

Appl. Sci. 2024, 14, 2297. https://doi.org/10.3390/app14062297 www.mdpi.com/journal/applsci

Article

A Deep Learning Approach to Semantic Segmentation of
Steel Microstructures
Jorge Muñoz-Rodenas 1, Francisco García-Sevilla 1,2,*, Valentín Miguel-Eguía 1,2,*, Juana Coello-Sobrino 1,2
and Alberto Martínez-Martínez 2

1 High Technical School of Industrial Engineering of Albacete, Castilla-La Mancha University,
02006 Albacete, Spain; jjmr25@educastillalamancha.es (J.M.-R.); juana.coello@uclm.es (J.C.-S.)

2 Materials Science and Engineering Laboratory, Regional Development Institute,
Castilla-La Mancha University, 02006 Albacete, Spain; alberto.martinez@uclm.es

* Correspondence: francisco.garcia@uclm.es (F.G.-S.); valentin.miguel@uclm.es (V.M.-E.)

Featured Application: A segmentation tool for microconstituents recognition in steel optical mi-
crographs.

Abstract: The utilization of convolutional neural networks (CNNs) for semantic segmentation has
proven to be successful in various applications, such as autonomous vehicle environment analysis,
medical imaging, and satellite imagery. In this study, we investigate the application of different
segmentation networks, including Deeplabv3+, U-Net, and SegNet, each recognized for their effec-
tiveness in semantic segmentation tasks. Additionally, in the case of Deeplabv3+, we leverage the
use of pre-trained ResNet50, ResNet18 and MobileNetv2 as feature extractors for a comprehensive
analysis of steel microstructures. Our specific focus is on distinguishing perlite and ferrite phases in
micrographs of low-carbon steel specimens subjected to annealing heat treatment. The micrographs
obtained using an optical microscope are manually segmented. Preprocessing techniques are then
applied to create a dataset for building a supervised learning model. In the results section, we dis-
cuss in detail the performance of the obtained models and the metrics used. The models achieve a
remarkable 95% to 98% accuracy in correctly labeling pixels for each phase. This underscores the
effectiveness of our approach in differentiating perlite and ferrite phases within steel microstruc-
tures.

Keywords: deep learning; segmentation; low-carbon steels; optical microstructure

1. Introduction
The recognition of the microconstituents of a steel micrograph is a complicated task

and only within the reach of highly qualified personnel with broad experience in the field
of materials science. Manual identification of steel phases can be a tedious and error-prone
task; therefore, machine learning (ML) models have emerged as valuable complements to
the traditional visual inspection methods employed by metallurgists. In recent years,
many studies have addressed the challenge of developing artificial intelligence techniques
that enable computers to handle complex tasks, such as microstructure identification [1–
3] and the inference of properties through these identification techniques utilizing ML has
been investigated [4–7], yielding promising advancements. Nevertheless, given the com-
plexity involved in microstructure identification, particularly within steel micrographs,
the adoption of advanced techniques becomes necessary. For the realization of an effective
image segmentation in the context of steel microstructures, a powerful tool, such as a deep
neural network, is required.

Citation: Muñoz-Rodenas, J.;

García-Sevilla, F.; Miguel-Eguía, V.;

Coello-Sobrino, J.;

Martínez-Martínez, A. A Deep

Learning Approach to Semantic

Segmentation of Steel

Microstructures. Appl. Sci. 2024, 14,

2297. https://doi.org/

10.3390/app14062297

Academic Editors: Glenn Hawe and

Aidan Meade

Received: 20 February 2024

Revised: 5 March 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Appl. Sci. 2024, 14, 2297 2 of 31

In previous work [8], it was determined that, for the categorization of steel micro-
structures, convolutional neural networks exhibit a notable superiority over classical ma-
chine learning algorithms. The present study constitutes a continuation of the exploration
of deep learning techniques within the domain of optical micrographs of carbon steels,
with a focus on segmentation algorithms. These networks allow us to establish a labeling
of each pixel according to the phase of the microconstituent to be classified by means of
supervised learning methods.

Recent advancements in the field of steel microstructure identification using segmen-
tation techniques can be found. The following are discussed to provide background and
context for the present article.

Luengo et al. [9] present a comprehensive overview of AI techniques for metallo-
graphic image segmentation, utilizing two distinct datasets: The Ultra-High Carbon Steel
Micrograph Database (UHCSM) and the Metallography Dataset from Additive Manufac-
turing of Steels (MetalDAM). The paper contributes significantly by introducing the novel
dataset, MetalDAM, available at https://dasci.es/transferencia/open-data/metal-dam/, ac-
cessed on 23 June 2023, providing an updated taxonomy of segmentation methods and
exploring various deep learning-based ensemble strategies. Ensemble models exhibit su-
perior performance in segmentation, achieving an Intersection over Union (IoU) metric of
76.71 for the UHCS dataset and 67.77 for the MetalDAM dataset. However, the perfor-
mance achieved in both datasets is low. The authors conclude that microstructure seg-
mentation faces limitations due to the insufficient availability of large datasets, the ab-
sence of pre-trained models tailored to this domain, and the notable challenges related to
generalization errors in machine learning methods.

Bulgarevich et al. [10] address the challenge of segmenting optical images of micro-
structures using a supervised machine learning approach. They employ the Random For-
est (RF) algorithm along with image processing and segmentation protocols, including
Euclidean distance conversion and structure tensor extraction, for accurate image analy-
sis. This research recognizes the RF algorithm as a highly versatile method for segmenting
various microstructures, such as ferrite, pearlite, bainite, martensite, and martensite–aus-
tenite, within steel microstructures. The results demonstrate that the segmentation quality
achieved is practical and allows meaningful statistics on the volume fraction of each phase
to be obtained.

Bachmann et al. [11] present an exhaustive approach for detecting prior austenite
grains (PAGs) in Nital-etched micrographs of bainitic and martensitic steels. The study
utilizes a correlative microscopy technique, combining a light optical microscope (LOM),
a scanning electron microscope (SEM), and electron backscatter diffraction (EBSD). The
detection of PAGs is accomplished through semantic segmentation using advanced deep
learning (DL) methods, specifically U-NET in conjunction with DenseNet, applied to
LOM images.

To ensure effective model evaluation, the authors emphasize the critical importance
of accurately measuring grain sizes in the metallurgical structure of the material. Their
experiments reveal an IoU of around 70%, indicating potential discrepancies between
metric values and visual perception of model quality. Recognizing the limitations of tra-
ditional metrics like IoU and pixel accuracy, particularly in the context of grain size meas-
urement within segmentation tasks, they propose a novel approach. To address this, they
introduce a method for quantifying grain size distribution from segmentation maps, cal-
culating the mean, median, and standard deviation. By binning detected grains into inter-
vals of a specific width (500 µm2) and calculating probability density, they accurately as-
sess segmentation quality compared with values of the ground truth and identify poten-
tial errors in grain size determination. The results show a mean error of 6.1% in average
grain size, underscoring the high quality of the DL model.

Han et al. [12] introduced a segmentation method (CES) based on the extraction of
center–environment features tailored for small material image samples. The proposed
method is applied to several datasets that include carbon steels, titanium alloy, wood, and

Appl. Sci. 2024, 14, 2297 3 of 31

cross-sectional morphology of Pt-Al and WC-Co coating image data. Expert annotators
are engaged in the process, drawing region-specific curves based on their domain
knowledge. Additionally, the method takes advantage of several machine learning algo-
rithms to achieve highly accurate segmentation. Notably, the results of the study indicate
that the Gradient Boosting Decision Tree (GBDT) outperforms other methods in this con-
text.

Additionally, a comparison is made with segmentation methods based on deep
learning networks such as SegNet, PSPNet, and UNet++, which are found to be 10% higher
in IoU and mean IoU metrics compared to the methodology used by the authors. This
difference is attributed to the significantly fewer pixels annotated to create the masks us-
ing CES compared to deep learning methods. While the proposed method is commenda-
ble for its innovative approach and reduced annotation cost, it falls short in achieving
comparable segmentation accuracy to deep learning algorithms. The observed 10% dis-
parity in results highlights the limitations of this method, suggesting that a balance be-
tween annotation efficiency and segmentation performance has yet to be fully realized.

Kim et al. [13] displayed the segmentation of a low-carbon steel microstructure with-
out the need for labeled images, employing a deep learning approach. Specifically, a con-
volutional neural network combined with the Simple Linear Iterative Clustering (SLIC)
superpixel algorithm. By leveraging a diverse range of microstructure optical images con-
taining ferrite, pearlite, bainite, and martensite, the model effectively distinguished and
delineated regions corresponding to each constituent phase.

Breumier et al. [14] trained a U-Net model to perform the segmentation of bainite,
ferrite and martensite on EBSD maps using the kernel average misorientation and the pat-
tern quality index as input. The model can differentiate the three constituents with a 92%
mean accuracy in the test results.

Chaurasia et al. [15] proposed a versatile approach for classifying multiphase steels.
It involves generating 3D polycrystalline microstructure templates using the Johnson–
Mehl–Avrami–Kolmogorov (JMAK) kinetic model, creating realistic single-phase micro-
structures through nucleation and growth concepts. Cropped images of pearlite and fer-
rite are strategically placed on these templates to synthesize accurately labeled ferrite–
pearlite microstructures. Subsequently, a deep learning architecture, UNET, is trained us-
ing synthetic microstructures and tested on real microstructures. The results, compared
with manually annotated microstructures, demonstrate a prominent level of agreement,
reaching an accuracy of about 98%.

Liu et al. [16] conducted a study that focuses on recognizing the microconstituents of
ferrite and pearlite and making predictions of their mechanical properties. For this pur-
pose, they elaborate a residual U-shaped network based on ResNet32 to identify grain
boundaries and their size, obtaining better segmentation results than the conventional
neural network FCN-8s, reaching over 93% in frequency weighted intersection over union
(FWIoU).

Azimi et al. [17] utilized fully convolutional networks (FCNs) along with a max-vot-
ing scheme for the classification of martensite, bainite, pearlite, and ferrite phases in low-
carbon steels, achieving a classification accuracy of 93.94%.

Recently, works similar to the research in this paper have been published, such as
Ostormujof et al. [18] that accomplished the successful classification of ferrite–martensite
dual-phase steel microstructures through the implementation of the U-Net model and
achieved pixel-wise accuracies of around 98%, as well as Xie et al. [19], who provided a
comparison with different segmentation architectures for steel micrographs like
DeepLabv3+, Enet, Unet, and PSPnet. They propose a new semantic network based on the
improvement of a fully convolutional network (FCN) with the atrous spatial pyramid
pooling (ASPP) technique for feature extraction, surpassing the previous ones according
to the metric Intersection over Union (IoU), achieving a performance of up to 80.43%. In
our specific study, we employed LOM images as opposed to the SEM images used in the

Appl. Sci. 2024, 14, 2297 4 of 31

referenced article. This choice might introduce differences in the characteristics and fea-
tures of the micrographs, potentially impacting the performance of segmentation algo-
rithms. It is worth noting that the selection of imaging modalities can influence the choice
of segmentation techniques and their effectiveness in each context. Ma et al. [20] con-
ducted training on two datasets comprising images of steel alloys, one consisting of car-
bide and the other predominantly of ferrite microconstituents. They employed PSPNet
and DeepLabv3+ with ResNet18 segmentation networks. The authors proposed enhanc-
ing the receptive field of the convolutional neural network (CNN) to improve contextual
perception of images without altering the network architecture. This was achieved by
scaling the original image size to 0.5 times during image loading. Additionally, the au-
thors established an automated quantitative analysis of the microstructures using
OpenCV software after segmentation, extracting morphological information from classi-
fied pixels to obtain the average carbide radius and the number of carbides. The results,
evaluated on original large-size images, yielded a mean Intersection over Union (mIoU)
score of approximately 80%.

Additionally, Bihani et al. [21] present, in this case in the context of mudrock SEM
images, a method for filtering and segmentation using deep learning to identify pore and
grain features named MudrockNet, which is based on DeepLab-v3+. The predictions for
the test data obtain a mean IoU of 0.6663 for silt grains, 0.7797 for clay grains, and 0.6751
for pores.

Automated phase identification in steel microstructures is a rapidly evolving field.
While previous studies have addressed segmentation challenges with varying degrees of
success, several issues remain unresolved, including the application of segmentation to
low-magnification optical images and the scarcity of dedicated steel microstructure image
databases. To address these shortcomings, this research delves into the exploration of op-
timal architectures for this problem, specifically targeting the development of a robust
segmentation model capable of automatically identifying pearlite and ferrite phases in
annealed steel microstructures, which have a major influence on the properties and be-
havior of annealed steels.

