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Abstract 

 
The purpose of this research article is to introduce a new iteration scheme and to prove                                

convergence and stability results for it. We also claim the newly introduced iterative scheme                      has 

better efficiency than some of the existing iterations in the literature. Our claim is supported by numerical 

example.  
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1 Introduction and Preliminaries 
 

The theory of fixed points has become an interdisciplinary area of research as it has applications in mathematics, 

economics, game theory etc.  In general, the solution of fixed point problem is almost impossible therefore need 

of iterative solution arises. Developing a faster and simpler iterative scheme to obtain the fixed point is an 

interesting and active area of research. Over the years different iterative schemes for finding the solution of 

fixed point problems for different operators have been developed by the researchers, for example, see ([1,2,3-

5,6-12])).  

 

In 2017, Ullah and Arshad [13] introduced the following M*-iteration scheme: 

 

{

℘𝑛 = (1 − 𝛽𝑛)ℑ𝑛 +  𝛽𝑛ℓℑ𝑛

ℏ𝑛 = ℓ((1 − 𝛼𝑛) ℓℑ𝑛 +  𝛼𝑛ℓ℘𝑛))

     ℑ𝑛+1 = ℓℏ𝑛,

                                      (1.1) 

 

where  {𝛼𝑛} , {𝛽𝑛} sequences such that 𝛼𝑛 , 𝛽𝑛 ∈ (0, 1). 

 

Authors in [13], claimed that their iteration scheme is faster than existing iteration schemes in the literature such 

that Picard, Mann, Ishikawa, Noor, Agarwal et al. and Abbas et al. 

 

Hussain et al. [14] defined a new iteration scheme and named it as ‘K-iteration scheme’. They proved 

convergence result for this iterative scheme by considering the class of Suzuki generalized non expansive 

mapping in uniformly convex Banach space. 

 

{

℘𝑛 = (1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓℑ𝑛,

ℏ𝑛 = ℓ((1 − 𝛼𝑛)ℓℑ𝑛 + 𝛼𝑛ℓ℘𝑛,
ℑ𝑛+1 = ℓℏ𝑛,

                                 (1.2) 

 

Again in 2018 Ullah and Arshad [7] introduced the K*-iteration scheme by the method 

 

{

℘𝑛 = (1 − 𝛽𝑛)ℑ𝑛 +  𝛽𝑛ℓℑ𝑛

ℏ𝑛 = ℓ((1 − 𝛼𝑛)℘𝑛 + 𝛼𝑛ℓ℘𝑛))

ℑ𝑛+1 = ℓℏ𝑛

                    (1.3) 

 

for all 𝑛 ∈ 𝑁,where  {𝛼𝑛} , {𝛽𝑛} sequences such that 𝛼𝑛 , 𝛽𝑛 ∈ (0, 1).     

 

Again in 2018, Ullah and Arshad [6] introduced the M-iteration scheme by the method 

 

{

℘𝑛 =  (1 − 𝛼𝑛)ℑ𝑛 + 𝛼𝑛ℓℑ𝑛 ,
ℏ𝑛 =  ℓ℘𝑛,

ℑ𝑛+1 =  ℓℏ𝑛,

                                                                                                            (1.4)  

 

for all 𝑛 ∈ 𝑁, where  {𝛼𝑛} is a sequence such that 𝛼𝑛 ∈ (0, 1).  

 

In this direction Bhutia and Tiwari [1] defined the J-Iteration scheme as follows: 

 

For some initial approximation ℑ0 we have, 

 

{

℘𝑛 = ℓ((1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓℑ𝑛),

ℏ𝑛 =  ℓ((1 − 𝛼𝑛)℘𝑛 + 𝛼𝑛ℓ℘𝑛),

ℑ𝑛+1 = ℓℏ𝑛.

