisation ratio (CHR) in each age group. Models fitted to data supplied on 16 April 2023. Dotted vertical lines shown

the fitting window (19 March to 16 April 2023 for proportion of cases in each age group, 22 January to 26 March 2023 for

CHR). Each panel shows the mean (solid blue) and 95% prediction interval (dashed blue) of the fitted model, ten example

simulated trajectories from the fitted model (grey), and comparison to subsequently observed data up to 7 May 2023

(green).

https://doi.org/10.1371/journal.pcbi.1011752.g001
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Fig 2 shows the forecast for cases, new hospital admissions and hospital occupancy, gener-

ated from data supplied on 16 April 2023. The forecast performed reasonably well when com-

pared against subsequently available data up to 7 May 2023. Daily cases and daily admissions

were almost entirely within the 90% prediction interval, although predominantly below the

predicted median, indicating that epidemic growth slowed in the 3 weeks following the fore-

cast date. Note that the historic modelled levels of hospital occupancy (to the left of the dotted

vertical line in Fig 2d) may deviate from the data because the model occupancy was not pro-

duced by fitting directly to hospital occupancy data, but by calculating net change in hospital

occupancy relative to the forecast date from simulated daily admissions and discharges. There-

fore, unlike cases and admissions, accuracy in modelled occupancy tends to decrease the fur-

ther backwards in time you go relative to the forecast date. However, this is not important for

the purposes of forecasting.

In order to assess forecast performance over time, Fig 3 shows the full time series of data

alongside the results of the forecast that was generated between 15 and 21 days previously

(data available on the third Sunday prior). The accuracy of the forecast 15–21 days ahead was

variable but the large majority of data points (89% for cases, 87% for admissions and 85% for

occupancy) fell within the 90% prediction interval. The most notable deviation is that the fore-

cast overestimated the height of the peak that occurred in December 2022. This may be partly

explained by a drop-off in testing and reporting of cases during the Christmas summer holiday

period, as indicated by wastewater surveillance [32], and other holiday-related effects on trans-

mission rates. The forecast also overestimated hospitalisations during this period, but to a

Fig 2. Model fitted to data up to 16 April 2023 (vertical dotted line), projected forwards in time for 21 days and compared to subsequently

available data available up to 7 May 2023 for: (a) new daily cases; (b) smoothed daily cases (seven-day rolling average); (c) new daily

hospital admissions; (d) hospital occupancy. The day-of-the-week effect is visible in panel (a) for reported daily cases. Blue curve is the

median and grey curves are the 5th, 15th, . . ., 85th, 95th percentiles of M = 105 particles, calculated by drawing one sample per particle from

the distributions specified by Eqs (4), (9) and (11).

https://doi.org/10.1371/journal.pcbi.1011752.g002
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lesser extent than it overestimated cases. Accurately predicting the peak of a wave is known to

be a difficult problem in epidemic forecasting [33], and other models have suffered from simi-

lar problems [15, 17].

Forecast skill was generally higher for a shorter time horizon. For example, in the 7-day

ahead forecast (see Fig C–D in S1 Text), the prediction intervals were more tightly focused

around the subsequent data in most cases compared to the 21-day ahead forecast. In general,

the CRPS increased with time (Fig 4a), indicating that forecast accuracy deteriorated as the

time horizon was extended. For a 3-week time horizon, the mean CRPS on log transformed

data was approximately 0.25 for cases and admissions and around 0.17 for occupancy.

The admissions forecast was positively biased, particularly at short time horizons, whereas

the occupancy forecast was negatively biased although less strongly (Fig 4b). The case forecast

was close to unbiased. This suggests that the model may be overestimating the case hospitalisa-

tion ratio. This could be a consequence of the imperfect fit of the Gaussian process regression,

for example due to a non-normal distribution of the CHR over time.

Model results were not highly sensitive to the chosen values of the random walk standard

deviation σR. Smaller values of σR meant the model was less able to capture rapid changes in

the reproduction number. This tended to lead to less accurate forecasts, with fewer data points

falling inside the 90% prediction intervals (71%, 78% and 69% of data points for cases, admis-

sions and occupancy respectively)—see Fig E in S1 Text. Higher values of σR introduced more

uncertainty into forecasts, meaning that prediction intervals were unnecessarily wide (Fig F in

S1 Text). For the chosen values of the dispersion factors kc and kh (see Table 1), the

Fig 3. 21-day ahead forecast performance. Model results generated from data supplied at one of a series of weekly time points from 2

October 2022 to 23 July 2023, compared to actual data for the period 15–21 days subsequent to the date the data was supplied for: (a) new

daily cases; (b) smoothed daily cases (seven-day rolling average); (c) new daily hospital admissions; (d) hospital occupancy. Testing data

was supplied on 20 August 2023 (i.e. 4 weeks subsequent to the last forecast). Weekly discontinuities in the forecasts are because each

7-day block represents a forecast generated from data supplied on a different date. Blue curve is the median and grey curves are the 5th,

15th, . . ., 85th, 95th percentiles of M = 105 particles. Data points outside the 5th –95th percentile range of the forecast are shown in red.

https://doi.org/10.1371/journal.pcbi.1011752.g003
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distributions of daily reported cases and daily hospital admissions were close to Poisson and

this produced a reasonable fit for the current dataset. Smaller values of kc and kh resulted in

prediction intervals that were too wide for the modelled dataset (Fig G in S1 Text).