It can be concluded that numerous studies have explored the segmentation of steel
microstructures, generating segmentation models created from ad hoc networks with var-
ying degrees of success. Nevertheless, most experiments are conducted using data ob-
tained from scanning electron microscopy (SEM) images, rendering them unsuitable for
samples produced with optical technology. This work aims to delve deeper into obtaining
segmentation models for the identification of pearlite and ferrite in images coming from
optical microscopy. The Deeplabv3+ and U-Net architectures will be employed for the
segmentation of LOM steel microstructure images. Leveraging convolutional neural net-
works, these architectures have demonstrated effectiveness in image segmentation across
various domains.

The methodology employed in this study integrates ImageJ with trainable Weka seg-
mentation, Random Forest classifier training, and data augmentation to prepare a diverse
dataset for the subsequent creation and training of U-Net, SegNet and DeepLabV3+ seg-
mentation models for steel micrograph analysis. In the following sections, we will delve
into the methodology and analyze the results and discussions.

2. Materials and Methods
2.1. Steel Specimens and LOM Images

The experimental procedures involved the utilization of three steel samples that un-
derwent annealing treatment to produce ferrite and pearlite microstructures, with their
respective chemical compositions detailed in Table 1. Metallographic sample preparation
was conducted by grinding and polishing according to the typical procedure used for op-
tical microscopy and were etched with Nital-1-(alcoholic nitric acid at 1%) for 30 s, per-
mitting observation of the grain boundaries and microstructures to be distinguished.

Appl. Sci. 2024, 14, 2297 5 of 31

For the development of segmentation models, a dataset comprising 34 steel microg-
raphy images, each with a resolution of 2080 × 1542 pixels, was compiled. The selection of
these images aimed to provide a comprehensive representation of the diverse microstruc-
tural features inherent in various steel samples.

Table 1. Chemical composition (weight %) of low-carbon steel samples according to ISO 683-1:2019
standards.

Steel C Si Mn P S Cr Mo Ni Cu
C45E 0.45 0.25 0.65 0.025 0.035 0.40 0.10 0.40 0.30

As seen in Figure 1a,b, once the steel undergoes an annealing heat treatment, a crys-
talline structure is obtained, revealing two distinctive zones. One zone is characterized by
ferrite, appearing as a whitish matrix, while the other zone appears darker with a lamellar
constituent, indicating the presence of pearlite. The normalizing heat treatment results in
a similar microstructure, albeit with finer constituents, as shown in Figure 1c. Figure 2
provides a detailed depiction of these constituents. As observed in Figure 2b, the pearlite
consists of alternating fine bands of ferrite and cementite, maintaining a dark aspect, as
mentioned earlier.

Figure 1. Samples of C45E steel in an annealing state, (a,b) and normalizing; (c) reagent, Nital-1.

Figure 2. Microconstituents corresponding to the C45E Steel (reagent Nital-1). The red contours cor-
respond to ferrite (a) and pearlite (b) areas.

2.2. Image Preprocessing
In the preprocessing stage of the segmentation deep learning experiment carried out

in this work, a comprehensive approach was implemented to enhance the quality and
diversity of the dataset. This involved the initial creation of masks using specialized soft-
ware, followed by a thorough data augmentation process. ImageJ, with its trainable Weka
segmentation plugin, was utilized for the creation of masks [22,23]. This allowed for the

Appl. Sci. 2024, 14, 2297 6 of 31

creation of masks, outlining specific regions of interest within the steel microstructure im-
ages. Manual annotations made by the authors guided the algorithm in learning the fea-
tures necessary for accurate segmentation. The annotations of the pearlite areas have been
manually performed on two of the original images for each sample. Subsequently, the
trainable Weka segmentation option has been applied to the rest of the images to automate
the generation of masks since manual mask generation is a time-consuming process and
prone to errors. Thus, by using the ImageJ segmentation assistant, the quality of the masks
was improved, and the processing time was reduced. Nevertheless, the authors reviewed
each generated mask, making adjustments to images containing any errors.

The trainable classifier employed for mask creation was based on the Random Forest
algorithm. Configured with 200 decision trees, this algorithm demonstrated robustness in
handling the complexity of steel micrography images. The training process involved feed-
ing the algorithm with the manually annotated masks, allowing it to learn and generalize
patterns within the dataset. Following the initial mask creation and classifier training, a
data augmentation step was introduced to enhance the dataset’s diversity. This involved
applying various transformations such as rotation, scaling, and flipping to the original 34
steel micrography images. The augmented dataset served to increase the model’s ability
to generalize across a broader range of microstructural variations.

Each original image captured by the optical microscope has a resolution of 2080 ×
1542 pixels. For the execution of the experiments, we have chosen to use images of 224 ×
224 pixels. This choice is based on various practical and efficiency considerations. Smaller
images demand fewer computational resources for both training and inference. The utili-
zation of 224 × 224 images enables the model to execute more rapidly. Furthermore, for
the transfer learning from pretrained models utilized in the experiments, such as Res-
Net50, ResNet18, or MobileNetV2, these models are often trained on massive datasets
with specific image sizes. Employing the same image size during both training and infer-
ence eases the transfer of knowledge from pretrained models, as the initial layers are tai-
lored to that size. It is important to note that although 224 × 224 pixels is a commonly used
size, it is not a strict constraint. The image size can be adjusted to conduct experiments
with a different set of images, but it might be necessary to adjust other model parameters
and, in some cases, retrain the model to accommodate the new input size.

For data augmentation, each original image and mask were cropped into 54 images
of size 224 × 224 pixels. Subsequently, rotations of 90°, 180°, and 270° were applied to the
cropped images, resulting in 216 images for each original image. This process yielded a
final dataset of 7344 images. These images were distributed randomly, with 70% allocated
for training data, 20% for validation data, and 10% for the test data.

Taking into consideration the information provided before, an example of the result
of the cropping and rotating images can be appreciated in Figure 3. The masking process
intended to isolate the ferrite areas contained in the images can also be observed.

Figure 3. Cropped and rotated sample images and masks with a resolution of 224 × 224 pixels.

Appl. Sci. 2024, 14, 2297 7 of 31

After the preprocessing stage was completed, the model creation phase was initiated.
This involved training various segmentation models to identify important features in the
preprocessed dataset. Using the enriched dataset, different model setups and methods
were experimented with. The aim was to determine which approach worked best for ac-
curately outlining the steel microstructure images. In the following section, the training
process details and metrics are described.

2.3. Segmentation Model Training
In executing the experiments, various segmentation networks were employed to es-

tablish a comparative analysis and identify the most suitable one for the context of micro-
structures in steels subjected to an annealing heat treatment. The segmentation networks
utilized include U-Net [24], SegNet [25], and DeepLabV3+ [26]. Diverse pre-trained back-
bones, such as ResNet18, ResNet50, and MobileNetV2, were employed for the latter.

The same algorithm has been applied to all networks. Initially, each model undergoes
training using the selected images for training and validation. Once the model is gener-
ated, it is applied to the test images, subsequently obtaining various metrics [27] that fa-
cilitate result analysis. In Appendix A, comprehensive details regarding each layer within
the architectures of the segmentation networks utilized are presented in tabular form. The
description of the networks employed in the experiments is provided next.

2.3.1. U-Net
U-Net is commonly used in the context of semantic image segmentation, and its ef-

fectiveness in capturing both global context and fine details makes it particularly well-
suited for tasks such as medical image segmentation and satellite image analysis, and it is
also employed for the segmentation of materials microstructures [28,29]. U-Net is charac-
terized by a U-shaped architecture with an encoder–decoder structure and skip connec-
tions. The encoder, on the left side of the U, consists of down-sampling layers that capture
hierarchical features from the input image. The decoder, on the right side, involves up-
sampling layers and skip connections that preserve high-resolution details and aid in pre-
cise localization. Skip connections connect corresponding encoder and decoder stages, fa-
cilitating the retention of spatial information. The bottleneck at the base of the U combines
abstract features from the encoder with detailed spatial information from the decoder.

In the conducted experiments with U-Net, the bias term of all convolutional layers is
initialized to zero. Additionally, the convolution layer weights in the encoder and decoder
subnetworks are initialized using the ‘He’ weight initialization method [30]. The encoder–
decoder has a depth of 3, resulting in a U-Net comprising 46 layers with 48 connections.
The most relevant hyperparameters configured for training include the Adam optimizer,
a learning rate of 0.001, L2 regularization, and a maximum number of epochs set to 2.
Experiments were conducted by increasing the number of epochs, yet substantial im-
provements were not achieved; instead, there was an increase in computational time. The
loss layer utilizes cross-entropy loss to quantify the disparity between the predicted val-
ues and their corresponding actual data. The formula is expressed as follows in Equation
(1).

loss = −
1

N
w t ln y (1)

Here, N represents the number of samples, K is the number of classes, wi denotes the
weight for class i, tni is the indicator of whether the nth sample belongs to the ith class, and
yni represents the output for sample n for class i.

Appl. Sci. 2024, 14, 2297 8 of 31

2.3.2. SegNet
SegNet [31] is a convolutional neural network architecture tailored for semantic im-

age segmentation. Its distinctive features include a conventional encoder–decoder struc-
ture, where the encoder captures hierarchical features, and the decoder reconstructs the
segmented output through up-sampling layers. Notably, SegNet utilizes max-pooling in-
dices from the encoder during decoding to recover spatial information lost during down-
sampling, contributing to accurate segmentation. The network leverages feature maps
from the encoder for precise localization. Employing a class-specific softmax activation in
the final layer enables pixel-wise classification. Although SegNet lacks skip connections
between the encoder and decoder, its design, particularly the incorporation of pooling
indices, makes it well-suited for tasks demanding detailed pixel-wise segmentation.

In this study, the segmentation experiments have utilized the SegNet architecture in
conjunction with VGG16 [32,33]. In this context, VGG16 plays a role as a feature extractor,
capturing high-level semantic information from the input images. It complements the seg-
mentation capabilities of SegNet, contributing to an enhanced overall performance of the
segmentation model.

2.3.3. DeepLabV3+
The segmentation models were built by integrating the DeepLabV3+ architecture

with various pre-trained backbones, including ResNet50, ResNet18 [34], and Mo-
bileNetV2 [35]. This diverse combination harnesses the strengths of DeepLabV3+ for
pixel-wise segmentation and different backbone architectures for feature extraction. The
models were trained using an augmented dataset, integrating insights obtained from the
Random Forest classifier.

In Figure 4, a schematic representation of the DeepLabV3+ architecture is shown. The
model employs a pretrained backbone (ResNet50, ResNet18 and MobileNetv2) for feature
extraction. The Atrous Spatial Pyramid Pooling (ASPP) module is employed to capture
multi-scale contextual information. The subsequent decoder, featuring skip connections,
refines and up-samples the features to produce a high-resolution semantic segmentation
map. This architecture provides detailed pixel-wise predictions for accurate object recog-
nition in images.

Figure 4. DeepLabV3+ and Resnet50 segmentation network architecture (adapted from [26]).

2.4. Training Parameters, Metrics and Other Details
The training process involved optimizing various parameters, including learning

rates, batch sizes, and epochs. A validation set was used to monitor the model’s perfor-
mance and prevent overfitting.

When conducting experiments, identical training parameters were chosen to ensure
a more faithful comparison of results. Adam optimizer with a learning rate of 0.001 and a
maximum number of epochs set to 3 were selected. Additionally, the ‘Validation Patience’
parameter was set to 4 to avoid unnecessary computation. All the aforementioned infor-
mation is summarized in Table 2, which compiles essential data regarding the networks
for computational time considerations.

Appl. Sci. 2024, 14, 2297 9 of 31

Table 2. Training parameters and network information.

Network Optimizer
Learning

Rate
Max

Epochs Batch Size
Trainable

Parameters Layers

U-Net

Adam 0.001 3

32 7,697,410 46
SegNet 16 29,444,166 91
DeepLabv3+ (Resnet50)

32
43,980,180 206

DeepLabv3+ (Resnet18) 20,607,636 100
DeepLabv3+ (MobileNet) 6,784,276 186

To evaluate the performance of the segmentation models, various metrics were em-
ployed. Accuracy measures the proportion of correctly classified pixels to the total num-
ber of pixels in each class, as defined by the ground truth, and its score is calculated using
Equation (2), where TP represents true positives, and FN represents false negatives. Mean
Accuracy, computed as the average Accuracy of all classes across all images, provides an
aggregate assessment of model performance. Global Accuracy, on the other hand, consid-
ers the ratio of correctly classified pixels, irrespective of class, to the total number of pixels.