                                                                                                      (1.5) 

 

Now we introduce a new iteration scheme with the relation:  

 



 
 

 

 
Bhokal et al.; Asian Res. J. Math., vol. 19, no. 11, pp. 95-103, 2023; Article no.ARJOM.108243 

 

 

 
97 

 

For some initial approximation 𝑥0 we have     

 

{

℘𝑛 = ℓ𝑛((1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓ𝑛ℑ𝑛),

ℏ𝑛 =  ℓ𝑛((1 − 𝛼𝑛)℘𝑛 + 𝛼𝑛ℓ𝑛℘𝑛),

ℑ𝑛+1 = ℓ𝑛((1 − 𝛾𝑛)ℓ𝑛℘𝑛 + 𝛾𝑛ℓ𝑛ℏ𝑛).

                                                                                 (1.6) 

 

We claim that our newly defined iterative scheme converges faster than the iterative scheme defined by Bhutia 

and Tiwari [1] and hence some of the existing iterative sequences in the literature. 

 

Definition 1.1 [2]: Let {℘𝑛 }𝑛=0
∞  be the sequence in 𝑋. Then the iterative process                            ℑ𝑛+1 =

𝑓(ℓ, ℑ𝑛) which converges to a fixed point 𝑞  of ℓ is said to be stable with respect to ℓ if for 𝑡𝑛 =∥ ℘𝑛+1 −
𝑓(ℓ, ℘𝑛) ∥, 𝑛 = 0, 1, 2, …,  we have lim

n→∞
𝑡𝑛 = 0 if and only if lim

n→∞
℘𝑛 = 𝑞. 

 

Definition 1.2 [15]: Let 𝐻 be a non-empty subset of a Banach space 𝑋 andℓ: 𝑋 → 𝑋 be a mapping. ℓ is called a 

generalized contraction mapping if there exists a real number                        𝑘 < 1such that for all 𝑥, 𝑦 ∈ 𝑋 we 

have 𝑑(ℓ𝑛𝑥, ℓ𝑛𝑦) ≤  𝑘𝑑(𝑥, 𝑦). 
 

Definition 1.3 [13]: An operator ℓ: 𝐾 → 𝐾   is said toisatisfyithe condition (C), if foriall 𝑥, 𝑦 ∈ 𝐾, we have 
1

2
𝑑(𝑥, ℓ𝑥) ≤ 𝑑(𝑥, 𝑦) implies 𝑑(ℓ𝑥, ℓ𝑦) ≤ 𝑑(𝑥, 𝑦). Any mapping satisfies condition (C) is also known as Suzuki 

generalized non-expansive mapping. 

 

Proposition 1.4 [13]: Let 𝐻 be a non-empty subset of a Banach space 𝑋 and ℓ: 𝑋 → 𝑋 be a mapping. Then 

 

1. If ℓ is non-expansive, then ℓ is Suzuki generalized non-expansive mapping. 

2. If ℓ  is Suzuki generalized non-expansive mapping and has a fixed point, then ℓ  is a quasi-non 

expansive mapping. 

 

Lemma 1.5 [16]: Let 𝐻 be a non-empty subset of a Banach space 𝑋 and ℓ: 𝑋 → 𝑋 be a Suzuki generalized non 

expansive mapping. Then for all 𝑥, 𝑦 ∈ 𝑋, we have 

 

∥ ℓ𝑥 − 𝑇𝑦 ∥ ≤ 3 ∥ ℓ𝑥 − 𝑥 ∥ +∥ 𝑥 − 𝑦 ∥                                                                            (1.7) 

 

Lemma 1.6 [17]:  Suppose 𝑋 is a uniformly convex Banach space and {𝑠𝑛} be any sequence of real numbers 

such that  0 < 𝑠𝑛 < 1 for all 𝑛 ≥ 1. Let {𝑎𝑛} and {𝑏𝑛} be any two sequences of real numbers in 𝑋 such that 

limsup
𝑛→∞

∥ 𝑎𝑛 ∥≤ 𝑟, limsup
𝑛→∞

∥ 𝑏𝑛 ∥≤ 𝑟  and limsup
𝑛→∞

∥ 𝑠𝑛𝑎𝑛 + (1 − 𝑠𝑛)𝑏𝑛 ∥= 𝑟  holds for some non-negative 

constant𝑟.                                       Then lim
𝑛→∞

∥ 𝑎𝑛 − 𝑏𝑛 ∥= 0. 

