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ABSTRACT 
 

Population dynamics within host-parasite systems in insects is governed by a series of factors, both 
endogenous and exogenous. Among them, five factors may be considered as major drivers: the 
respective inherent rates of increase of the host and of the parasite, the level of resource available 
to the host, the respective immigration rates of the host and of the parasite. While only the first two 
(the inherent rates of increase of host and parasite) are considered in the original Nicholson and 
Bailey model, an extended version of the model includes also the other three parameters, thus 
providing a broader (although still schematic) approach to the host-parasite population dynamics. A 
brief analysis of the respective influences of each of these five driving parameters on the main 
features of host-parasite dynamics is derived accordingly, based upon this extended model. Finally, 
specific attention is paid to the major concerns due to the cyclic outbreaks of both the host and the 
parasite, regarding in particular the amplitude, the periodicity and the conditions of onset of the 
cyclicity. Both the practical aspects of the cyclic regime and its possible adaptative significance are 
discussed. As a whole, this approach aims to provide some general clues for the interpretation of 
various features of the host-parasite dynamics, as reported from field observations. 
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1. INTRODUCTION 
 
Predator-prey relationships – or parasite and 
host relationships in the case of insects – are 
among the most ubiquitous forms of interspecific 
interactions within animal communities. The 
diversity and the frequent complexity of the 
reciprocal interactions between predator and 
prey species have therefore prompted strong 
speculative interest since a long time [1,2]. In 
some cases, the severe economic consequences 
resulting from insufficient control of preys by 
predators have also induced much practical 
concern as well [3,4].  
 

One major point, regarding the outcome of these 
interactions is the crudely contrasted patterns of 
variations of both predator and prey abundances 
across successive generations [5-7]. These 
contrasted, alternative patterns being either:  
 

(i)  A stable dynamic equilibrium between the 
respective abundances of the predator and 
the prey, with the equilibrium level 
depending, of course, on the relative 
performances (reproduction rate, detection / 
escape abilities …) of each of the two 
partners involved, or, 
 

(ii)  A more or less strong, oscillating pattern 
between the respective abundances of the 
predator and the prey, with usually regular 
cycles showing periodic oscillations. 

 
These two contrasted patterns are all the more 
remarkable since one or the other can be 
alternatively encountered within one and the 
same predator-prey (or parasite-host) system, 
involving the same couple of interacting species 
(Figs 1 to 3).  
 

A series of more or less refined mathematical 
models have been developed, designed to 
account for the intermingled reciprocal 
interactions between predator and prey species. 
Models which, thereby, try to explain the causes 
involved in the alternative occurrence of one or 
the other of these two alternative patterns. 
 

One of the more popular models, was originally 
proposed by Nicholson and Bailey [8] (reviewed 
in [5,9]). This model is focused on the 
entomological context, where, most often, the 
predator is a parasite (sensu lato, including 
parasitoid) and the prey is the correspondingly 

parasitized host. This model addresses the 
interactions between host and parasite in such a 
general and encompassing form that it still 
retains its current relevance and is still often 
taken as a reference. Yet, some important 
shortcomings in the original design of the model 
proposed by Nicholson and Bailey deserve 
specific consideration:  
 

(i) As it is, the Nicholson and Bailey model 
addresses only the influences of the inherent 
rates of increase of the host and the 
parasite, while neglecting the role of the 
possible limitations in feeding resource 
available for the host, that may also greatly 
affect the corresponding host-parasite 
population dynamics; in other words, the 
original model addresses the bi-trophic level 
(i.e. host–parasite) rather than the tri-trophic 
level (i.e. plant–host–parasite) among mutual 
biotic relationships; 
 

(ii) It does not take into account the meta-
population context, namely, the contribution 
to the local population dynamics of the 
immigration / emigration fluxes of the host or 
the parasite or both, coming from more or 
less distant other populations. 

 
An extended form of the original Nicholson & 
Bailey model is thus desirable, intended to jointly 
address (i) the possible limitation in the available 
resource for the host and (ii) the contributions of 
host and parasite dispersals among more or less 
distant populations. That is, in short, an 
extension of the original model which integrates 
both (i) the tri-trophic interactions (including both 
bottom-up and top-down regulations) and (ii) the 
surrounding metapopulation context (accounting 
thus for inter-populations dispersals).  
 
This extension of the Nicholson & Bailey model 
will be considered, and implemented hereafter, to 
serve the main purpose of the present study: 
trying to disentangle, thus highlight – and finally 
explain – the respective influences of the 
following factors on the pattern of variations of 
the host and the parasite abundances along 
successive generations:  
 

(i) the influence of the inherent rate of 
increase of the host species, 
 

(ii) the influence of the inherent rate of 
increase of the parasite species, 
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(iii) the influence of the level of available 
resource for the host,  
 

(iv) the influence of the net immigration rate 
of the parasite, 
  

(v) the influence of the net immigration rate 
of the host.  