Accuracy score =
TP

TP + FN
 (2)

Additionally, the Boundary F1 (BF) score, known as the BF Score, evaluates the align-
ment between predicted boundaries and true boundaries. Calculated using Equation (3),
precision assesses the accuracy of the predicted boundaries, while recall gauges the
model’s ability to capture true boundaries. A higher BF score indicates better agreement
between predicted and true boundaries. The Mean BF Score offers an aggregate measure
of boundary prediction performance across all classes and images.

BF score  =  
2  ×  precision  × recall

precision  +  recall
 (3)

Furthermore, the Intersection over Union (IoU) score assesses the ratio of correctly
classified pixels to the total number of ground truth and predicted pixels in each class.
The IoU score is computed using Equation (4), where TP represents true positives, FP
represents false positives, and FN represents false negatives. The Mean IoU provides an
average IoU score across all classes and images, offering insights into the overall segmen-
tation accuracy of the model.

IoU score  =  
TP

TP + FP + FN
 (4)

The trained segmentation models were evaluated on a separate test set of steel mi-
crograph images not seen during training. The metrics used for the evaluation of the mod-
els have been previously specified.

All experiments were conducted on a robust computing system equipped with an
Intel(R) Core(TM) i7-5930K CPU @ 3.50 GHz, DIMM 64 GB RAM, and an NVIDIA® GE-
FORCE RTX 3080 (10 GB). MATLAB® was utilized for coding and generating segmenta-
tion models, and ImageJ was employed for mask creation, guaranteeing a stable and re-
producible computational environment. All codes performed for this research are availa-
ble upon request.

3. Results
Five different models were trained using 5141 training images and 1469 validation

images. The training results are presented in Table 3, and the training progress can be
observed in Figures 5–9 for each of the models. The progression of both accuracy and the
loss function is depicted.

Appl. Sci. 2024, 14, 2297 10 of 31

Table 3. Training results (LR = 0.001) (bold numbers represent the maximum values).

Model
Training
Accuracy (%)

Training
Loss

Final Validation
Accuracy (%)

Final
Validation
Loss

Output
Network
Iteration

Time Elapsed
(hh:mm:ss)

U-Net 95.874 0.128 96.553 0.095 320 00:06:50
DeepLabv3+resn50 97.185 0.068 97.485 0.060 480 00:08:14
DeepLabv3+resn18 97.229 0.068 97.177 0.071 480 00:04:49
DeepLabv3+mobn 97.379 0.063 97.969 0.050 480 00:07:41
SegNet 95.359 0.236 96.773 0.169 963 00:20:23

Figure 5. Training progress of U-Net: (a) training and validation accuracy; (b) training and valida-
tion loss.

Figure 6. Training progress of SegNet: (a) training and validation accuracy; (b) training and valida-
tion loss.

Figure 7 Training progress of DeepLabv3+/ResNet50: (a) training and validation accuracy; (b) train-
ing and validation loss.

Appl. Sci. 2024, 14, 2297 11 of 31

Figure 8. Training progress of DeepLabv3+/ResNet18: (a) training and validation accuracy; (b) train-
ing and validation loss.

Figure 9. Training progress of DeepLabv3+/MobileNetv2: (a) training and validation accuracy; (b)
training and validation loss.

The model was then applied to 734 test images that it had not seen previously. The
results of the test experiments are included in Table 4, which displays the usual metrics
for segmentation problems. Additionally, the confusion matrices are shown in Figure 10.
It can be inferred that the DeepLabv3+ model with MobileNetv2 achieves a performance
improvement, though only slightly surpassing the other networks that also accurately
solve the segmentation problem.

To visually explore the results, two test images were utilized, and each was processed
by every trained model. These images are depicted in Figure 11. The segmentation per-
formed by each model can be observed for comparison with the original sample, as well
as with the mask or ground truth generated during data preprocessing before training.
The objective is to distinguish between the two microconstituents: ferrite as the matrix
element represented by the lighter zone in the micrograph and pearlite composed of al-
ternating layers of cementite and ferrite. It is crucial to emphasize that the ferrite consti-
tuting the pearlite should not be segmented together with the ferrite, forming the matrix
of the microstructure.

In the training phase, it can be observed that the SegNet model requires more itera-
tions and, consequently, more computational time to achieve maximum accuracy, as de-
picted in Figure 6, exceeding more than twice the others. However, its final training accu-
racy does not differ significantly from the rest, trailing only by a couple of percentage
points compared to DeepLabv3+, which yields the best results. This increased number of
iterations is due to the reduction in MiniBatchSize to 16 samples for SegNet, compared to
the MiniBatchSize of 32 samples used for the other networks. Notably, when employing
a MiniBatchSize of 32 samples, the performance of SegNet decreases to approximately
91% to 93%, emphasizing the need to reduce the MiniBatchSize to 16 for optimal perfor-

Appl. Sci. 2024, 14, 2297 12 of 31

mance. Despite the longer training time associated with the reduced MiniBatchSize, Se-
gNet’s final accuracy remains competitive, showcasing its ability to achieve high perfor-
mance even with a smaller batch size. As shown in Figures 7–9 achieving maximum ac-
curacy during training requires only a few iterations for DeepLabv3+ segmentation net-
works. The encoder that leads to the shortest training time is ResNet18, which has the
fewest layers among the three. However, MobileNetV2 exhibits slightly superior results
to the other networks, achieving excellent scores in all metrics as indicated in Table 4.

Table 4. Test image metrics (bold numbers represent the maximum values).

Model Global Accuracy Mean Accuracy Mean IOU Weighted IOU Mean BF Score
U-Net 0.9667 0.9551 0.9202 0.9359 0.8578

DeepLabv3+ResNet50 0.9757 0.9722 0.9418 0.9529 0.8798
DeepLabv3+ResNet18 0.9725 0.9717 0.9349 0.9472 0.8471

DeepLabv3+MobNetv2 0.9802 0.9743 0.9521 0.9614 0.9149
SegNet 0.9675 0.9596 0.9229 0.9377 0.8127

Figure 10. Confusion Matrix: (a) U-Net, (b) SegNet, (c) DeepLabv3+/ResNet50, (d) DeepLabv3+/Res-
Net18, and (e) Mobilenetv2.

(b) Confusion matrix (%)

Tr
ue

 c
la

ss 5.894.2Ferrite

97.72.3Perlite

PerliteFerrite

Predicted class

(d) Confusion matrix (%)

Tr
ue

 c
la

ss 3.097.0Ferrite

97.42.6Perlite

PerliteFerrite

Predicted class

(a) Confusion matrix (%)

Tr
ue

 c
la

ss 7.194.9Ferrite

98.11.9Perlite

PerliteFerrite

Predicted class

(c) Confusion matrix (%)

Tr
ue

 c
la

ss 4.295.8Ferrite

98.41.6Perlite

PerliteFerrite

Predicted class

(e) Confusion matrix (%)

Tr
ue

 c
la

ss 3.996.1Ferrite

98.81.2Perlite

PerliteFerrite

Predicted class

Appl. Sci. 2024, 14, 2297 13 of 31

Figure 11. Segmented samples. A and B correspond to two randomly selected samples.

During the training process of the segmentation model, anomalies or irregularities
that might occur in individual images are likely to diminish or be addressed as the model
learns from a diverse set of images. The learning process, driven by probabilities, helps
the model to generalize and effectively segment objects or regions of interest in images,
even in cases where there might be variations or anomalies in the data. In this case, the
model might not learn extensively about these imperfections due to their limited occur-
rence in the training data.

4. Discussion
Different random test samples were selected for segmentation using the obtained

models. The accuracy and loss values in Figures 5–9 are obtained during training. The
overall values, as shown in Table 4, are calculated based on test images that the model
had not previously seen. These test values closely resemble those observed during train-
ing, indicating that no “overfitting” has occurred in any of the models.

Algorithms with lower loss rates and higher accuracy during training may demon-
strate superior generalization performance on unseen data, resulting in higher final accu-
racy.

In Figure 11 (segmented samples), a comparison of 224 × 224 images of annealed steel
is presented, highlighting the region considered as perlite in green hues and the matrix or
ferrite, which appears light in the original image and violet in the segmented image. The
grayscale image corresponds to the mask generated during data preprocessing. Although
the results are very similar, subtle differences can be perceived. It is important to note that
some masks were created manually, while the rest underwent preprocessing using a Ran-
dom Forest algorithm with WEKA software. This process may have introduced errors in
pixel annotation in some masks, causing the model to learn from imperfect images. As
shown in microstructure A, there is an error in the bottom right part of the mask (slightly
pointed area), Figure 12a, where the ferrite zone connecting with the one in the top right
has not been completely obtained. This flaw is highlighted in red in Figure 12b. This error
has also been transferred to the training models, which consequently failed to detect the
ferrite in that zone. However, a slight improvement in the segmented area compared to
the mask is noticeable. Similarly, in image B, impurities can be observed on the ferrite area
(two dots on the left side), which were also transferred to the training dataset. In this case,
models like DeepLabv3 with ResNet50-18 have effectively eliminated these impurities
during the segmentation process.

Appl. Sci. 2024, 14, 2297 14 of 31

Figure 12. Detail of the error in mask production during preprocessing. (a) Image from test dataset;
(b) mask. The red box indicates the lack of ferrite in the mask.

As shown in Figure 13, another test sample was selected, and errors in the identifica-
tion of ferrite and perlite were marked on the corresponding mask image. The segmented
images by the models demonstrate improvement over the mask created for training. We
can observe that in the original image, it is difficult to appreciate the laminar structure of
perlite. Although ferrite, as the matrix element of the microstructure, should be easily de-
tected due to its more uniform and clear texture, the models encounter issues in some
areas, such as the band in Figure 13b, which is indicated in the red rectangular area. Con-
sidering perlite as alternating layers of ferrite and cementite, the thickness of this bright
band between two darker zones causes the models to interpret that area as perlite. The
models with DeepLabv3+/MobileNetv2, shown in Figure 13f and, to some extent, U-Net,
manage to enhance segmentation in that specific area.

Figure 13. U-Net, (a) test image sample, (b) mask of the sample, (c) semantic segmentation U-NET,
(d) DeepLabv3+/ResNet50, (e) DeepLabv3+/ResNet18, and (f) Deeplabv3/MobileNetv2.

Appl. Sci. 2024, 14, 2297 15 of 31

5. Conclusions
This study investigates the identification of microconstituents, specifically ferrite and

perlite, in optical metallographic images of steels using deep learning networks special-
ized in image segmentation problems. The work encompasses challenging tasks, particu-
larly in obtaining and preparing the images. While other studies often concentrate on de-
tecting various microconstituents using electron microscopy, where differences are typi-
cally more pronounced, our focus is on optical images. As the core of this study is
grounded in optical images, a preliminary investigation has been undertaken on micro-
constituents derived from annealing heat treatments.

Segmenting distinct and clearly identifiable textures, such as perlite and ferrite, could
be approached using classical algorithms with the application of conventional computer
vision filters or classical machine learning techniques. However, in other studies con-
ducted by the authors, it has been confirmed that the application of deep learning tech-
niques to steel metallographic images enhances the metrics compared to classical machine
learning algorithms. The advantage of approaching the study through deep learning is
the creation of models that can be integrated into more general models in the future
through transfer learning or model ensemble, thereby forming a superior structure.

Author Contributions: Conceptualization, F.G.-S. and V.M.-E.; methodology, J.M.-R., F.G.-S., J.C.-
S., A.M.-M. and V.M.-E.; software, J.M.-R. and F.G.-S.; validation, J.C.-S., A.M.-M. and J.M.-R.; for-
mal analysis, J.M.-R., F.G.-S. and V.M.-E.; investigation, J.M.-R., A.M.-M. and J.C.-S.; resources,
A.M.-M., J.C.-S. and V.M.-E.; data curation, J.M.-R. and F.G.-S.; writing original draft preparation,
J.M.-R.; writing review and editing, J.M.-R., F.G.-S. and V.M.-E.; visualization, F.G.-S. and V.M.-E.;
supervision, F.G.-S., J.C.-S., A.M.-M. and V.M.-E. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. U-Net Layer information (Activation format: S—Spatial; C–Channel; B—Batch).