 

Remark 1.7 [16]: Let 𝐻 be a non-empty subset of a Banach space 𝑋 and let  {ℑ𝑛}𝑛=0
∞ be a bounded sequence in 

𝑋. For ℑ ∈ 𝑋, we set 𝑟(ℑ, {ℑ𝑛}) =  limsup
𝑛→∞

∥ ℑ𝑛 − ℑ ∥. The asymptotic radius of   {ℑ𝑛} relative to 𝐻 is given by 

𝑟(𝐻, {ℑ𝑛}) = inf {𝑟(ℑ, {ℑ𝑛}): ℑ ∈ 𝐻} and the asymptotic center of {ℑ𝑛} relative to 𝐻 is the set 𝐴(𝐻, {ℑ𝑛}) =
{ℑ ∈ 𝐻: 𝑟(ℑ, {ℑ𝑛}) = 𝑟(𝐻, {ℑ𝑛})}. 
 

2 Results 
 

Theorem 2.1: Let 𝐻 be a non-empty subset of a Banach space 𝑋 and ℓ: 𝑋 → 𝑋 be a generalized contraction 

mapping. Let {ℑ𝑛}𝑛=0
∞ be the sequence of defined by the iterative scheme (1.6) with real sequences {𝛼𝑛}𝑛=0

∞ , 

{𝛽𝑛}𝑛=0
∞ , {𝛾𝑛}𝑛=0

∞  in [0, 1]  satisfying ∑ 𝛾𝑛 = ∞.∞
𝑛=0  Then the sequence {ℑ𝑛}𝑛=0

∞  converges strongly to unique 

fixed point of ℓ [18 − 22]. 
 

Proof: Since ℓ is a generalized contraction mapping and hence contraction mapping therefore by consequences 

of Banach contraction principle it has a unique fixed point. Let 𝑞 be the unique fixed point of ℓ. Now by the 

iteration scheme (1.6) we have, 
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∥ ℘𝑛 − 𝑞 ∥ = ∥ ℓ𝑛((1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓ𝑛ℑ𝑛)  − 𝑞 ∥ 

                    ≤ 𝑘 ∥ (1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓ𝑛ℑ𝑛  − 𝑞 ∥ 

                    ≤ 𝑘[(1 − 𝛽𝑛) ∥ ℑ𝑛  − 𝑞 ∥ +∥ 𝛽𝑛ℓ𝑛ℑ𝑛  − 𝑞 ∥] 

                    ≤ 𝑘[(1 − 𝛽𝑛) ∥ ℑ𝑛  − 𝑞 ∥ +𝛽𝑛𝑘 ∥ 𝛽𝑛ℑ𝑛 – 𝑞 ∥] 

                     ≤ 𝑘[1 − 𝛽𝑛(1 − 𝑘)] ∥ ℑ𝑛  − 𝑞 ∥. 

 

By the hypothesis of theorem, we have 1 − 𝛽𝑛(1 − 𝑘) < 1, so we can write  

 

∥ ℘𝑛 − 𝑞 ∥≤ 𝑘 ∥ ℑ𝑛  − 𝑞 ∥.                                                              (2.1) 

 

And 

 

∥ ℏ𝑛 − 𝑞 ∥= ∥ ℓ𝑛((1 − 𝛼𝑛)℘𝑛 + 𝛼𝑛ℓ𝑛℘𝑛)  − 𝑞 ∥ 

                  ≤ 𝑘 ∥ (1 − 𝛼𝑛)℘𝑛 + 𝛼𝑛ℓ𝑛℘𝑛  − 𝑞 ∥ 

                  ≤ 𝑘[(1 − 𝛼𝑛) ∥ ℘𝑛  − 𝑞 ∥ +𝛼𝑛 ∥ ℓ𝑛℘𝑛 − 𝑞 ∥] 
                  ≤ 𝑘[(1 − 𝛼𝑛) ∥ ℘𝑛  − 𝑞 ∥ +𝛼𝑛𝑘 ∥ ℘𝑛 − 𝑞 ∥] 
                  ≤ 𝑘[1 − 𝛼𝑛(1 − 𝑘)] ∥ ℘𝑛 − 𝑞 ∥. 