 

With regard to the last two points (i.e. the 
contribution of the metapopulation context to 
host-parasite interactions), specific attention will 
be addressed to the role of the reciprocal 
exchanges of migrating individuals between 
more or less distant host and parasite 
populations on the amplitude and the period 
length of cyclic outbursts.  
 

At last, theoretical predictions in this respect will 
be compared to field observations reported for 
defoliating insects [10]. 
 

2. EXTENSION OF THE NICHOLSON & 
BAILEY MODEL 

 
As mentioned above, the extended version of the 
Nicholson & Bailey model accounts also for (i) 
bottom-up regulation due to possible limitation in 
resource for the host and (ii) the contribution of 
the metapopulation context via inter-populations 
emigration / immigration exchanges. The 
methodologic way according to which this 
enlarged version was derived is further described 
in more details in the Appendix; only the main 
factors involved in the model being specified 
below, for a better understanding of the following.  
 
In term of host-parasite relationships, the 
relevant time unit to be considered is the 
generation duration (usually common to both the 
parasite and the host: [5]). Dedicated models are 
thus expressed in discrete-time, with the time 
increment ‘i' labelling the successive generations 
of both the host and the parasite.  
 
Let then ‘hi’ and ‘pi’ be the densities (numbers of 
individuals per unit area of field investigation) of 
the host and the parasite respectively, at the 
common generation labelled ‘i'.  Consider now 
the respective own dynamics of the parasite 
species and of the host species – with the “own” 
dynamics of the host being understood as it 
would be in the absence of the parasite. These 
own dynamics are characterized quantitatively by 
the parameters below: 
 
- For the parasite (predator) species, three 
parameters: ‘v’, ‘f’ and ‘a’. With ‘v’ as the average 

number of viable parasites issued from each 
parasitized host-individual, ‘f’ as the proportion of 
mated, egg-laying females within the population 
of parasites and ‘a’ as the mean foraging area for 
oviposition by a parasite female. In the following, 
this last parameter, ‘a’, has been chosen as the 
distinctive parameter, singularizing and thus 
differentiating the reproductive own performance 
of a given parasite species (of course the other 
influent factors, ‘f’ and / or ‘v’, could have been 
considered as well); 
 

- For the host (prey) species, two parameters: ‘r’ 
and ‘K’. Parameter ‘r’ is for the inherent rate of 
increase of the host individual (that is, as it would 
be in the absence of any limitation in resource 
availability for the development of a host 
individual). Now, as in fact the available feeding 
resource for the host is always more or less 
limited in nature, it is necessary to consider also 
a parameter accounting for this limitation: ‘K’, the 
so-called “resource carrying capacity” for the 
host population. More precisely, ‘K’ accounts, 
here, for the density of host individuals that    
could ultimately be fed by the hypothetically 
exhaustive consummation of the available 
resource. 
 
In addition, let ‘eH’ and ‘eP’ be the additional 
contributions of immigration - more exactly the 
balance between immigration and emigration of 
the host individuals and of the parasite 
individuals respectively. ‘eH’ and ‘eP’ complement 
the host and the parasite densities, generated in 
situ, within the studied population system itself. 
 

3. STABLE AND OSCILLATORY 
DYNAMIC EQUILIBRIUM: TWO 
CONTRASTED PATTERNS, CHARACT-
ERISTIC OF HOST-PARASITE 
DYNAMICS 

 
It has long been recorded that in predator-prey 
dynamics in general, and in host-parasite 
dynamics in particular, the relative abundances 
(densities) of each the two interacting species 
progressively reach dynamic equilibrium values 
respectively. These equilibrium values, however, 
may be either fairly stable along successive 
generations or, on the contrary, more or less 
strongly oscillatory, with a characteristic pattern 
of oscillations, as exemplified in Fig 1 (computed 
using the extended model). The – self-generated 
– oscillatory pattern, when it occurs, is 
characterized by a (sub-) constant period as well 
as a (sub-) constant shape of oscillations, usually 
with a very sharp decreasing rate and a 
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comparatively slower increasing rate, especially 
as regards the host-oscillations (Figs 1 and 2). In 
addition, the oscillations of the host and of the 
parasite densities have (of course) the same 

periodicity, with the parasite oscillations      
being, yet, slightly out of phase (slightly delayed) 
as compared to the host oscillations (Figs. 1 and 
2). 