 Name Type Activations Learnables

1 ImageInputLayer Image Input 224 224 3 1 SSCB 0

2 Encoder-Stage-1-Conv-1 2-D Convolution 224 224 64 1 SSCB 1792

3 Encoder-Stage-1-ReLU-1 ReLU 224 224 64 1 SSCB 0

4 Encoder-Stage-1-Conv-2 2-D Convolution 224 224 64 1 SSCB 36,928

5 Encoder-Stage-1-ReLU-2 ReLU 224 224 64 1 SSCB 0

6 Encoder-Stage-1-MaxPool 2-D Max Pooling 112 112 64 1 SSCB 0

7 Encoder-Stage-2-Conv-1 2-D Convolution 112 112 128 1 SSCB 73,856

8 Encoder-Stage-2-ReLU-1 ReLU 112 112 128 1 SSCB 0

9 Encoder-Stage-2-Conv-2 2-D Convolution 112 112 128 1 SSCB 147,584

10 Encoder-Stage-2-ReLU-2 ReLU 112 112 128 1 SSCB 0

11 Encoder-Stage-2-MaxPool 2-D Max Pooling 56 56 128 1 SSCB 0

12 Encoder-Stage-3-Conv-1 2-D Convolution 56 56 256 1 SSCB 295,168

13 Encoder-Stage-3-ReLU-1 ReLU 56 56 256 1 SSCB 0

14 Encoder-Stage-3-Conv-2 2-D Convolution 56 56 256 1 SSCB 590,080

Appl. Sci. 2024, 14, 2297 16 of 31

15 Encoder-Stage-3-ReLU-2 ReLU 56 56 256 1 SSCB 0

16 Encoder-Stage-3-DropOut Dropout 56 56 256 1 SSCB 0

17 Encoder-Stage-3-MaxPool 2-D Max Pooling 28 28 256 1 SSCB 0

18 Bridge-Conv-1 2-D Convolution 28 28 512 1 SSCB 1,180,160

19 Bridge-ReLU-1 ReLU 28 28 512 1 SSCB 0

20 Bridge-Conv-2 2-D Convolution 28 28 512 1 SSCB 2,359,808

21 Bridge-ReLU-2 ReLU 28 28 512 1 SSCB 0

22 Bridge-DropOut Dropout 28 28 512 1 SSCB 0

23 Decoder-Stage-1-UpConv 2-D Transposed Convolution 56 56 256 1 SSCB 524,544

24 Decoder-Stage-1-UpReLU ReLU 56 56 256 1 SSCB 0

25 Decoder-Stage-1-DepthConcatenation Depth concatenation 56 56 512 1 SSCB 0

26 Decoder-Stage-1-Conv-1 2-D Convolution 56 56 256 1 SSCB 1,179,904

27 Decoder-Stage-1-ReLU-1 ReLU 56 56 256 1 SSCB 0

28 Decoder-Stage-1-Conv-2 2-D Convolution 56 56 256 1 SSCB 590,080

29 Decoder-Stage-1-ReLU-2 ReLU 56 56 256 1 SSCB 0

30 Decoder-Stage-2-UpConv 2-D Transposed Convolution 112 112 128 1 SSCB 131,200

31 Decoder-Stage-2-UpReLU ReLU 112 112 128 1 SSCB 0

32 Decoder-Stage-2-DepthConcatenation Depth concatenation 112 112 256 1 SSCB 0

33 Decoder-Stage-2-Conv-1 2-D Convolution 112 112 128 1 SSCB 295,040

34 Decoder-Stage-2-ReLU-1 ReLU 112 112 128 1 SSCB 0

35 Decoder-Stage-2-Conv-2 2-D Convolution 112 112 128 1 SSCB 147,584

36 Decoder-Stage-2-ReLU-2 ReLU 112 112 128 1 SSCB 0

37 Decoder-Stage-3-UpConv 2-D Transposed Convolution 224 224 64 1 SSCB 32,832

38 Decoder-Stage-3-UpReLU ReLU 224 224 64 1 SSCB 0

39 Decoder-Stage-3-DepthConcatenation Depth concatenation 224 224 128 1 SSCB 0

40 Decoder-Stage-3-Conv-1 2-D Convolution 224 224 64 1 SSCB 73,792

41 Decoder-Stage-3-ReLU-1 ReLU 224 224 64 1 SSCB 0

42 Decoder-Stage-3-Conv-2 2-D Convolution 224 224 64 1 SSCB 36,928

43 Decoder-Stage-3-ReLU-2 ReLU 224 224 64 1 SSCB 0

44 Final-ConvolutionLayer 2-D Convolution 224 224 2 1 SSCB 130

45 Softmax-Layer Softmax 224 224 2 1 SSCB 0

46 Segmentation-Layer Pixel Classification Layer 224 224 2 1 SSCB 0

Table A2. SegNet Layer information (Activation format: S—Spatial; C–Channel; B—Batch).

 Name Type Activation Learnables

1 conv1_1 2-D Convolution 224 224 64 1 SSCB 1792

2 bn_conv1_1 Batch Normalization 224 224 64 1 SSCB 128

3 relu1_1 ReLU 224 224 64 1 SSCB 0

4 conv1_2 2-D Convolution 224 224 64 1 SSCB 36,928

5 bn_conv1_2 Batch Normalization 224 224 64 1 SSCB 128

6 relu1_2 ReLU 224 224 64 1 SSCB 0

7 pool1 2-D Max Pooling 0

8 conv2_1 2-D Convolution 112 112 128 1 SSCB 73,856

9 bn_conv2_1 Batch Normalization 112 112 128 1 SSCB 256

Appl. Sci. 2024, 14, 2297 17 of 31

10 relu2_1 ReLU 112 112 128 1 SSCB 0

11 conv2_2 2-D Convolution 112 112 128 1 SSCB 147,584

12 bn_conv2_2 Batch Normalization 112 112 128 1 SSCB 256

13 relu2_2 ReLU 112 112 128 1 SSCB 0

14 pool2 2-D Max Pooling 0

15 conv3_1 2-D Convolution 56 56 256 1 SSCB 295,168

16 bn_conv3_1 Batch Normalization 56 56 256 1 SSCB 512

17 relu3_1 ReLU 56 56 256 1 SSCB 0

18 conv3_2 2-D Convolution 56 56 256 1 SSCB 590,080

19 bn_conv3_2 Batch Normalization 56 56 256 1 SSCB 512

20 relu3_2 ReLU 56 56 256 1 SSCB 0

21 conv3_3 2-D Convolution 56 56 256 1 SSCB 590,080

22 bn_conv3_3 Batch Normalization 56 56 256 1 SSCB 512

23 relu3_3 ReLU 56 56 256 1 SSCB 0

24 pool3 2-D Max Pooling 0

25 conv4_1 2-D Convolution 28 28 512 1 SSCB 1,180,160

26 bn_conv4_1 Batch Normalization 28 28 512 1 SSCB 1024

27 relu4_1 ReLU 28 28 512 1 SSCB 0

28 conv4_2 2-D Convolution 28 28 512 1 SSCB 2,359,808

29 bn_conv4_2 Batch Normalization 28 28 512 1 SSCB 1024

30 relu4_2 ReLU 28 28 512 1 SSCB 0

31 conv4_3 2-D Convolution 28 28 512 1 SSCB 2,359,808

32 bn_conv4_3 Batch Normalization 28 28 512 1 SSCB 1024

33 relu4_3 ReLU 28 28 512 1 SSCB 0

34 pool4 2-D Max Pooling 0

35 conv5_1 2-D Convolution 14 14 512 1 SSCB 2,359,808

36 bn_conv5_1 Batch Normalization 14 14 512 1 SSCB 1024

37 relu5_1 ReLU 14 14 512 1 SSCB 0

38 conv5_2 2-D Convolution 14 14 512 1 SSCB 2,359,808

39 bn_conv5_2 Batch Normalization 14 14 512 1 SSCB 1024

40 relu5_2 ReLU 14 14 512 1 SSCB 0

41 conv5_3 2-D Convolution 14 14 512 1 SSCB 2,359,808

42 bn_conv5_3 Batch Normalization 14 14 512 1 SSCB 1024

43 relu5_3 ReLU 14 14 512 1 SSCB 0

44 pool5 2-D Max Pooling 0

45 decoder5_unpool 2-D Max Unpooling 14 14 512 1 SSCB 0

46 decoder5_conv3 2-D Convolution 14 14 512 1 SSCB 2,359,808

47 decoder5_bn_3 Batch Normalization 14 14 512 1 SSCB 1024

48 decoder5_relu_3 ReLU 14 14 512 1 SSCB 0

49 decoder5_conv2 2-D Convolution 14 14 512 1 SSCB 2,359,808

50 decoder5_bn_2 Batch Normalization 14 14 512 1 SSCB 1024

51 decoder5_relu_2 ReLU 14 14 512 1 SSCB 0

52 decoder5_conv1 2-D Convolution 14 14 512 1 SSCB 2,359,808

53 decoder5_bn_1 Batch Normalization 14 14 512 1 SSCB 1024

Appl. Sci. 2024, 14, 2297 18 of 31

54 decoder5_relu_1 ReLU 14 14 512 1 SSCB 0

55 decoder4_unpool 2-D Max Unpooling 28 28 512 1 SSCB 0

56 decoder4_conv3 2-D Convolution 28 28 512 1 SSCB 2,359,808

57 decoder4_bn_3 Batch Normalization 28 28 512 1 SSCB 1024

58 decoder4_relu_3 ReLU 28 28 512 1 SSCB 0

59 decoder4_conv2 2-D Convolution 28 28 512 1 SSCB 2,359,808

60 decoder4_bn_2 Batch Normalization 28 28 512 1 SSCB 1024

61 decoder4_relu_2 ReLU 28 28 512 1 SSCB 0

62 decoder4_conv1 2-D Convolution 28 28 256 1 SSCB 1,179,904

63 decoder4_bn_1 Batch Normalization 28 28 256 1 SSCB 512

64 decoder4_relu_1 ReLU 28 28 256 1 SSCB 0

65 decoder3_unpool 2-D Max Unpooling 56 56 256 1 SSCB 0

66 decoder3_conv3 2-D Convolution 56 56 256 1 SSCB 590,080

67 decoder3_bn_3 Batch Normalization 56 56 256 1 SSCB 512

68 decoder3_relu_3 ReLU 56 56 256 1 SSCB 0

69 decoder3_conv2 2-D Convolution 56 56 256 1 SSCB 590,080

70 decoder3_bn_2 Batch Normalization 56 56 256 1 SSCB 512

71 decoder3_relu_2 ReLU 56 56 256 1 SSCB 0

72 decoder3_conv1 2-D Convolution 56 56 128 1 SSCB 295,040

73 decoder3_bn_1 Batch Normalization 56 56 128 1 SSCB 256

74 decoder3_relu_1 ReLU 56 56 128 1 SSCB 0

75 decoder2_unpool 2-D Max Unpooling 112 112 128 1 SSCB 0

76 decoder2_conv2 2-D Convolution 112 112 128 1 SSCB 147,584

77 decoder2_bn_2 Batch Normalization 112 112 128 1 SSCB 256

78 decoder2_relu_2 ReLU 112 112 128 1 SSCB 0

79 decoder2_conv1 2-D Convolution 112 112 64 1 SSCB 73,792

80 decoder2_bn_1 Batch Normalization 112 112 64 1 SSCB 128

81 decoder2_relu_1 ReLU 112 112 64 1 SSCB 0

82 decoder1_unpool 2-D Max Unpooling 224 224 64 1 SSCB 0

83 decoder1_conv2 2-D Convolution 224 224 64 1 SSCB 36,928

84 decoder1_bn_2 Batch Normalization 224 224 64 1 SSCB 128

85 decoder1_relu_2 ReLU 224 224 64 1 SSCB 0

86 decoder1_conv1 2-D Convolution 224 224 2 1 SSCB 1154

87 decoder1_bn_1 Batch Normalization 224 224 2 1 SSCB 4

88 decoder1_relu_1 ReLU 224 224 2 1 SSCB 0

89 softmax Softmax 224 224 2 1 SSCB 0

90 pixelLabels Pixel Classification Layer 224 224 2 1 SSCB 0

Appl. Sci. 2024, 14, 2297 19 of 31

Table A3. DeepLabv3+/ResNet50 Layer information (Activation format: S—Spatial; C–Channel; B—
Batch).