 

Again, by the hypothesis of theorem we have 1 − 𝛼𝑛(1 − 𝑘) < 1 and using (2.1) we have 

 

∥ ℏ𝑛 − 𝑞 ∥≤ 𝑘 ∥ ℘𝑛 − 𝑞 ∥ 

 

≤  𝑘2 ∥ ℑ𝑛  − 𝑞 ∥                                                                      (2.2) 

 

And by using (1.6) and (2.1) and (2.2) we have 

 

∥ ℑ𝑛+1 − 𝑞 ∥ = ∥ ℓ𝑛((1 − 𝛾𝑛)ℓ𝑛𝑧𝑛 + 𝛾𝑛ℓ𝑛ℏ𝑛)  − 𝑞 ∥ 

                     ≤ 𝑘 ∥ (1 − 𝛾𝑛)ℓ𝑛℘𝑛 + 𝛾𝑛ℓ𝑛ℏ𝑛  − 𝑞 ∥ 

                     ≤ 𝑘[(1 − 𝛾𝑛) ∥ ℓ𝑛℘𝑛 − 𝑞 ∥ +𝛾𝑛 ∥ ℓ𝑛ℏ𝑛  − 𝑞 ∥ ] 
                     ≤ 𝑘[(1 − 𝛾𝑛)𝑘 ∥ ℘𝑛 − 𝑞 ∥ +𝛾𝑛𝑘 ∥ ℏ𝑛  − 𝑞 ∥ ] 
                     ≤ 𝑘[(1 − 𝛾𝑛)𝑘2 ∥ ℑ𝑛  − 𝑞 ∥ +𝛾𝑛𝑘3 ∥ ℑ𝑛  − 𝑞 ∥ ] 
                     ≤ 𝑘3[1 − 𝛾𝑛(1 − 𝑘)]  ∥ ℑ𝑛  − 𝑞 ∥                                                                                  (2.3) 

 

By repeating the above arguments, we have 

 

∥ ℑ𝑛 − 𝑞 ∥≤ 𝑘3[1 − 𝛾𝑛−1(1 − 𝑘)] ∥ ℑ𝑛−1 − 𝑞 ∥ 

 

∥ ℑ𝑛−1 − 𝑞 ∥≤ 𝑘3[1 − 𝛾𝑛−2(1 − 𝑘)]  ∥ ℑ𝑛−2 − 𝑞 ∥ 

 

∥ ℑ1 − 𝑞 ∥≤ 𝑘3[1 − 𝛾0(1 − 𝑘)]  ∥ ℑ0 − 𝑞 ∥. 

 

Combining all the above inequalities, we have  

 

∥ ℑ𝑛+1 − 𝑞 ∥ ≤  𝑘3(𝑛+1) ∥ ℑ0 − 𝑞 ∥  ∏ 1 − 𝛾𝑖(1 − 𝑘).

𝑛

𝑖=0

 

 

Now 𝑘 < 1 so 1 − 𝑘 > 0 and 𝛾𝑖 ≤ 1 for all 𝑛 ∈ 𝑁, hence we have 1 − 𝛾𝑖(1 − 𝑘) < 1. We know that 1 − 𝑥 ≤
 𝑒−𝑥 for all 𝑥 ∈ [0, 1]. Hence,  

 

∥ ℑ𝑛+1 − 𝑞 ∥≤  𝑘3(𝑛+1) ∥ ℑ0 − 𝑞 ∥ 𝑒−(1−𝑘) ∑ 𝛾𝑖
𝑛
𝑖=0                                                                              (2.4) 

 

Taking limit as 𝑛 → ∞ both sides, we have  lim
𝑛→∞

∥ ℑ𝑛 − 𝑞 ∥= 0. This completes the proof. 
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Theorem 2.2: Let 𝐻 be a non-empty subset of a Banach space 𝑋 and  ℓ: 𝑋 → 𝑋 be a generalized contraction 

mapping. Let {ℑ𝑛}𝑛=0
∞ be the sequence of defined by the iterative scheme (1.6) with real sequences 

{𝛼𝑛}𝑛=0
∞ ,{𝛽𝑛}𝑛=0

∞ , {𝛾𝑛}𝑛=0
∞  in [0, 1] satisfying      ∑ 𝛾𝑛 = ∞.∞

𝑛=0  Then the sequence {ℑ𝑛}𝑛=0
∞  is ℓ- stable. 