 

 
 

Fig. 1. A computed scenario of oscillatory equilibrium in host-parasite dynamics, with a 
predicted 10 years cyclic periodicity, according to the chosen parameters: K = 100, r = 2.5, 

a = 6.0, f = 0.3, v = 1, eH = eP = 0.01 
Discs: density of the host species; diamonds: density of the parasite species. Notice the logarithmic scale for 

densities of occurrence of host and parasite 

 

 
 
Fig. 2. Same as Fig. 1. with natural scale for densities – providing a more realistic, immediate 

appreciation of the amplitude of the variations of the densities of the host and the parasite 
along their respective cyclic (here decennial) oscillations 

Here, roughly, two years of high abundances, two years of medium abundances and six years of rarity or virtual 
absence
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The occurrence of either stable or oscillatory 
regimes is dependent on the values taken by 
each of the seven main driving parameters of 
population dynamics cited above: v’, ‘f’, ‘a’ for the 
inherent rate of growth of the parasite; ‘r’ for the 
inherent rate of growth of the host; ‘K’ accounting 
for the usually limited resource available for the 
host; ‘eH’ and ‘eP’ resulting from the 
metapopulation context. The respective 
influences, in this respect, of ‘a’, ‘r’, ‘K’, ‘eH’ and 
‘eP’ will be briefly illustrated hereafter. 
 

4. INFLUENCES OF THE MAIN DRIVING 

PARAMETERS ON HOST & PARASITE 

DENSITIES 
 

4.1 Influence of the Level of Inherent Rate 
of Increase of the Parasite Species 

 

With increasing reproductive performance of the 
parasite (here, for example, improved foraging 
efficiency ‘a’ of the ovipositing females of the 
parasite), the pattern of variations of the host 
(and of the parasite) density along successive 
generations goes through three different phases 

of dynamic equilibrium, labelled respectively S1, 
Os, S2 (Figs. 3 and 4): 
 

(i) A phase “S1” of stable equilibria, where 
the host density is at a high level, yet 
monotonically decreasing with increasing 
parasite reproductive performance, while the 
parasite density increases monotonically – 
and rather drastically – from its low, original 
level; 

 
(ii) A phase “Os” of oscillating equilibria, with 
a strong unimodal variation in the amplitudes 
[hmax – hmin] and [pmax – pmin] of the oscillating 
densities of both the host and the parasite 
respectively, and a parallel (but 
comparatively slight) unimodal variation in 
the period length of the oscillation cycles 
(mean duration of one cycle); 
 
(iii) A second phase “S2” of stable equilibria, 
where not only the (low) density of the host 
but also the (low) density of the parasite both 
decrease monotonically with increasing own 
reproductive performance of the parasite. 

 

 
 
Fig. 3. Host density plotted against increasing reproductive performance of the parasite (here 

the foraging performance ‘a’ of ovipositing females) – all other driving parameters of the 
interaction remaining unchanged. Typical display of three equilibrium phases – S1, Os, S2 – in 
the interactive dynamics of the host-parasite system. S1 and S2 are the two phases where the 
densities of the host and the parasite both reach stable levels of their respective densities, 

while Os is the phase of oscillatory equilibrium for both host and parasite densities, as 
exemplified in Figs. 1 and 2 

Discs: density of the host: (i) in the stable equilibrium phases and (ii) at the maximum (peak) density along the 
oscillatory phase. Triangles: lower (trough) density of the host along the oscillatory phase. Diamonds: period 

length of a cycle in the oscillatory phase, in term of number of generations.  
[K = 100, r = 2.5, a = variable, f = 0.3, v = 1, eH = eP = 0.01] 
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Fig. 4. Both host and parasite densities plotted against increasing reproductive performance 
(foraging efficiency ‘a’) of the parasite, all other driving parameters of the interaction 

remaining unchanged, in particular r = 2.5 
Discs: densities of the host (black) and the parasite (grey) in the stable equilibrium phases and at the maximum 

(peak) density along the oscillatory phase. Triangles: lower (trough) densities of the host (black) and the parasite 
(grey) along the oscillatory phase. Diamonds: period length of a cycle along the oscillatory phase, in term of 

number of generations. [K = 100, r = 2.5, a = variable, f = 0.3, v = 1, eH = eP = 0.01] 

 

 
 

Fig. 5. Both host and parasite densities plotted against increasing reproductive performance 
(foraging efficiency ‘a’) of the parasite, all other driving parameters of the interaction 

remaining unchanged, in particular r = 5.0 
Discs: densities of the host (black) and the parasite (grey) in the stable equilibrium phases and at the maximum 

(peak) density along the oscillatory phase. Triangles: lower (trough) densities of the host (black) and the parasite 
(grey) along the oscillatory phase. Diamonds: period of cycle along the oscillatory phase, in term of number of 

generations. [K = 100, r = 5.0, a = variable, f = 0.3, v = 1, eH = eP = 0.01] 
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Thus, the same succession of three regimes of 
dynamic equilibrium stands for the variations of 
the parasite density as well as for the host 
density, along successive generations, as clearly 
demonstrated in Figs 4 and 5. And, as expected, 
this succession (in particular the onset and the 
final vanishment of the oscillatory regime) is in 
strict coordination between the host and the 
parasite. And this, because the stable, as well as 
the cyclic, dynamic equilibria depend on mutually 
linked, retroacting mechanisms between the host 
and the parasite. 
 