 Name Type Activations Learnables

1 input_1 Image Input 224 224 3 1 SSCB 0

2 conv1 2-D Convolution 112 112 64 1 SSCB 9472

3 bn_conv1 Batch Normalization 112 112 64 1 SSCB 128

4 activation_1_relu ReLU 112 112 64 1 SSCB 0

5 max_pooling2d_1 2-D Max Pooling 56 56 64 1 SSCB 0

6 res2a_branch2a 2-D Convolution 56 56 64 1 SSCB 4160

7 bn2a_branch2a Batch Normalization 56 56 64 1 SSCB 128

8 activation_2_relu ReLU 56 56 64 1 SSCB 0

9 res2a_branch2b 2-D Convolution 56 56 64 1 SSCB 36,928

10 bn2a_branch2b Batch Normalization 56 56 64 1 SSCB 128

11 activation_3_relu ReLU 56 56 64 1 SSCB 0

12 res2a_branch2c 2-D Convolution 56 56 256 1 SSCB 16,640

13 res2a_branch1 2-D Convolution 56 56 256 1 SSCB 16,640

14 bn2a_branch2c Batch Normalization 56 56 256 1 SSCB 512

15 bn2a_branch1 Batch Normalization 56 56 256 1 SSCB 512

16 add_1 Addition 56 56 256 1 SSCB 0

17 activation_4_relu ReLU 56 56 256 1 SSCB 0

18 res2b_branch2a 2-D Convolution 56 56 64 1 SSCB 16,448

19 bn2b_branch2a Batch Normalization 56 56 64 1 SSCB 128

20 activation_5_relu ReLU 56 56 64 1 SSCB 0

21 res2b_branch2b 2-D Convolution 56 56 64 1 SSCB 36,928

22 bn2b_branch2b Batch Normalization 56 56 64 1 SSCB 128

23 activation_6_relu ReLU 56 56 64 1 SSCB 0

24 res2b_branch2c 2-D Convolution 56 56 256 1 SSCB 16,640

25 bn2b_branch2c Batch Normalization 56 56 256 1 SSCB 512

26 add_2 Addition 56 56 256 1 SSCB 0

27 activation_7_relu ReLU 56 56 256 1 SSCB 0

28 res2c_branch2a 2-D Convolution 56 56 64 1 SSCB 16,448

29 bn2c_branch2a Batch Normalization 56 56 64 1 SSCB 128

30 activation_8_relu ReLU 56 56 64 1 SSCB 0

31 res2c_branch2b 2-D Convolution 56 56 64 1 SSCB 36,928

32 bn2c_branch2b Batch Normalization 56 56 64 1 SSCB 128

33 activation_9_relu ReLU 56 56 64 1 SSCB 0

34 res2c_branch2c 2-D Convolution 56 56 256 1 SSCB 16,640

35 bn2c_branch2c Batch Normalization 56 56 256 1 SSCB 512

36 add_3 Addition 56 56 256 1 SSCB 0

37 activation_10_relu ReLU 56 56 256 1 SSCB 0

38 res3a_branch2a 2-D Convolution 28 28 128 1 SSCB 32,896

39 bn3a_branch2a Batch Normalization 28 28 128 1 SSCB 256

40 activation_11_relu ReLU 28 28 128 1 SSCB 0

41 res3a_branch2b 2-D Convolution 28 28 128 1 SSCB 147,584

Appl. Sci. 2024, 14, 2297 20 of 31

42 bn3a_branch2b Batch Normalization 28 28 128 1 SSCB 256

43 activation_12_relu ReLU 28 28 128 1 SSCB 0

44 res3a_branch2c 2-D Convolution 28 28 512 1 SSCB 66,048

45 res3a_branch1 2-D Convolution 28 28 512 1 SSCB 131,584

46 bn3a_branch2c Batch Normalization 28 28 512 1 SSCB 1024

47 bn3a_branch1 Batch Normalization 28 28 512 1 SSCB 1024

48 add_4 Addition 28 28 512 1 SSCB 0

49 activation_13_relu ReLU 28 28 512 1 SSCB 0

50 res3b_branch2a 2-D Convolution 28 28 128 1 SSCB 65,664

51 bn3b_branch2a Batch Normalization 28 28 128 1 SSCB 256

52 activation_14_relu ReLU 28 28 128 1 SSCB 0

53 res3b_branch2b 2-D Convolution 28 28 128 1 SSCB 147,584

54 bn3b_branch2b Batch Normalization 28 28 128 1 SSCB 256

55 activation_15_relu ReLU 28 28 128 1 SSCB 0

56 res3b_branch2c 2-D Convolution 28 28 512 1 SSCB 66,048

57 bn3b_branch2c Batch Normalization 28 28 512 1 SSCB 1024

58 add_5 Addition 28 28 512 1 SSCB 0

59 activation_16_relu ReLU 28 28 512 1 SSCB 0

60 res3c_branch2a 2-D Convolution 28 28 128 1 SSCB 65,664

61 bn3c_branch2a Batch Normalization 28 28 128 1 SSCB 256

62 activation_17_relu ReLU 28 28 128 1 SSCB 0

63 res3c_branch2b 2-D Convolution 28 28 128 1 SSCB 147,584

64 bn3c_branch2b Batch Normalization 28 28 128 1 SSCB 256

65 activation_18_relu ReLU 28 28 128 1 SSCB 0

66 res3c_branch2c 2-D Convolution 28 28 512 1 SSCB 66,048

67 bn3c_branch2c Batch Normalization 28 28 512 1 SSCB 1024

68 add_6 Addition 28 28 512 1 SSCB 0

69 activation_19_relu ReLU 28 28 512 1 SSCB 0

70 res3d_branch2a 2-D Convolution 28 28 128 1 SSCB 65,664

71 bn3d_branch2a Batch Normalization 28 28 128 1 SSCB 256

72 activation_20_relu ReLU 28 28 128 1 SSCB 0

73 res3d_branch2b 2-D Convolution 28 28 128 1 SSCB 147,584

74 bn3d_branch2b Batch Normalization 28 28 128 1 SSCB 256

75 activation_21_relu ReLU 28 28 128 1 SSCB 0

76 res3d_branch2c 2-D Convolution 28 28 512 1 SSCB 66,048

77 bn3d_branch2c Batch Normalization 28 28 512 1 SSCB 1024

78 add_7 Addition 28 28 512 1 SSCB 0

79 activation_22_relu ReLU 28 28 512 1 SSCB 0

80 res4a_branch2a 2-D Convolution 14 14 256 1 SSCB 131,328

81 bn4a_branch2a Batch Normalization 14 14 256 1 SSCB 512

82 activation_23_relu ReLU 14 14 256 1 SSCB 0

83 res4a_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

84 bn4a_branch2b Batch Normalization 14 14 256 1 SSCB 512

85 activation_24_relu ReLU 14 14 256 1 SSCB 0

Appl. Sci. 2024, 14, 2297 21 of 31

86 res4a_branch2c 2-D Convolution 14 14 1024 1 SSCB 263,168

87 res4a_branch1 2-D Convolution 14 14 1024 1 SSCB 525,312

88 bn4a_branch2c Batch Normalization 14 14 1024 1 SSCB 2048

89 bn4a_branch1 Batch Normalization 14 14 1024 1 SSCB 2048

90 add_8 Addition 14 14 1024 1 SSCB 0

91 activation_25_relu ReLU 14 14 1024 1 SSCB 0

92 res4b_branch2a 2-D Convolution 14 14 256 1 SSCB 262,400

93 bn4b_branch2a Batch Normalization 14 14 256 1 SSCB 512

94 activation_26_relu ReLU 14 14 256 1 SSCB 0

95 res4b_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

96 bn4b_branch2b Batch Normalization 14 14 256 1 SSCB 512

97 activation_27_relu ReLU 14 14 256 1 SSCB 0

98 res4b_branch2c 2-D Convolution 14 14 1024 1 SSCB 263,168

99 bn4b_branch2c Batch Normalization 14 14 1024 1 SSCB 2048

100 add_9 Addition 14 14 1024 1 SSCB 0

101 activation_28_relu ReLU 14 14 1024 1 SSCB 0

102 res4c_branch2a 2-D Convolution 14 14 256 1 SSCB 262,400

103 bn4c_branch2a Batch Normalization 14 14 256 1 SSCB 512

104 activation_29_relu ReLU 14 14 256 1 SSCB 0

105 res4c_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

106 bn4c_branch2b Batch Normalization 14 14 256 1 SSCB 512

107 activation_30_relu ReLU 14 14 256 1 SSCB 0

108 res4c_branch2c 2-D Convolution 14 14 1024 1 SSCB 263,168

109 bn4c_branch2c Batch Normalization 14 14 1024 1 SSCB 2048

110 add_10 Addition 14 14 1024 1 SSCB 0

111 activation_31_relu ReLU 14 14 1024 1 SSCB 0

112 res4d_branch2a 2-D Convolution 14 14 256 1 SSCB 262,400

113 bn4d_branch2a Batch Normalization 14 14 256 1 SSCB 512

114 activation_32_relu ReLU 14 14 256 1 SSCB 0

115 res4d_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

116 bn4d_branch2b Batch Normalization 14 14 256 1 SSCB 512

117 activation_33_relu ReLU 14 14 256 1 SSCB 0

118 res4d_branch2c 2-D Convolution 14 14 1024 1 SSCB 263,168

119 bn4d_branch2c Batch Normalization 14 14 1024 1 SSCB 2048

120 add_11 Addition 14 14 1024 1 SSCB 0

121 activation_34_relu ReLU 14 14 1024 1 SSCB 0

122 res4e_branch2a 2-D Convolution 14 14 256 1 SSCB 262,400

123 bn4e_branch2a Batch Normalization 14 14 256 1 SSCB 512

124 activation_35_relu ReLU 14 14 256 1 SSCB 0

125 res4e_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

126 bn4e_branch2b Batch Normalization 14 14 256 1 SSCB 512

127 activation_36_relu ReLU 14 14 256 1 SSCB 0

128 res4e_branch2c 2-D Convolution 14 14 1024 1 SSCB 263,168

129 bn4e_branch2c Batch Normalization 14 14 1024 1 SSCB 2048

Appl. Sci. 2024, 14, 2297 22 of 31

130 add_12 Addition 14 14 1024 1 SSCB 0

131 activation_37_relu ReLU 14 14 1024 1 SSCB 0

132 res4f_branch2a 2-D Convolution 14 14 256 1 SSCB 262,400

133 bn4f_branch2a Batch Normalization 14 14 256 1 SSCB 512

134 activation_38_relu ReLU 14 14 256 1 SSCB 0

135 res4f_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

136 bn4f_branch2b Batch Normalization 14 14 256 1 SSCB 512

137 activation_39_relu ReLU 14 14 256 1 SSCB 0

138 res4f_branch2c 2-D Convolution 14 14 1024 1 SSCB 263,168

139 bn4f_branch2c Batch Normalization 14 14 1024 1 SSCB 2048

140 add_13 Addition 14 14 1024 1 SSCB 0

141 activation_40_relu ReLU 14 14 1024 1 SSCB 0

142 res5a_branch2a 2-D Convolution 14 14 512 1 SSCB 524,800

143 bn5a_branch2a Batch Normalization 14 14 512 1 SSCB 1024

144 activation_41_relu ReLU 14 14 512 1 SSCB 0

145 res5a_branch2b 2-D Convolution 14 14 512 1 SSCB 2,359,808

146 bn5a_branch2b Batch Normalization 14 14 512 1 SSCB 1024

147 activation_42_relu ReLU 14 14 512 1 SSCB 0

148 res5a_branch2c 2-D Convolution 14 14 2048 1 SSCB 1,050,624

149 res5a_branch1 2-D Convolution 14 14 2048 1 SSCB 2,099,200

150 bn5a_branch2c Batch Normalization 14 14 2048 1 SSCB 4096

151 bn5a_branch1 Batch Normalization 14 14 2048 1 SSCB 4096

152 add_14 Addition 14 14 2048 1 SSCB 0