 

Proof: Let {ℑ𝑛}𝑛=0
∞ be any sequence in 𝐻 and let the sequence generated by (1.6) be             𝑡𝑛+1 = 𝑓(ℓ, ℑ𝑛) and 

let it converges to the unique fixed point 𝑞 of ℓ.  
 

Suppose 𝛿𝑛 = ∥ 𝑡𝑛+1 − 𝑓(ℓ, 𝑡𝑛) ∥. Now, we will prove that  lim
𝑛→∞

𝛿𝑛 = 0 if and only if  lim
𝑛→∞

𝑡𝑛 = 𝑞. First of all, 

suppose that  lim
𝑛→∞

𝑡𝑛 = 𝑞.  

 

Then we have  

 

𝛿𝑛 = ∥ 𝑡𝑛+1 − 𝑓(ℓ, 𝑡𝑛) ∥ 

     ≤ ∥ 𝑡𝑛+1 − 𝑞 ∥ + ∥ 𝑓(ℓ, 𝑡𝑛) − 𝑞 ∥ 

     ≤ ∥ 𝑡𝑛+1 − 𝑞 ∥ +𝑘3[1 − 𝛾𝑛(1 − 𝑘)]  ∥ 𝑡𝑛  − 𝑞 ∥ 

 

Taking limit as 𝑛 → ∞ both sides of the above inequality we have  lim
𝑛→∞

𝛿𝑛 = 0. 

 

Conversely suppose that  lim
    𝑛→∞

𝛿𝑛 = 0.  

 

Now, we have  

 

∥ 𝑡𝑛+1 − 𝑞 ∥ ≤ ∥ 𝑡𝑛+1 − 𝑓(ℓ, 𝑡𝑛) ∥ + ∥ 𝑓(ℓ, 𝑡𝑛) − 𝑞 ∥ 

                     ≤  𝛿𝑛+ ∥ 𝑓(ℓ, 𝑡𝑛) − 𝑞 ∥. 

 

Using Theorem 2.1, we can write 

 

∥ 𝑡𝑛+1 − 𝑞 ∥ ≤ 𝛿𝑛 +  [1 − 𝛾𝑛(1 − 𝑘)]  ∥ 𝑡𝑛  − 𝑞 ∥. 

 

Now 0 < 𝑘 < 1 and 𝛾𝑖 ≤ 1 for all 𝑛 ∈ 𝑁 and  lim
    𝑛→∞

𝛿𝑛 = 0. Then from the above inequality and lemma (1.6) we 

have,  lim
𝑛→∞

∥ 𝑡𝑛 − 𝑞 ∥ = 0.  

 

Hence the sequence {𝑥𝑛}𝑛=0
∞  is ℓ-stable. 

 

Now we establish some fixed point results related to Suzuki generalized non-expansive mapping. 

 

Lemma 2.3: Let 𝐻  be a non-empty closed convex subset of a Banach space 𝑋  and ℓ: 𝑋 → 𝑋  be a Suzuki 

generalized non-expansive mapping with 𝐹(ℓ)  ≠  ∅. Let {ℑ𝑛}𝑛=0
∞ be the sequence of 𝑋 defined by the iterative 

scheme (1.6) with real sequences {𝛼𝑛}𝑛=0
∞ , {𝛽𝑛}𝑛=0

∞ , {𝛾𝑛}𝑛=0
∞  in [0, 1] satisfying ∑ 𝛾𝑛 = ∞.∞

𝑛=0  Then lim
𝑛→∞

∥ ℑ𝑛 −

𝑞 ∥ exists for all           𝑞 ∈ 𝐹(ℓ). 
 