This overall pattern of succession, S1  Os  
S2, along steadily increasing levels of the 
reproductive efficiency of the parasite, looks 
quite robust, remaining qualitatively unaffected 
by variations of the other parameters, ‘r’, ‘K’ and 
the immigration rates ‘eH’, ‘eP’. For example, Fig. 
5 provides the sketch computed for a different 
inherent rate of growth ‘r’ of the host population: r 
= 5 in Fig. 5, instead of r = 2.5 in Figs. 3 and 4. 
 

Going in more details, regarding the specifically 
interesting cyclic regime, it appears that the 
amplitude of a cycle (the gap between the 
maximum and the minimum values of host as 
well as parasite densities) and its periodicity 
(period length of a cycle) both have unimodal 

responses to the increasing reproductive 
efficiency of the parasite, all across the 
oscillatory regime: both the amplitude and the 
period of cycles quickly increase at first, pass by 
a maximum and then progressively decrease. 
The magnitude of variation in amplitudes is 
obviously incommensurate with the magnitude of 
variation in cycle period length but, nevertheless, 
both amplitude and period length look fairly well 
correlated (Fig. 6). 
 

The possible adaptative significance of the onset 
and the further long persistence of the oscillatory 
regime of host and parasite densities – 
spontaneously inserting itself between the two 
stable regimes S1, S2 – is tentatively interpreted 
later, in the Discussion section. 
 

4.2 Influence of the Level of the Inherent 
Rate of Increase of the Host Species 

 

As it was the case for the parasite, increasing the 
reproductive performance (inherent growth rate 
‘r’) of the host begins with a stable equilibrium 
regime, S1, for the densities of both the host    
and the parasite, next followed by the onset        
of an oscillatory (cyclic) regime, Os, when a 
critical value of ‘r’ is reached and then exceeded: 
Fig. 7.  

  

 
 

Fig. 6. Amplitudes of variation of (i) the host density (gap between peak and trough densities 
along a cycle) and (ii) the period length (i.e. the duration of a cycle, in term of number of 
successive generations) for the cyclic regime, plotted against increasing reproductive 
performance (foraging efficiency ‘a’) of the parasite, all other driving parameters of the 
interaction remaining unchanged. Note that cycle amplitude has been divided by 500. 

[K = 100, r = 2.5, a = variable, f = 0.3, v = 1, eH = eP = 0.01] 
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Fig. 7. Both host and parasite densities plotted against increasing inherent growth rate ‘r’ of 
the host, all other driving parameters of the interaction remaining unchanged 

Discs: densities of the host (black) and the parasite (grey) in the stable equilibrium phases and at the maximum 
(peak) density along the oscillatory phase. Triangles: lower (trough) densities of the host (black) and the parasite 

(grey) along the oscillatory phase. Diamonds: period of cycle along the oscillatory phase, in term of number of 
generations.  [K = 100, r = variable, a = 6, f = 0.3, v = 1, eH = eP = 0.01] 

 
And here also, and once again, the patterns for 
host and parasite are in strict coordination. But, 
contrary to the case above, the cyclic regime is 
further maintained whatever the value of ‘r’; that 
is, no second stable equilibrium pattern is ever 
reached. Also, the amplitude and the period 
length of cyclic densities, are negatively 
correlated (instead of positively above): thus, 
while the period of cycle is steadily decreasing at 
first (and finally stabilizing) with larger 
reproductive performance of the host, the 
amplitude of cycles, on the contrary, is quickly 
and strongly increasing at first (then stabilizing). 
 

4.3 Influence of the Carrying Capacity 
(Resource Availability for the Host) 

 
As might have been expected, increasing the 
level of available resource for the host (i.e. 
increasing the carrying capacity ‘K’), leads to a 
pattern (Fig. 8) which is somewhat similar to 
what was observed above when improving the 
inherent growth rate ‘r’ of the host. All the 
remarks made above (as regards the influence of 
the inherent growth rate of the host) apply, here, 
with the exception of a now positive correlation 
between the amplitude and the period of the 
cyclic densities. In particular, the cyclic regime is 
maintained whatever the value of ‘K’; that is, no 
second stable equilibrium is ever reached. 

4.4 Influence of the Immigration Rate of 
the Parasite   

 
Fig. 9 provides an account of the variations of the 
host density with increasing level of the parasite 
immigration ‘eP’, all other parameters being 
unchanged. Increasing the level of parasite 
immigration should, expectedly, have an effect 
on the variations of host density being somehow 
reminiscent of what is observed with growing 
reproductive efficiency ‘a’ of the parasite.        
Hence, the qualitative similarity that can be 
recognized between the right part of Fig. 3 (for 
values of ‘a’ larger than 6.0, as chosen in         
Fig. 9) and the right part of Fig. 9 (when ‘eP’ 
comes in excess of the value, eP = 0.01      
chosen in Fig. 3). Here also, a positive 
correlation between the amplitude and the period 
of the cyclic densities is highlighted. The 
consistent decrease of the period length with 
increasing levels of parasite immigration is best 
shown in Fig. 10, with untransformed 
coordinates. 
 