153 activation_43_relu ReLU 14 14 2048 1 SSCB 0

154 res5b_branch2a 2-D Convolution 14 14 512 1 SSCB 1,049,088

155 bn5b_branch2a Batch Normalization 14 14 512 1 SSCB 1024

156 activation_44_relu ReLU 14 14 512 1 SSCB 0

157 res5b_branch2b 2-D Convolution 14 14 512 1 SSCB 2,359,808

158 bn5b_branch2b Batch Normalization 14 14 512 1 SSCB 1024

159 activation_45_relu ReLU 14 14 512 1 SSCB 0

160 res5b_branch2c 2-D Convolution 14 14 2048 1 SSCB 1,050,624

161 bn5b_branch2c Batch Normalization 14 14 2048 1 SSCB 4096

162 add_15 Addition 14 14 2048 1 SSCB 0

163 activation_46_relu ReLU 14 14 2048 1 SSCB 0

164 res5c_branch2a 2-D Convolution 14 14 512 1 SSCB 1,049,088

165 bn5c_branch2a Batch Normalization 14 14 512 1 SSCB 1024

166 activation_47_relu ReLU 14 14 512 1 SSCB 0

167 res5c_branch2b 2-D Convolution 14 14 512 1 SSCB 2,359,808

168 bn5c_branch2b Batch Normalization 14 14 512 1 SSCB 1024

169 activation_48_relu ReLU 14 14 512 1 SSCB 0

170 res5c_branch2c 2-D Convolution 14 14 2048 1 SSCB 1,050,624

171 bn5c_branch2c Batch Normalization 14 14 2048 1 SSCB 4096

172 add_16 Addition 14 14 2048 1 SSCB 0

173 activation_49_relu ReLU 14 14 2048 1 SSCB 0

Appl. Sci. 2024, 14, 2297 23 of 31

174 aspp_Conv_1 2-D Convolution 14 14 256 1 SSCB 524,544

175 aspp_BatchNorm_1 Batch Normalization 14 14 256 1 SSCB 512

176 aspp_Relu_1 ReLU 14 14 256 1 SSCB 0

177 aspp_Conv_2 2-D Convolution 14 14 256 1 SSCB 4,718,848

178 aspp_BatchNorm_2 Batch Normalization 14 14 256 1 SSCB 512

179 aspp_Relu_2 ReLU 14 14 256 1 SSCB 0

180 aspp_Conv_3 2-D Convolution 14 14 256 1 SSCB 4,718,848

181 aspp_BatchNorm_3 Batch Normalization 14 14 256 1 SSCB 512

182 aspp_Relu_3 ReLU 14 14 256 1 SSCB 0

183 aspp_Conv_4 2-D Convolution 14 14 256 1 SSCB 4,718,848

184 aspp_BatchNorm_4 Batch Normalization 14 14 256 1 SSCB 512

185 aspp_Relu_4 ReLU 14 14 256 1 SSCB 0

186 catAspp Depth concatenation 14 14 1024 1 SSCB 0

187 dec_c1 2-D Convolution 14 14 256 1 SSCB 262,400

188 dec_bn1 Batch Normalization 14 14 256 1 SSCB 512

189 dec_relu1 ReLU 14 14 256 1 SSCB 0

190 dec_upsample1 2-D Transposed Convolution 56 56 256 1 SSCB 4,194,560

191 dec_c2 2-D Convolution 56 56 48 1 SSCB 12,336

192 dec_bn2 Batch Normalization 56 56 48 1 SSCB 96

193 dec_relu2 ReLU 56 56 48 1 SSCB 0

194 dec_crop1 Crop 2D 56 56 256 1 SSCB 0

195 dec_cat1 Depth concatenation 56 56 304 1 SSCB 0

196 dec_c3 2-D Convolution 56 56 256 1 SSCB 700,672

197 dec_bn3 Batch Normalization 56 56 256 1 SSCB 512

198 dec_relu3 ReLU 56 56 256 1 SSCB 0

199 dec_c4 2-D Convolution 56 56 256 1 SSCB 590,080

200 dec_bn4 Batch Normalization 56 56 256 1 SSCB 512

201 dec_relu4 ReLU 56 56 256 1 SSCB 0

202 scorer 2-D Convolution 56 56 2 1 SSCB 514

203 dec_upsample2 2-D Transposed Convolution 224 224 2 1 SSCB 258

204 dec_crop2 Crop 2D 224 224 2 1 SSCB 0

205 softmax-out Softmax 224 224 2 1 SSCB 0

206 labels Pixel Classification Layer 224 224 2 1 SSCB 0

Table A4. DeepLabv3+/ResNet18 Layer information (Activation format: S—Spatial; C–Channel; B—
Batch).

 Name Type Activations Learnables

1 data Image Input 224 224 3 1 SSCB 0

2 conv1 2-D Convolution 112 112 64 1 SSCB 9472

3 bn_conv1 Batch Normalization 112 112 64 1 SSCB 128

4 conv1_relu ReLU 112 112 64 1 SSCB 0

5 pool1 2-D Max Pooling 56 56 64 1 SSCB 0

6 res2a_branch2a 2-D Convolution 56 56 64 1 SSCB 36,928

7 bn2a_branch2a Batch Normalization 56 56 64 1 SSCB 128

Appl. Sci. 2024, 14, 2297 24 of 31

8 res2a_branch2a_relu ReLU 56 56 64 1 SSCB 0

9 res2a_branch2b 2-D Convolution 56 56 64 1 SSCB 36,928

10 bn2a_branch2b Batch Normalization 56 56 64 1 SSCB 128

11 res2a Addition 56 56 64 1 SSCB 0

12 res2a_relu ReLU 56 56 64 1 SSCB 0

13 res2b_branch2a 2-D Convolution 56 56 64 1 SSCB 36,928

14 bn2b_branch2a Batch Normalization 56 56 64 1 SSCB 128

15 res2b_branch2a_relu ReLU 56 56 64 1 SSCB 0

16 res2b_branch2b 2-D Convolution 56 56 64 1 SSCB 36,928

17 bn2b_branch2b Batch Normalization 56 56 64 1 SSCB 128

18 res2b Addition 56 56 64 1 SSCB 0

19 res2b_relu ReLU 56 56 64 1 SSCB 0

20 res3a_branch2a 2-D Convolution 28 28 128 1 SSCB 73,856

21 bn3a_branch2a Batch Normalization 28 28 128 1 SSCB 256

22 res3a_branch2a_relu ReLU 28 28 128 1 SSCB 0

23 res3a_branch2b 2-D Convolution 28 28 128 1 SSCB 147,584

24 bn3a_branch2b Batch Normalization 28 28 128 1 SSCB 256

25 res3a_branch1 2-D Convolution 28 28 128 1 SSCB 8320

26 bn3a_branch1 Batch Normalization 28 28 128 1 SSCB 256

27 res3a Addition 28 28 128 1 SSCB 0

28 res3a_relu ReLU 28 28 128 1 SSCB 0

29 res3b_branch2a 2-D Convolution 28 28 128 1 SSCB 147,584

30 bn3b_branch2a Batch Normalization 28 28 128 1 SSCB 256

31 res3b_branch2a_relu ReLU 28 28 128 1 SSCB 0

32 res3b_branch2b 2-D Convolution 28 28 128 1 SSCB 147,584

33 bn3b_branch2b Batch Normalization 28 28 128 1 SSCB 256

34 res3b Addition 28 28 128 1 SSCB 0

35 res3b_relu ReLU 28 28 128 1 SSCB 0

36 res4a_branch2a 2-D Convolution 14 14 256 1 SSCB 295,168

37 bn4a_branch2a Batch Normalization 14 14 256 1 SSCB 512

38 res4a_branch2a_relu ReLU 14 14 256 1 SSCB 0

39 res4a_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

40 bn4a_branch2b Batch Normalization 14 14 256 1 SSCB 512

41 res4a_branch1 2-D Convolution 14 14 256 1 SSCB 33,024

42 bn4a_branch1 Batch Normalization 14 14 256 1 SSCB 512

43 res4a Addition 14 14 256 1 SSCB 0

44 res4a_relu ReLU 14 14 256 1 SSCB 0

45 res4b_branch2a 2-D Convolution 14 14 256 1 SSCB 590,080

46 bn4b_branch2a Batch Normalization 14 14 256 1 SSCB 512

47 res4b_branch2a_relu ReLU 14 14 256 1 SSCB 0

48 res4b_branch2b 2-D Convolution 14 14 256 1 SSCB 590,080

49 bn4b_branch2b Batch Normalization 14 14 256 1 SSCB 512

50 res4b Addition 14 14 256 1 SSCB 0

51 res4b_relu ReLU 14 14 256 1 SSCB 0

Appl. Sci. 2024, 14, 2297 25 of 31

52 res5a_branch2a 2-D Convolution 14 14 512 1 SSCB 1,180,160

53 bn5a_branch2a Batch Normalization 14 14 512 1 SSCB 1024

54 res5a_branch2a_relu ReLU 14 14 512 1 SSCB 0

55 res5a_branch2b 2-D Convolution 14 14 512 1 SSCB 2,359,808

56 bn5a_branch2b Batch Normalization 14 14 512 1 SSCB 1024

57 res5a_branch1 2-D Convolution 14 14 512 1 SSCB 131,584

58 bn5a_branch1 Batch Normalization 14 14 512 1 SSCB 1024

59 res5a Addition 14 14 512 1 SSCB 0

60 res5a_relu ReLU 14 14 512 1 SSCB 0

61 res5b_branch2a 2-D Convolution 14 14 512 1 SSCB 2,359,808

62 bn5b_branch2a Batch Normalization 14 14 512 1 SSCB 1024

63 res5b_branch2a_relu ReLU 14 14 512 1 SSCB 0

64 res5b_branch2b 2-D Convolution 14 14 512 1 SSCB 2,359,808

65 bn5b_branch2b Batch Normalization 14 14 512 1 SSCB 1024

66 res5b Addition 14 14 512 1 SSCB 0

67 res5b_relu ReLU 14 14 512 1 SSCB 0

68 aspp_Conv_1 2-D Convolution 14 14 256 1 SSCB 131,328

69 aspp_BatchNorm_1 Batch Normalization 14 14 256 1 SSCB 512

70 aspp_Relu_1 ReLU 14 14 256 1 SSCB 0

71 aspp_Conv_2 2-D Convolution 14 14 256 1 SSCB 1,179,904

72 aspp_BatchNorm_2 Batch Normalization 14 14 256 1 SSCB 512

73 aspp_Relu_2 ReLU 14 14 256 1 SSCB 0

74 aspp_Conv_3 2-D Convolution 14 14 256 1 SSCB 1,179,904

75 aspp_BatchNorm_3 Batch Normalization 14 14 256 1 SSCB 512

76 aspp_Relu_3 ReLU 14 14 256 1 SSCB 0

77 aspp_Conv_4 2-D Convolution 14 14 256 1 SSCB 1,179,904

78 aspp_BatchNorm_4 Batch Normalization 14 14 256 1 SSCB 512

79 aspp_Relu_4 ReLU 14 14 256 1 SSCB 0

80 catAspp Depth concatenation 14 14 ### 1 SSCB 0

81 dec_c1 2-D Convolution 14 14 256 1 SSCB 262,400

82 dec_bn1 Batch Normalization 14 14 256 1 SSCB 512

83 dec_relu1 ReLU 14 14 256 1 SSCB 0

84 dec_upsample1 2-D Transposed Convolution 56 56 256 1 SSCB 4,194,560

85 dec_c2 2-D Convolution 56 56 48 1 SSCB 3120

86 dec_bn2 Batch Normalization 56 56 48 1 SSCB 96

87 dec_relu2 ReLU 56 56 48 1 SSCB 0

88 dec_crop1 Crop 2D 56 56 256 1 SSCB 0

89 dec_cat1 Depth concatenation 56 56 304 1 SSCB 0

90 dec_c3 2-D Convolution 56 56 256 1 SSCB 700,672

91 dec_bn3 Batch Normalization 56 56 256 1 SSCB 512

92 dec_relu3 ReLU 56 56 256 1 SSCB 0

93 dec_c4 2-D Convolution 56 56 256 1 SSCB 590,080

94 dec_bn4 Batch Normalization 56 56 256 1 SSCB 512

95 dec_relu4 ReLU 56 56 256 1 SSCB 0

Appl. Sci. 2024, 14, 2297 26 of 31

96 scorer 2-D Convolution 56 56 2 1 SSCB 514

97 dec_upsample2 2-D Transposed Convolution 224 224 2 1 SSCB 258

98 dec_crop2 Crop 2D 224 224 2 1 SSCB 0

99 softmax-out Softmax 224 224 2 1 SSCB 0

100 labels Pixel Classification Layer 224 224 2 1 SSCB 0

Table A5. DeepLabv3+/MobileNetv2 Layer information (Activation format: S—Spatial; C–Channel;
B—Batch).