Proof: Let 𝑞 ∈ 𝐹(ℓ). Now, using the convexity of 𝐻 we have, (1 − 𝛾𝑛)ℑ𝑛 + 𝛾𝑛ℓℑ𝑛  ∈ 𝐻 for all 𝑛 ∈ 𝑁. Since ℓ 

is Suzuki generalized non-expansive mapping so we can write  

 
1

2
 ∥ 𝑞 − ℓ𝑞 ∥= 0 ≤ ∥ 𝑞 − ((1 − 𝛾𝑛)ℑ𝑛 + 𝛾𝑛ℓℑ𝑛) ∥,  

 

which implies that  

 

∥ ℓ𝑞 − ℓ((1 − 𝛾𝑛)ℑ𝑛 + 𝛾𝑛ℓℑ𝑛) ∥ ≤ ∥ 𝑞 − ((1 − 𝛾𝑛)ℑ𝑛 + 𝛾𝑛ℓℑ𝑛) ∥.  

 

Now from the iterative process (1.6) we have 
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∥ ℘𝑛 − 𝑞 ∥ = ∥ ℓ𝑛((1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓ𝑛ℑ𝑛)  − ℓ𝑛𝑞 ∥ 

    ≤ ∥ ((1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓ𝑛ℑ𝑛)  − 𝑞 ∥ 

    ≤ (1 − 𝛽𝑛) ∥ ℑ𝑛 − 𝑞 ∥ +𝛽𝑛 ∥ ℓ𝑛ℑ𝑛 − 𝑞 ∥ 

    ≤ (1 − 𝛽𝑛) ∥ ℑ𝑛 − 𝑞 ∥ +𝛽𝑛 ∥ ℑ𝑛 − 𝑞 ∥ 

                                                   ≤∥ ℑ𝑛 − 𝑞 ∥                                                                                     (2.5) 

Now 

∥ ℏ𝑛 − 𝑞 ∥ = ∥ ℓ𝑛((1 − 𝛼𝑛)℘𝑛 + 𝛼𝑛ℓ𝑛℘𝑛)  − ℓ𝑛𝑞 ∥ 

      ≤∥ (1 − 𝛼𝑛)℘𝑛 + 𝛼𝑛ℓ𝑛℘𝑛  − 𝑞 ∥ 

      ≤ (1 − 𝛼𝑛) ∥ ℘𝑛 − 𝑞 ∥  + 𝛼𝑛 ∥ ℓ𝑛℘𝑛 − 𝑞 ∥  
      ≤ (1 − 𝛼𝑛) ∥ ℘𝑛 − 𝑞 ∥  + 𝛼𝑛 ∥ ℘𝑛 − 𝑞 ∥  
      ≤∥ ℘𝑛 − 𝑞 ∥                                                                                                                                  (2.6) 

      ≤∥ ℑ𝑛 − 𝑞 ∥.                                                                                                                                 (2.7) 

 

Again using (1.6), (2.5) and (2.7), we get 

 

∥ ℑ𝑛+1 − 𝑞 ∥ = ∥ ℓ𝑛((1 − 𝛾𝑛)ℓ𝑛℘𝑛 + 𝛾𝑛ℓ𝑛ℏ𝑛)  − ℓ𝑛𝑞 ∥ 

     ≤ ∥ (1 − 𝛾𝑛)ℓ𝑛℘𝑛 + 𝛾𝑛ℓ𝑛ℏ𝑛  − 𝑞 ∥ 

     ≤ (1 − 𝛾𝑛) ∥ ℓ𝑛℘𝑛 − 𝑞 ∥ + 𝛾𝑛 ∥ ℓ𝑛ℏ𝑛 − 𝑞 ∥ 

     ≤ (1 − 𝛾𝑛) ∥ ℘𝑛 − 𝑞 ∥ + 𝛾𝑛 ∥ ℏ𝑛 − 𝑞 ∥ 

     ≤ (1 − 𝛾𝑛) ∥ ℑ𝑛 − 𝑞 ∥ + 𝛾𝑛 ∥ ℑ𝑛 − 𝑞 ∥ 

     ≤∥ ℑ𝑛 − 𝑞 ∥. 

 

Hence {∥ ℑ𝑛 − 𝑞 ∥} is bounded and non-increasing for all 𝑞 ∈ 𝐹(ℓ).  
 