4.5 Influence of the Immigration Rate of 
the Host  

 

Fig. 11 provides an account of the variations of 
the host density with increasing levels of 
immigration ‘eH’ of the host itself, all other 
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parameters being unchanged. Here also (as for 
the influence of the parasite immigration rate), 
increasing the level of host immigration rate 
should, conceivably, have an effect on the 

variations of host density being somehow 
reminiscent of what is observed with growing 
inherent rate of growth ‘r’ of the host itself (as it is 
shown in Fig. 7). 

 

 
 
Fig. 8. Both host and parasite densities plotted against increasing carrying capacity ‘K’ for the 

host, all other driving parameters of the interaction remaining unchanged 
Discs: densities of the host (black) and the parasite (grey) in the stable equilibrium phase and at the maximum 

(peak) density along the oscillatory phase. Triangles: lower (trough) densities of the host (black) and the parasite 
(grey) along the oscillatory phase. Diamonds: period of cycle along the oscillatory phase, in term of number of 

generations.  [K: variable, r = 2.5, a = 6, f = 0.3, v = 1, eH = eP = 0.01] 
 

 
 

Fig. 9. Host density plotted against increasing immigration rate ‘eP’ of the parasite, all other 
driving parameters of the interaction remaining unchanged 

Discs: density of the host in the stable equilibrium phase and at the maximum (peak) density along the oscillatory 
phase. Triangles: lower (trough) densities of the host (black) and the parasite (grey) along the oscillatory phase. 

Diamonds: period of cycle along the oscillatory phase, in term of number of generations.   
[K = 100, r = 2.5, a = 6, f = 0.3, v = 1, eH = 0.01, eP variable] 
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Fig. 10. Focus on the influence of the immigration rate ‘eP’ of the parasite on the period length 

of cyclic densities of both the host and the parasite, in term of number of generations 
 

 
 
Fig. 11. Host density plotted against increasing immigration rate ‘eH’ of the host itself, all other 

driving parameters of the interaction remaining unchanged 
Discs: density of the host in the stable equilibrium phase and at the maximum (peak) density along the oscillatory 
phase. Triangles: lower (trough) densities of the host (black) and the parasite (grey) along the oscillatory phase. 

Diamonds: period of cycle along the oscillatory phase, in term of number of generations.  
 [K = 100, r = 2.5, a = 6, f = 0.3, v = 1, eP = 0.01, eH variable] 

 

But, here, in addition, the rate of host immigration 
constrains, of course, the minimum value of host 
density being at least equal to ‘eH’. Hence the 
imposed sub-linear increase of the minimum 
value of host density (Fig. 11), which is not the 
case with growing inherent rate of growth ‘r’ of 
host alone (Fig. 7). As a consequence, the 
minimum density ends up joining the maximum 
density, thus finally putting an end to the 

oscillatory regime (Fig. 11). While, on the 
contrary, the oscillatory regime is consistently 
maintained unending with growing inherent rate 
of growth ‘r’ (Fig. 7). A still positive correlation 
between the amplitude and the period of the 
cyclic densities is highlighted. The consistent 
decrease of the period length with increasing 
levels of host immigration is best shown at Fig. 
12 with untransformed coordinates. 
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4.6 A Synthetic Overview of the 
Influences of the Five Main Driving 
Parameters on the Amplitude and the 
Period Length of Oscillations of 
Densities in the Cyclic Regime 

 
Table 1 provides a schematic summary of the 
trends of variations of the amplitude and the 
period length of oscillations of both the host and 
the parasite densities with increasing values of 
the five major governing factors of host-parasite 
population dynamics, as synthetized from the 
preceding results. 
 

5. EXAMPLE OF APPLICATION: 
INTERPRETING THE ROLE OF THE 

METAPOPULATION CONTEXT ON THE 

PERIOD LENGTH OF OUTBREAKS OF 

THE PINE PROCESSIONARY MOTH 
 
Cyclic patterns in the population dynamics of 
forest moth defoliators have been frequently 
reported [4-6, 10-15]. In particular, populations of 
the Pine processionary moth, Thaumetopoea 
pityocampa (Denis & Schiffermüller), are usually 
subjected to more or less strong and regular 
outbreaks which are of major concern for both 
forest and human health [11]. In a broad scale 
study encompassing the whole of impacted 
regions in France, LI et al. [10] report on a 
decrease (highly significant, p = 0.0009) of the 
length of the period separating successive 

outbreak picks of the pine processionary moth 
when the pine cover is increasing in the 
surrounding landscape. That is, the period length 
consistently decreases when infested stands are 
obviously less isolated. This suggests, in turn, 
that the reduction of the average length of 
periodic cycles of density may ultimately result 
from an increasing rate of immigration of the 
moths and the parasites as a consequence of 
stands being less isolated.  
 