 Name Type Activations Learnables

1 input_1 Image Input 224 224 3 1 SSCB 0

2 Conv1 2-D Convolution 112 112 32 1 SSCB 896

3 bn_Conv1 Batch Normalization 112 112 32 1 SSCB 64

4 Conv1_relu Clipped ReLU 112 112 32 1 SSCB 0

5 expanded_conv_depthwise 2-D Grouped Convolution 112 112 32 1 SSCB 320

6 expanded_conv_depthwise_BN Batch Normalization 112 112 32 1 SSCB 64

7 expanded_conv_depthwise_relu Clipped ReLU 112 112 32 1 SSCB 0

8 expanded_conv_project 2-D Convolution 112 112 16 1 SSCB 528

9 expanded_conv_project_BN Batch Normalization 112 112 16 1 SSCB 32

10 block_1_expand 2-D Convolution 112 112 96 1 SSCB 1632

11 block_1_expand_BN Batch Normalization 112 112 96 1 SSCB 192

12 block_1_expand_relu Clipped ReLU 112 112 96 1 SSCB 0

13 block_1_depthwise 2-D Grouped Convolution 56 56 96 1 SSCB 960

14 block_1_depthwise_BN Batch Normalization 56 56 96 1 SSCB 192

15 block_1_depthwise_relu Clipped ReLU 56 56 96 1 SSCB 0

16 block_1_project 2-D Convolution 56 56 24 1 SSCB 2328

17 block_1_project_BN Batch Normalization 56 56 24 1 SSCB 48

18 block_2_expand 2-D Convolution 56 56 144 1 SSCB 3600

19 block_2_expand_BN Batch Normalization 56 56 144 1 SSCB 288

20 block_2_expand_relu Clipped ReLU 56 56 144 1 SSCB 0

21 block_2_depthwise 2-D Grouped Convolution 56 56 144 1 SSCB 1440

22 block_2_depthwise_BN Batch Normalization 56 56 144 1 SSCB 288

23 block_2_depthwise_relu Clipped ReLU 56 56 144 1 SSCB 0

24 block_2_project 2-D Convolution 56 56 24 1 SSCB 3480

25 block_2_project_BN Batch Normalization 56 56 24 1 SSCB 48

26 block_2_add Addition 56 56 24 1 SSCB 0

27 block_3_expand 2-D Convolution 56 56 144 1 SSCB 3600

28 block_3_expand_BN Batch Normalization 56 56 144 1 SSCB 288

29 block_3_expand_relu Clipped ReLU 56 56 144 1 SSCB 0

30 block_3_depthwise 2-D Grouped Convolution 28 28 144 1 SSCB 1440

31 block_3_depthwise_BN Batch Normalization 28 28 144 1 SSCB 288

32 block_3_depthwise_relu Clipped ReLU 28 28 144 1 SSCB 0

33 block_3_project 2-D Convolution 28 28 32 1 SSCB 4640

34 block_3_project_BN Batch Normalization 28 28 32 1 SSCB 64

35 block_4_expand 2-D Convolution 28 28 192 1 SSCB 6336

Appl. Sci. 2024, 14, 2297 27 of 31

36 block_4_expand_BN Batch Normalization 28 28 192 1 SSCB 384

37 block_4_expand_relu Clipped ReLU 28 28 192 1 SSCB 0

38 block_4_depthwise 2-D Grouped Convolution 28 28 192 1 SSCB 1920

39 block_4_depthwise_BN Batch Normalization 28 28 192 1 SSCB 384

40 block_4_depthwise_relu Clipped ReLU 28 28 192 1 SSCB 0

41 block_4_project 2-D Convolution 28 28 32 1 SSCB 6176

42 block_4_project_BN Batch Normalization 28 28 32 1 SSCB 64

43 block_4_add Addition 28 28 32 1 SSCB 0

44 block_5_expand 2-D Convolution 28 28 192 1 SSCB 6336

45 block_5_expand_BN Batch Normalization 28 28 192 1 SSCB 384

46 block_5_expand_relu Clipped ReLU 28 28 192 1 SSCB 0

47 block_5_depthwise 2-D Grouped Convolution 28 28 192 1 SSCB 1920

48 block_5_depthwise_BN Batch Normalization 28 28 192 1 SSCB 384

49 block_5_depthwise_relu Clipped ReLU 28 28 192 1 SSCB 0

50 block_5_project 2-D Convolution 28 28 32 1 SSCB 6176

51 block_5_project_BN Batch Normalization 28 28 32 1 SSCB 64

52 block_5_add Addition 28 28 32 1 SSCB 0

53 block_6_expand 2-D Convolution 28 28 192 1 SSCB 6336

54 block_6_expand_BN Batch Normalization 28 28 192 1 SSCB 384

55 block_6_expand_relu Clipped ReLU 28 28 192 1 SSCB 0

56 block_6_depthwise 2-D Grouped Convolution 14 14 192 1 SSCB 1920

57 block_6_depthwise_BN Batch Normalization 14 14 192 1 SSCB 384

58 block_6_depthwise_relu Clipped ReLU 14 14 192 1 SSCB 0

59 block_6_project 2-D Convolution 14 14 64 1 SSCB 12,352

60 block_6_project_BN Batch Normalization 14 14 64 1 SSCB 128

61 block_7_expand 2-D Convolution 14 14 384 1 SSCB 24,960

62 block_7_expand_BN Batch Normalization 14 14 384 1 SSCB 768

63 block_7_expand_relu Clipped ReLU 14 14 384 1 SSCB 0

64 block_7_depthwise 2-D Grouped Convolution 14 14 384 1 SSCB 3840

65 block_7_depthwise_BN Batch Normalization 14 14 384 1 SSCB 768

66 block_7_depthwise_relu Clipped ReLU 14 14 384 1 SSCB 0

67 block_7_project 2-D Convolution 14 14 64 1 SSCB 24,640

68 block_7_project_BN Batch Normalization 14 14 64 1 SSCB 128

69 block_7_add Addition 14 14 64 1 SSCB 0

70 block_8_expand 2-D Convolution 14 14 384 1 SSCB 24,960

71 block_8_expand_BN Batch Normalization 14 14 384 1 SSCB 768

72 block_8_expand_relu Clipped ReLU 14 14 384 1 SSCB 0

73 block_8_depthwise 2-D Grouped Convolution 14 14 384 1 SSCB 3840

74 block_8_depthwise_BN Batch Normalization 14 14 384 1 SSCB 768

75 block_8_depthwise_relu Clipped ReLU 14 14 384 1 SSCB 0

76 block_8_project 2-D Convolution 14 14 64 1 SSCB 24,640

77 block_8_project_BN Batch Normalization 14 14 64 1 SSCB 128

78 block_8_add Addition 14 14 64 1 SSCB 0

79 block_9_expand 2-D Convolution 14 14 384 1 SSCB 24,960

Appl. Sci. 2024, 14, 2297 28 of 31

80 block_9_expand_BN Batch Normalization 14 14 384 1 SSCB 768

81 block_9_expand_relu Clipped ReLU 14 14 384 1 SSCB 0

82 block_9_depthwise 2-D Grouped Convolution 14 14 384 1 SSCB 3840

83 block_9_depthwise_BN Batch Normalization 14 14 384 1 SSCB 768

84 block_9_depthwise_relu Clipped ReLU 14 14 384 1 SSCB 0

85 block_9_project 2-D Convolution 14 14 64 1 SSCB 24,640

86 block_9_project_BN Batch Normalization 14 14 64 1 SSCB 128

87 block_9_add Addition 14 14 64 1 SSCB 0

88 block_10_expand 2-D Convolution 14 14 384 1 SSCB 24,960

89 block_10_expand_BN Batch Normalization 14 14 384 1 SSCB 768

90 block_10_expand_relu Clipped ReLU 14 14 384 1 SSCB 0

91 block_10_depthwise 2-D Grouped Convolution 14 14 384 1 SSCB 3840

92 block_10_depthwise_BN Batch Normalization 14 14 384 1 SSCB 768

93 block_10_depthwise_relu Clipped ReLU 14 14 384 1 SSCB 0

94 block_10_project 2-D Convolution 14 14 96 1 SSCB 36,960

95 block_10_project_BN Batch Normalization 14 14 96 1 SSCB 192

96 block_11_expand 2-D Convolution 14 14 576 1 SSCB 55,872

97 block_11_expand_BN Batch Normalization 14 14 576 1 SSCB 1152

98 block_11_expand_relu Clipped ReLU 14 14 576 1 SSCB 0

99 block_11_depthwise 2-D Grouped Convolution 14 14 576 1 SSCB 5760

100 block_11_depthwise_BN Batch Normalization 14 14 576 1 SSCB 1152

101 block_11_depthwise_relu Clipped ReLU 14 14 576 1 SSCB 0

102 block_11_project 2-D Convolution 14 14 96 1 SSCB 55,392

103 block_11_project_BN Batch Normalization 14 14 96 1 SSCB 192

104 block_11_add Addition 14 14 96 1 SSCB 0

105 block_12_expand 2-D Convolution 14 14 576 1 SSCB 55,872

106 block_12_expand_BN Batch Normalization 14 14 576 1 SSCB 1152

107 block_12_expand_relu Clipped ReLU 14 14 576 1 SSCB 0

108 block_12_depthwise 2-D Grouped Convolution 14 14 576 1 SSCB 5760

109 block_12_depthwise_BN Batch Normalization 14 14 576 1 SSCB 1152

110 block_12_depthwise_relu Clipped ReLU 14 14 576 1 SSCB 0

111 block_12_project 2-D Convolution 14 14 96 1 SSCB 55,392

112 block_12_project_BN Batch Normalization 14 14 96 1 SSCB 192

113 block_12_add Addition 14 14 96 1 SSCB 0

114 block_13_expand 2-D Convolution 14 14 576 1 SSCB 55,872

115 block_13_expand_BN Batch Normalization 14 14 576 1 SSCB 1152

116 block_13_expand_relu Clipped ReLU 14 14 576 1 SSCB 0

117 block_13_depthwise 2-D Grouped Convolution 14 14 576 1 SSCB 5760

118 block_13_depthwise_BN Batch Normalization 14 14 576 1 SSCB 1152

119 block_13_depthwise_relu Clipped ReLU 14 14 576 1 SSCB 0

120 block_13_project 2-D Convolution 14 14 160 1 SSCB 92,320

121 block_13_project_BN Batch Normalization 14 14 160 1 SSCB 320

122 block_14_expand 2-D Convolution 14 14 960 1 SSCB 154,560

123 block_14_expand_BN Batch Normalization 14 14 960 1 SSCB 1920

Appl. Sci. 2024, 14, 2297 29 of 31

124 block_14_expand_relu Clipped ReLU 14 14 960 1 SSCB 0

125 block_14_depthwise 2-D Grouped Convolution 14 14 960 1 SSCB 9600

126 block_14_depthwise_BN Batch Normalization 14 14 960 1 SSCB 1920

127 block_14_depthwise_relu Clipped ReLU 14 14 960 1 SSCB 0

128 block_14_project 2-D Convolution 14 14 160 1 SSCB 153,760

129 block_14_project_BN Batch Normalization 14 14 160 1 SSCB 320

130 block_14_add Addition 14 14 160 1 SSCB 0

131 block_15_expand 2-D Convolution 14 14 960 1 SSCB 154,560

132 block_15_expand_BN Batch Normalization 14 14 960 1 SSCB 1920

133 block_15_expand_relu Clipped ReLU 14 14 960 1 SSCB 0

134 block_15_depthwise 2-D Grouped Convolution 14 14 960 1 SSCB 9600

135 block_15_depthwise_BN Batch Normalization 14 14 960 1 SSCB 1920

136 block_15_depthwise_relu Clipped ReLU 14 14 960 1 SSCB 0

137 block_15_project 2-D Convolution 14 14 160 1 SSCB 153,760

138 block_15_project_BN Batch Normalization 14 14 160 1 SSCB 320

139 block_15_add Addition 14 14 160 1 SSCB 0

140 block_16_expand 2-D Convolution 14 14 960 1 SSCB 154,560

141 block_16_expand_BN Batch Normalization 14 14 960 1 SSCB 1920

142 block_16_expand_relu Clipped ReLU 14 14 960 1 SSCB 0

143 block_16_depthwise 2-D Grouped Convolution 14 14 960 1 SSCB 9600

144 block_16_depthwise_BN Batch Normalization 14 14 960 1 SSCB 1920

145 block_16_depthwise_relu Clipped ReLU 14 14 960 1 SSCB 0

146 block_16_project 2-D Convolution 14 14 320 1 SSCB 307,520

147 block_16_project_BN Batch Normalization 14 14 320 1 SSCB 640

148 aspp_Conv_1_depthwise 2-D Grouped Convolution 14 14 320 1 SSCB 640

149 aspp_Conv_1_pointwise 2-D Convolution 14 14 256 1 SSCB 82,176

150 aspp_BatchNorm_1 Batch Normalization 14 14 256 1 SSCB 512

151 aspp_Relu_1 ReLU 14 14 256 1 SSCB 0

152 aspp_Conv_2_depthwise 2-D Grouped Convolution 14 14 320 1 SSCB 3200