Hence lim
𝑛→∞

∥ ℑ𝑛 − 𝑞 ∥ exists for all𝑞 ∈ 𝐹(ℓ). 

 

Theorem 2.4: Let 𝐻 be a non-empty closed convex subset of a Banach space 𝑋 and          ℓ: 𝑋 → 𝑋 be a Suzuki 

generalized non-expansive mapping. Let {ℑ𝑛}𝑛=0
∞ be the sequence of defined by the iterative scheme (1.6) with 

real sequences {𝛼𝑛}𝑛=0
∞ , {𝛽𝑛}𝑛=0

∞ , {𝛾𝑛}𝑛=0
∞  in [0, 1]  satisfying ∑ 𝛾𝑛 = ∞.∞

𝑛=0  Then 𝐹(𝑇) ≠ ∅  if and only if 

{ℑ𝑛}𝑛=0
∞  is bounded and                         lim

𝑛→∞
∥ 𝑇ℑ𝑛 − ℑ𝑛 ∥= 0. 

 

Proof: First suppose that, 𝐹(ℓ) ≠ ∅. Let  𝑞 ∈ 𝐹(ℓ).   
 

Then by Lemma 2.4, lim
𝑛→∞

∥ ℑ𝑛 − 𝑞 ∥ exists for all 𝑞 ∈ 𝐹(ℓ) and {ℑ𝑛}𝑛=0
∞  is a bounded sequence. 

 

 Let lim
𝑛→∞

∥ ℑ𝑛 − 𝑞 ∥= 𝜃 for some 𝜃 > 0.   

 

Now, from (2.5), we have 

 

limsup
𝑛→∞

∥ ℘𝑛 − 𝑞 ∥≤  lim sup
𝑛→∞

∥ ℑ𝑛 − 𝑞 ∥ =  𝜃. 

 

By Proposition 1.4, we have  

 

limsup
𝑛→∞

∥ ℓℑ𝑛 − 𝑞 ∥≤  lim sup
𝑛→∞

∥ ℑ𝑛 − 𝑞 ∥ =  𝜃. 

 

 Now using (1.6) and (2.5) we have   

 

∥ ℑ𝑛+1 − 𝑞 ∥ = ∥ ℓ𝑛((1 − 𝛾𝑛)ℓ𝑛℘𝑛 + 𝛾𝑛ℓ𝑛ℏ𝑛)  − ℓ𝑛𝑞 ∥ 

 

    ≤ ∥ (1 − 𝛾𝑛)ℓ𝑛℘𝑛 + 𝛾𝑛ℓ𝑛ℏ𝑛  − 𝑞 ∥ 

    ≤ (1 − 𝛾𝑛) ∥ ℓ𝑛℘𝑛 − 𝑞 ∥ + 𝛾𝑛 ∥ ℓ𝑛ℏ𝑛 − 𝑞 ∥ 

    ≤ (1 − 𝛾𝑛) ∥ ℘𝑛 − 𝑞 ∥ + 𝛾𝑛 ∥ ℏ𝑛 − 𝑞 ∥ 

    ≤ (1 − 𝛾𝑛) ∥ ℘𝑛 − 𝑞 ∥ + 𝛾𝑛 ∥ ℘𝑛 − 𝑞 ∥ 

    ≤ ∥ ℘𝑛 − 𝑞 ∥, 
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which implies that ∥ ℑ𝑛+1 − 𝑞 ∥≤ ∥ ℘𝑛 − 𝑞 ∥ and hence 

 

𝜃 ≤  liminf
𝑛→∞

∥ ℘𝑛 − 𝑞 ∥. 

 

  Therefore, we can write 

 

𝜃 ≤  liminf
𝑛→∞

∥ ℘𝑛 − 𝑞 ∥≤  limsup
𝑛→∞

∥ ℘𝑛 − 𝑞 ∥≤  𝜃. 

 

Thus, we obtain lim
𝑛→∞

∥ ℘𝑛 − 𝑞 ∥=  𝜃. 