This expectation is actually supported, and thus 
satisfactorily explained, by the extended model, 
as already suggested above. Thus, Fig. 13 
highlights a consistent trend for a steadily 
decrease of the period length of the cyclic 
oscillations of both host and parasite densities 
when immigration rates of the host and the 
parasite increase, all other factors being 
unchanged. The trend looks robust, being 
maintained for a series of different values of the 
other main driving parameters of host-parasite 
dynamics (Fig. 13). 
 
Moreover, the trend still holds true when only the 
immigration rate of the host is increasing alone. 
Incidentally, the model predicts that, as is the 
case for the period length, the amplitude of the 
cyclic oscillations should also decrease with 
increasing immigration rates, due to both the 
decrease of the peak density and the strong 
increase of the density trough (unpublished 
results). 

 

 
 

Fig. 12. Focus on the influence of the immigration rate ‘eH’ of the host on the period length of 
cyclic densities of both host and parasite, in term of number of generations 
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Table 1. General trends of variations of the amplitude and the period length of the cyclic 
regime of host-parasite densities, as a function of increasing values of (i) the reproductive 

efficiency of the parasite, (ii) the reproductive efficiency of the host, (iii) the available resource 
for the host, (iv) the immigration rate of the parasite, (v) the immigration rate of the host  

 
Cyclicity ↗ reprod 

parasite 
↗ reprod 
host 

↗ resource 
for host 

↗ immigr 
parasite 

↗ immigr 
host 

amplitude ↗ ↘ ↗ → ↗ → ↘ ↘ 
period length ↗ ↘ ↘ → ↗ → ↘ ↘ 

Trends are computed using the extended version of the Nicholson & Bailey model 
 

 
 

Fig. 13. Computed period length of outbreaks (cyclic regime of densities) plotted against 
increasing immigration rates of both the host and the parasite (assumed being equal: eH = eP), 

all other driving parameters of the interaction remaining unchanged 
Triangles: r = 1.3, a = 1.0 ; Diamonds: r = 2.3, a = 1.0 ; Squares: r = 4.0, a = 2.0 ; Discs: r = 10.0, a = 4.0. 

 [K = 100, f = 0.3, v = 1, eH = eP : variable] 
 

6. DISCUSSION 
 
Host-parasite interactions – and their outcome in 
term of population dynamics – certainly involve 
too many different causes to be always 
appropriately described in sufficient details by 
comparatively simple models such as the 
classical Nicholson & Bailey model or, even, the 
extended version implemented here. For 
example, CLARK [16] (reviewed in [5]) provides a 
good illustration of the multiplicity of biotic and 
abiotic factors jointly involved in the very irregular 
population dynamics of the psyllid Cardiaspina 
albitextura.  
 

Yet, on the other hand, cases are not so rare, 
where the population dynamics turns out not to 
be so irregular and, therefore more amenable to 
handy modelling. Admittedly, even so, such 

simple models as Nicholson & Bailey’s and its 
extended version, could still provide     
insufficiently accurate and reliable accounts of 
the detailed variations of host and parasite 
abundances. But, at least, the major trends of   
the host-parasite mutual dynamics – and their 
associated rational explanations – can be 
efficiently derived from such models, and this 
was, indeed, the primary focus of the          
present study which aims, at first, to provide 
some educational survey of the question. In 
particular, specific attention was devoted to      
the prominent question of the conditions 
triggering the onset of cyclic oscillations of       
host and parasite densities (Figs 1 and 2) –      
and the frequent outcome of cyclicity in terms of 
more or less dramatic outbreaks of forest 
defoliators –  as this is of both speculative and 
practical interest.  
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6.1 Implementing Rational Scenarios to 
Capture Some Main Drivers of Host-
Parasite Dynamics and to Tentatively 
Provide Rational Interpretations 

 

Among the major ascribable causes, the 
respective influences of the inherent rates of 
increase of either the host or the parasite have 
been re-examined, here, and were given a 
presumably original synthetic presentation (Figs. 
3 to 7), hopefully consistent with an educational 
goal (of course, this first step was already 
accounted for, since a while, by the original 
Nicholson & Bailey model). 
 

With the same concerns, the influences of other 
major factors, specifically addressed in the 
extended version of the Nicholson & Bailey 
developed for this purpose, are subsequently 
considered, namely: the influence of the level of 
available resource for the host (Fig. 8) and the 
respective roles of the immigration rates of either 
the parasite (Figs. 9 & 10), or the host (Figs. 11 
& 12), or of both partners (Fig. 13). 
 

All together, these Figs. – and the synthetic 
presentation summarized in Table 1, derived 
from these Figs – aim at displaying a panorama 
of how and for which reasons, the pattern ‘Os’ of 
sharp oscillations of densities of both the host 
and the parasite may emerge from the backdrop 
of the otherwise stable dynamic equilibrium 
patterns, ‘S1’ and ‘S2’. And, in addition, how and 
for which reasons, both the amplitude and the 
periodicity of this sharp oscillations can vary in 
considerable proportions (occasionally leading to 
severe outbreaks of major practical concern).  
 