153 aspp_Conv_2_pointwise 2-D Convolution 14 14 256 1 SSCB 82,176

154 aspp_BatchNorm_2 Batch Normalization 14 14 256 1 SSCB 512

155 aspp_Relu_2 ReLU 14 14 256 1 SSCB 0

156 aspp_Conv_3_depthwise 2-D Grouped Convolution 14 14 320 1 SSCB 3200

157 aspp_Conv_3_pointwise 2-D Convolution 14 14 256 1 SSCB 82,176

158 aspp_BatchNorm_3 Batch Normalization 14 14 256 1 SSCB 512

159 aspp_Relu_3 ReLU 14 14 256 1 SSCB 0

160 aspp_Conv_4_depthwise 2-D Grouped Convolution 14 14 320 1 SSCB 3200

161 aspp_Conv_4_pointwise 2-D Convolution 14 14 256 1 SSCB 82,176

162 aspp_BatchNorm_4 Batch Normalization 14 14 256 1 SSCB 512

163 aspp_Relu_4 ReLU 14 14 256 1 SSCB 0

164 catAspp Depth concatenation 14 14 1024 1 SSCB 0

165 dec_c1 2-D Convolution 14 14 256 1 SSCB 262,400

166 dec_bn1 Batch Normalization 14 14 256 1 SSCB 512

167 dec_relu1 ReLU 14 14 256 1 SSCB 0

Appl. Sci. 2024, 14, 2297 30 of 31

168 dec_upsample1 2-D Transposed Convolution 56 56 256 1 SSCB 4,194,560

169 dec_c2 2-D Convolution 56 56 48 1 SSCB 6960

170 dec_bn2 Batch Normalization 56 56 48 1 SSCB 96

171 dec_relu2 ReLU 56 56 48 1 SSCB 0

172 dec_crop1 Crop 2D 56 56 256 1 SSCB 0

173 dec_cat1 Depth concatenation 56 56 304 1 SSCB 0

174 dec_c3_depthwise 2-D Grouped Convolution 56 56 304 1 SSCB 3040

175 dec_c3_pointwise 2-D Convolution 56 56 256 1 SSCB 78,080

176 dec_bn3 Batch Normalization 56 56 256 1 SSCB 512

177 dec_relu3 ReLU 56 56 256 1 SSCB 0

178 dec_c4_depthwise 2-D Grouped Convolution 56 56 256 1 SSCB 2560

179 dec_c4_pointwise 2-D Convolution 56 56 256 1 SSCB 65,792

180 dec_bn4 Batch Normalization 56 56 256 1 SSCB 512

181 dec_relu4 ReLU 56 56 256 1 SSCB 0

182 scorer 2-D Convolution 56 56 2 1 SSCB 514

183 dec_upsample2 2-D Transposed Convolution 224 224 2 1 SSCB 258

184 dec_crop2 Crop 2D 224 224 2 1 SSCB 0

185 softmax-out Softmax 224 224 2 1 SSCB 0

186 labels Pixel Classification Layer 224 224 2 1 SSCB 0

References
1. Larmuseau, M.; Sluydts, M.; Theuwissen, K.; Duprez, L.; Dhaene, T.; Cottenier, S. Race against the Machine: Can Deep Learning

Recognize Microstructures as Well as the Trained Human Eye? Scr. Mater. 2021, 193, 33–37. https://doi.org/10.1016/j.scrip-
tamat.2020.10.026.

2. DeCost, B.L.; Francis, T.; Holm, E.A. Exploring the Microstructure Manifold: Image Texture Representations Applied to Ultrahigh
Carbon Steel Microstructures. Acta Mater. 2017, 133, 30–40. https://doi.org/10.1016/j.actamat.2017.05.014.

3. Gupta, S.; Banerjee, A.; Sarkar, J.; Kundu, M.; Sinha, S.K.; Bandyopadhyay, N.R.; Ganguly, S. Modelling the Steel Microstructure
Knowledge for In-Silico Recognition of Phases Using Machine Learning. Mater. Chem. Phys. 2020, 252, 123286.
https://doi.org/10.1016/j.matchemphys.2020.123286.

4. Wang, J.; Fa, Y.; Tian, Y.; Yu, X. A Machine-Learning Approach to Predict Creep Properties of Cr–Mo Steel with Time-Tempera-
ture Parameters. J. Mater. Res. Technol. 2021, 13, 635–650. https://doi.org/10.1016/j.jmrt.2021.04.079.

5. Yucel, B.; Yucel, S.; Ray, A.; Duprez, L.; Kalidindi, S.R. Mining the Correlations between Optical Micrographs and Mechanical
Properties of Cold-Rolled HSLA Steels Using Machine Learning Approaches. Integr. Mater. Manuf. Innov. 2020, 9, 240–256.
https://doi.org/10.1007/s40192-020-00183-3.

6. Wang, Z.-L.; Adachi, Y. Property Prediction and Properties-to-Microstructure Inverse Analysis of Steels by a Machine-Learning
Approach. Mater. Sci. Eng. A Struct. Mater. 2019, 744, 661–670. https://doi.org/10.1016/j.msea.2018.12.049.

7. Larmuseau, M.; Theuwissen, K.; Lejaeghere, K.; Duprez, L.; Dhaene, T.; Cottenier, S. Towards Accurate Processing-Structure-
Property Links Using Deep Learning. Scr. Mater. 2022, 211, 114478. https://doi.org/10.1016/j.scriptamat.2021.114478.

8. Muñoz-Rodenas, J.; García-Sevilla, F.; Coello-Sobrino, J.; Martínez-Martínez, A.; Miguel-Eguía, V. Effectiveness of Machine-
Learning and Deep-Learning Strategies for the Classification of Heat Treatments Applied to Low-Carbon Steels Based on Micro-
structural Analysis. Appl. Sci. 2023, 13, 3479. https://doi.org/10.3390/app13063479.

9. Luengo, J.; Moreno, R.; Sevillano, I.; Charte, D.; Peláez, A.; Fernández, M.; Herrera, F. A tutorial on the segmentation of metallo-
graphic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challenges.
Inf. Fusion 2022, 78, 232–253. https://doi.org/10.1016/j.inffus.2021.09.018.

10. Bulgarevich, D.; Tsukamoto, S.; Kasuya, T.; Demura, M.; Watanabe, M. Pattern recognition with machine learning on optical
microscopy images of typical metallurgical microstructures. Sci. Rep. 2018, 8, 2078. https://doi.org/10.1038/s41598-018-20438-6.

11. Bachmann, B.; Müller, M.; Britz, D.; Durmaz, A.; Ackermann, M.; Shchyglo, O.; Staudt, T.; Mücklich, F. Efficient reconstruction
of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative
microscopy. Front. Mater. 2022, 9, 1033505. https://doi.org/10.3389/fmats.2022.1033505.

12. Han, Y.; Li, R.; Yang, S.; Chen, Q.; Wang, B.; Liu, Y. Center-environment feature models for materials image segmentation based
on machine learning. Sci. Rep. 2022, 12, 12960. https://doi.org/10.1038/s41598-022-16824-w.

Appl. Sci. 2024, 14, 2297 31 of 31

13. Kim, H.; Inoue, J.; Kasuya, T. Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recog-
nition. Sci. Rep. 2020, 10, 17835. https://doi.org/10.1038/s41598-020-74935-8.

14. Breumier, S.; Martinez, T.; Frincu, B.; Gey, N.; Couturier, A.; Loukachenko, N.; Aba-perea, P.E.; Germain, L. Leveraging EBSD
data by deep learning for bainite, ferrite and martensite segmentation Mater. Charact. 2022, 186, 111805.
https://doi.org/10.1016/j.matchar.2022.111805.

15. Chaurasia, N.; Jha, S.K.; Sangal, S. A Novel Training Methodology for Phase Segmentation of Steel Microstructures Using a Deep
Learning Algorithm. Materialia 2023, 30, 101803. https://doi.org/10.1016/j.mtla.2023.101803.

16. Liu, J.; Cao, G.; Wang, H.; Cui, C.; Liu, Z. Development of Intelligent Methodologies Perceiving Microstructure and Mechanical
Properties of Hot Rolled Steels. Measurement 2023, 221, 113526. https://doi.org/10.1016/j.measurement.2023.113526.

17. Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced Steel Microstructural Classification by Deep Learning Meth-
ods. Sci. Rep. 2018, 8, 2128. https://doi.org/10.1038/s41598-018-20037-5.

18. Martinez Ostormujof, T.; Purushottam Raj Purohit, R.R.P.; Breumier, S.; Gey, N.; Salib, M.; Germain, L. Deep Learning for Auto-
mated Phase Segmentation in EBSD Maps. A Case Study in Dual Phase Steel Microstructures. Mater. Charact. 2022, 184, 111638.
https://doi.org/10.1016/j.matchar.2021.111638.

19. Xie, L.; Li, W.; Fan, L.; Zhou, M. Automatic Identification of the Multiphase Microstructures of Steels Based on ASPP-FCN. Steel
Res. Int. 2023, 94, 202200204. https://doi.org/10.1002/srin.202200204.

20. Ma, X.; Yu, Y. Training Tricks for Steel Microstructure Segmentation with Deep Learning. Processes 2023, 11, 3298.
https://doi.org/10.3390/pr11123298.

21. Bihani, A.; Daigle, H.; Santos, J.E.; Landry, C.; Prodanović, M.; Milliken, K. MudrockNet: Semantic Segmentation of Mudrock
SEM Images through Deep Learning. Comput. Geosci. 2022, 158, 104952. https://doi.org/10.1016/j.cageo.2021.104952.

22. Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmenta-
tion: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. https://doi.org/10.1093/bioin-
formatics/btx180.

23. Somasundaram, E.; Kaufman, R.; Brady, S. Advancements in Automated Tissue Segmentation Pipeline for Contrast-Enhanced
CT Scans of Adult and Pediatric Patients. In Proceedings of the SPIE Medical Imaging, Orlando, FL, USA, 13–16 February 2017;
Armato, S.G., Petrick, N.A., Eds.; SPIE: Bellingham, WA, USA, 2017.

24. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2015, Munich, Germany, 5–9 October 2015; Volume
9351; pp. 234–241.

25. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615.

26. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Springer
International Publishing: Cham, Switzerland, 2018; pp. 833–851, ISBN 9783030012335.

27. Csurka, G.; Larlus, D.; Perronnin, F. What is a good evaluation measure for semantic segmentation? In Proceedings of the British
Machine Vision Conference, Bristol, UK, 9–13 September 2013; pp. 32.1–32.11.

28. Swain, B.R.; Cho, D.; Park, J.; Roh, J.-S.; Ko, J. Complex-Phase Steel Microstructure Segmentation Using UNet: Analysis across
Different Magnifications and Steel Types. Materials 2023, 16, 7254. https://doi.org/10.3390/ma16237254.

29. Han, Y.; Li, R.; Wang, B.; Ruan, L.; Chen, Q. A Pseudo-Labeling Based Weakly Supervised Segmentation Method for Few-Shot
Texture Images. Expert Syst. Appl. 2024, 238, 122110. https://doi.org/10.1016/j.eswa.2023.122110.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

31. Ajioka, F.; Wang, Z.-L.; Ogawa, T.; Adachi, Y. Development of High Accuracy Segmentation Model for Microstructure of Steel
by Deep Learning. ISIJ Int. 2020, 60, 954–959. https://doi.org/10.2355/isijinternational.isijint-2019-568.

32. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014,
arXiv:1409.1556v6.

33. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. IJCV 2015, 115, 211–252.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp.
770–778.

35. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Pro-
ceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4510–4520.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