 

Now, we have  

 

𝜃 =  lim
𝑛→∞

∥ ℓ𝑛((1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓ𝑛ℑ𝑛)  − 𝑞 ∥ 

        ≤  lim
𝑛→∞

∥ (1 − 𝛽𝑛)ℑ𝑛 + 𝛽𝑛ℓ𝑛ℑ𝑛  − 𝑞 ∥ 

        ≤ lim
𝑛→∞

[(1 − 𝛽𝑛) ∥ ℑ𝑛 − 𝑞 ∥ +𝛽𝑛 ∥ ℓ𝑛ℑ𝑛 − 𝑞 ∥] 

        ≤ lim
𝑛→∞

(1 − 𝛽𝑛) ∥ ℑ𝑛 − 𝑞 ∥ +𝛽𝑛 ∥ ℑ𝑛 − 𝑞 ∥ 

        ≤ lim
𝑛→∞

∥ ℑ𝑛 − 𝑞 ∥≤  𝜃. 

 

Hence we can write 

 

𝜃 ≤  lim
𝑛→∞

∥ (1 − 𝛽𝑛)(ℑ𝑛 − 𝑞) + 𝛽𝑛(ℓ𝑛ℑ𝑛 – 𝑞) ∥≤ 𝜃. 

 

Thus lim
𝑛→∞

∥ (1 − 𝛽𝑛)(ℑ𝑛 − 𝑞) + 𝛽𝑛(ℓ𝑛ℑ𝑛 – 𝑞) ∥= 𝜃. 

 

Using Lemma 1.6 and the above calculations we have lim
𝑛→∞

∥ ℓ𝑛ℑ𝑛 − ℑ𝑛 ∥= 0. 

 

Conversely, let {ℑ𝑛}𝑛=0
∞  is bounded and lim

𝑛→∞
∥ ℓ𝑛ℑ𝑛 − ℑ𝑛 ∥= 0.  

 

Let 𝑞 ∈ 𝐴(𝐻, {ℑ𝑛}).  

 

By Lemma 1.5, we have 

 

𝑟(ℓ𝑞, {ℑ𝑛}) =  limsup
𝑛→∞

∥ ℑ𝑛 − ℓ𝑞 ∥ 

     ≤  limsup
𝑛→∞

(3 ∥ ℓℑ𝑛 − 𝑥𝑛 ∥ +∥ ℑ𝑛 − 𝑞 ∥) 

      ≤  limsup
𝑛→∞

(∥ ℑ𝑛 − 𝑞 ∥) 

 

which implies that ℓ𝑞 ∈ 𝐴(𝐻, {ℑ𝑛}). Since 𝑋 is uniformly convex Banach space. It follows that 𝐴(𝐻, {ℑ𝑛}) is 

singleton. Hence ℓ𝑞 = 𝑞 implies that 𝑞 ∈ 𝐹(ℓ) and hence 𝐹(ℓ) ≠ ∅. This completes the proof.   

 

Table 1. Iterative scheme with J-iteration scheme by considering the example of Bhutia and Tiwari 

 

Iteration  J-Iteration Iteration (1.6) 

0 

1 

2 

4 

5 

6 

7 

8 

4 

2.0183456356079 

2.0001845667869 

2.0000000200677   

2.0000000002057 

2.0000000000026 

2.0000000000002 

2 

4 

2.01874653158 

2.00015675043 

2.00000001877 

2.00000000011 

2 

2 

2 
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Example 2.3: Consider the mapping  ℓ(Ɵ) =  (Ɵ + 2)
1

2. Clearly ℓ is a generalized contraction mapping and 

{𝛼𝑛}𝑛=0
∞ , {𝛽𝑛}𝑛=0

∞ , {𝛾𝑛}𝑛=0
∞  be the sequence defined by 𝛼𝑛 = 𝛽𝑛 = 𝛾𝑛 =  

1

4
  for all 𝑛 ∈ 𝑁. We now compare the 

rate of convergence of our iterative scheme with J-iteration scheme by considering the example of Bhutia and 

Tiwari [1] using following Table 1. 

 

3 Conclusion 
  
From the above table, we can see that the iterative scheme (1.6) has higher rate of convergence than the J-

iteration process. 
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