Once again, these scenarios do not aim at 
providing accurate quantitative predictions, in 
terms of variations of host and parasite densities, 
under specific values of the main governing 
parameters (inherent rates of increase, available 
resource for the host, immigration rates). In fact, 
trying to capture and tentatively highlight at least 
the major trends, in a semi quantitative 
approach, is the only, but already significant 
ambition of the present extended model. 
Moreover, following on from this perspective, a 
second objective was to offer a tool for putting 
this approach into free practice. Thus, multiple 
scenarios, computed with the extended model 
(detailed in Appendix) and based on freely varied 
values of governing parameters, might well 
encourage some enlightening, fruitful exercises.  
 

As an example of such “explorative scenarios”, a 
theoretical argumentation has been put forward 

(Fig. 13) to explain the observations reported by 
LI et al. [10], according to which a significant 
shortening in the outbreaks period length of the 
pine processionary moth was empirically 
associated to an increasing pine cover in the 
surrounding landscape. 
 
Another example of meaningful scenario, not 
addressed here, but which would deserve further 
investigation, would be to proportionate the 
immigration rates of the host and of the parasite 
(at any given generation) to the corresponding 
densities of the host and the parasite at the 
preceding generation (instead of immigration 
rates remaining constant along successive 
generations), as this would more closely 
approach reality.  
 
Now, beyond, the main practical concern of 
seeking for rational explanations to be given to 
reported field observations, some more 
speculative aspects of the host-parasite 
dynamics can also be addressed and discussed 
hereafter. 
 

6.2 A Possible “Adaptive” Role for the 
Onset of Cyclicity in Host-parasite 
Systems? 

 
Let examine more deeply what happens when 
the parasite reproductive efficiency (for example, 
the mean foraging area ‘a’ of ovipositing females) 
is steadily increasing (all other parameters being 
unchanged), as considered in Figs. 3 and 4. 
 
* stable equilibrium phase S1 (extending up to ‘a’ 
= 0.1) : at first, with very low values of parasite 
foraging area (here, for ‘a’ < 0.03) the density of 
the parasite slowly increases but remains of 
course very weak, while the density of the host 
remains very high, not far from the carrying 
capacity K for the host. Then (here, for ‘a’ > 
0.03), the density of the parasite increases 
drastically while, accordingly, the density of the 
host begins slowly decreasing.  Extrapolating this 
trend would promptly lead the parasite density to 
rejoin and then strongly overstep the density of 
the host. The latter would, therefore, be rapidly 
doomed to an ultimate collapse. But, precisely, 
entering the oscillatory pattern will efficiently 
challenge this trend ! 
 
* oscillatory (cyclic) equilibrium phase Os (here 
for 0.1 < ‘a’ < 100) : entering the oscillatory 
pattern obviously opposes with strong efficacy 
the extrapolated trend for the parasite density to 
overstep the density of the host, thereby 
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preventing the, otherwise, quick and inevitable 
collapse of the host density.  And all along the 
stage of cyclic equilibrium, the extrapolated trend 
for the parasite density to strongly exceed the 
density of the host is clearly dismissed, despite 
the increase by a factor 1000 of the foraging area 
‘a’ (‘a’ increasing from 0.1 to 100 across the 
oscillating phase, see Fig. 14). And, thus, despite 
the corresponding increase in the reproductive 
efficiency of the parasite. 
 
* stable equilibrium phase S2 : eventually, when 
the efficiency of the parasite finally overcomes 
the “counteroffensive” (the “buffering” effect) of 
the oscillatory process (here for parasite foraging 
area ‘a’ > 100), then, the parasite density 
henceforward markedly oversteps the density of 
the host. But this, indeed, can be considered a 
“Pyrrhic victory”, since the parasite supremacy 
over the density of its host is a supremacy 
obtained at the price of a now quite low absolute 
levels of densities, not only for the host, but for 
the parasite as well ! 
 
This, indeed, is still better characterized in 
quantitative terms by precisely considering the 
variation of the ratio π of the parasite average 
density to the host average density, i.e. the 
“parasitism pressure” π. The buffering effect on 

the parasitism pressure, resulting from the onset 
of the cyclic regime Os, is clearly highlighted in 
Fig. 14. Moreover, the implemented model 
shows a trend for this buffering effect going 
stronger and extending further with increasing 
inherent growth rate ‘r’ of the host species, 
thereby suggesting that it is the “reactivity” of the 
host species which features instrumental in this 
respect. And, indeed, this buffering effect looks 
as if it was at the “benefit” of the host. Thus, for 
these reasons, the onset of the cyclic regime 
might relevantly be considered “adaptative”, from 
the point of view of the host own success. 
 