We did not encounter issues with particle degeneracy in the bootstrap filter (see Fig H in S1

Text), which is a problem that can arise when almost all particles have nearly zero weight and

so the number of unique particles becomes very low [29]. It is possible this could be an issue if

the model were run for a longer period of time, or if there were more noise or abrupt changes

in the data. This could require tuning or fitting of the dispersion parameter kc.

Discussion

Near-term forecasting of infectious disease activity and consequent demand for acute health-

care can support situational awareness, planning and public health response [7]. We have

developed a method for forecasting Covid-19 cases, hospital admissions and hospital occu-

pancy based on Aotearoa New Zealand’s unique disease surveillance and data collection sys-

tems. The method couples a semi-mechanistic model for disease transmission to forecast cases

with Gaussian process regression models for the time-varying case hospitalisation ratio.

We have demonstrated that the model provides useful forecasts by benchmarking against

subsequently observed data up to 21 days ahead. The forecasting tool has been operationalised

by Te Whatu Ora Health New Zealand in 2023 to provide weekly national and regional level

forecasts in real-time. Our method is a useful component of health system capacity planning

and response to Covid-19. It is also an important step towards development of more sophisti-

cated situational awareness and forecasting capability in Aotearoa New Zealand for other

infectious diseases and future pandemic threats.

Strengths of our model include that it is specifically designed to use New Zealand’s unique

Covid-19 data streams, including linked unit record data on date of symptom onset and case

report and, where applicable, date of hospital admission and length of stay. This data allowed

us to empirically estimate the distribution of onset-to-report time, report-to-admission time

and age-specific length of hospital stay. The model accounts for known lags in the reporting of

hospital admissions for Covid-19, but uses up-to-date data on reported cases in each age group

to improve accuracy of hospitalisation forecasts. Forecasts performed reasonably well when

benchmarked against subsequently observed, out-of-sample data.

Fig 4. Forecast performance quantified by (a) continuous ranked probability scores (CRPS), and (b) bias, for forecasts

up to 0, 1, 2 and 3 weeks ahead. Model results generated from data supplied at one of a series of weekly time points

from 2 October 2022 to 23 July 2023, and tested against data supplied on 20 August 2023. Smaller scores indicate more

accurate forecasts, and values of bias closer to zero indicated less biased forecasts.

https://doi.org/10.1371/journal.pcbi.1011752.g004
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Numerous variables affect the age-specific case hospitalisation ratio (CHR), such as vaccine

coverage, rates of prior infection, comorbidities and case ascertainment (which affects the

denominator of the ratio) [16]. Our method avoids the need for assumptions about the effects

of these variables by taking an empirical approach to estimating the age-specific case hospitali-

sation ratio from recent data. This is reasonable because, although the variables affecting CHR

will vary over time, they will generally vary slowly relative to the typical forecasting time hori-

zon of 1–3 weeks.

The model has several important limitations. It assumes that, over the forecasting time hori-

zon, the effective reproduction number follows a simple random walk. This ignores mecha-

nisms that may systematically affect transmission dynamics (e.g. depletion of the susceptible

population, changes in contact patterns) meaning it is not suitable for forecasting more than a

few weeks ahead, and cannot provide any insight into the reasons for changes in transmission

patterns or the effects of possible interventions. Our results show that although the forecast is

reasonably accurate for the week ahead, accuracy deteriorates for two-week and three-week

forecasts. This to be expected, but is important to remember in practical applications of the

model and suggests that forecasts should be regularly updated with the most recent available

data.

Abrupt changes in case ascertainment, for example as the result of a policy change or a

change in access to testing, would invalidate the forecast for a period of time until the time

window used for estimating the CHR falls inside the new case ascertainment regime. The same

would apply if there was an abrupt change in clinical severity, for example due to rapid take-

over of a new variant. Other than a temporary drop in case ascertainment during the 2022–

2023 holiday period [32], there is no evidence of these issues arising during the study period of

October 2022 to July 2023. However, there was subsequently an abrupt drop in case ascertain-

ment following the lifting of the government isolation mandate for confirmed cases of Covid-

19 on 14 August 2023.

We have applied and tested the model in Aotearoa New Zealand during a period in which

the Omicron variant of SARS-CoV-2 was dominant, there were limited non-pharmaceutical

interventions, and increasing levels of hybrid immunity [1, 2, 34]. Application of the model in

other contexts, such as in an immune naive population or during periods of intense non-phar-

maceutical interventions or behavioural change, would likely require significant model adapta-

tion and recalibration.

An alternative approach to forecasting cases and modelling hospitalisations as a time-vary-

ing fraction of cases would be to model the trend in hospitalisations directly. This would have

the advantage of avoiding issues arising from changes in case ascertainment rates, and may be

necessary in future as case ascertainment declines. However, our approach has the advantage

that cases are a leading indicator compared to hospital data, which is significantly lagged due

to both the lag in onset of severe illness and the hospital data reporting lag. Therefore, changes

in trends in transmission dynamics or in the age distribution of infections immediately feed

into the forecast for hospitalisations.

Future improvements of the model could incorporate wastewater surveillance data as an

independent measure of prevalence [32] and more mechanistic transmission assumptions, for

example to account for the accumulation of population immunity during a wave or following

a vaccine rollout.
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