Thus, as a whole, the oscillatory process (i) 
opportunely establishes itself when the 
drastically increasing density of the parasite 
dangerously approaches the level of the 
decreasing density of the host, and then, (ii) 
lengthily makes opposition to the trend for the 
parasite to overrun the host density – a process 
which may arguably be considered as having a 
truly efficient buffering influence on the severity 
of parasitism outcome and finally strongly 
postpones the ultimate success of the parasite 
(i.e. parasite density overstepping host density: π 
> 1) . In this respect, the cyclicity of both host 
and parasite densities may appropriately be 
viewed as a kind of “relaxing oscillations”. 

 

 
 

Fig. 14. The same scenario as in Fig. 3 with, superimposed, the relative parasitism pressure, 
quantified in term of the computed ratio π of the average parasite density to the average host 

density (coarse double line) 
Note the sudden drop of π at the onset of the oscillating regime (S1  Os). The coarse dotted line stands for the 
hypothetic value of π if the oscillatory phase would not exist (hand drawing). Thus, the gap between the dotted 

line and the double line highlights the “buffering” effect exerted on the parasitism pressure π, presumably 
attributed to the cyclic (oscillating) regime. [K = 100, r = 2.5, a = variable, f = 0.3, v = 1, eH = eP = 0.01] 
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Thus, the cyclicity of both the host and the 
parasite densities may well be considered being 
“adaptive” not only, immediately, for the host 
only, but also for the host-parasite system as a 
whole, as far as it favors and extends the 
coexistence between two (or, more largely, 
several) species involved in multi-trophic 
relationships. Multi-trophic relationships which, 
indeed, make the generality of structuring 
processes shaping ecosystems worldwide. 
Reasoning this way thus uncovers the (likely 
unexpected) fundamental importance of this 
auto-adaptative mechanism, where a strongly 
oscillating regime of species densities ultimately 
contributes to avoid the catastrophic extinction of 
some species and, thereby, promotes a less 
unstable co-existence among species, within 
species-rich ecosystems.  
 

7. CONCLUSION 
 
The extended version of the Nicholson & Bailey 
model, implemented here, does not pretend to 
provide an accurate quantitative account of the 
host-parasite dynamics but rather aims at 
enlightening some major trends regarding the 
influence of five major drivers on the host-
parasite dynamics in general, thereby helping to 
propose some likely rational interpretations of 
various aspects of these dynamics, as reported 
from the growing series of published field 
observations. Indeed, this approach, promoting 
the development of “not too complex models”, is 
in full line with the final recommendations by 
HUNTER & DWYER [9]. An illustrative example was 
proposed, tentatively providing a rational 
explanation of the influence of the 
metapopulation context on the period length (and 
the degree of severity) of the outbreaks of the 
pine processionary moth dynamics. 
 
In quite a more speculative approach, the 
implementation of this extended model may 
serve, as well, as a convenient tool (i) for 
elaborating scenarios involving various 
combinations of values of the five drivers and, 
thereby, (ii) for testing a series of conceptual 
hypothesis on the possible role of these 
combined factors on the host-parasite dynamics, 
either quasi-stable dynamic equilibrium or 
strongly oscillating regime.  
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APPENDIX 

 

Derivation of an Extended Formulation of the Nicholson & Bailey Model 
 
A.1- the classical Nicholson & Bailey model 
 
The original Nicholson & Bailey model accounts for the predator-prey interaction in discrete time and 
is more particularly (although not exclusively) designed to treat the parasite-host interaction in insects.  
Let ‘hi’ and ‘pi’ be, respectively, the densities (numbers of individuals per unit area of investigation) of 
the host and of the parasite, at generation ‘i'. Besides – and in accordance with the Nicholson & 
Bailey model – it is assumed that each parasite ovipositing female: 
 

(i) is foraging at random for its selected kind of prey,  
 
(ii) avoids oviposition upon an already egg-laid prey (or, if not so – which is likely – the second 
oviposition does not lead to viable offspring), 
 
(iii) has some finite foraging area ‘a’ (also assuming that it is this foraging area, rather than the 
female’s eggs load, which is the operational limiting factor in the parasite eggs deposition). 

 
Also, the Nicholson & Bailey model – as well as its present extension – relevantly apply if parasite and 
host share the same scale of successive generations, which indeed is often the case: [5].  Under 
these conditions, the predicted density of parasitized host individuals complies with a Poisson 
distribution [5,9]. 
 
Accordingly, the densities hi, par and hi, non par  of parasitized and non-parasitized hots are: 
 

hi, par = hi.(1 – exp(– a.f.pi))                                                                                                       (1) 
 

hi, non par = hi. exp(– a.f.pi)                                                                                                          (2) 
 
with ‘f’ as the proportion of mated (and thus egg-laying) females within the whole population of 
parasites. 
 
Let ‘r’ be the inherent rate of increase of the host (as it would be in the absence of parasitism and of 
any limitation in resource availability for the host development).  
 

Accordingly, the density of hosts at generation i+1 is: 
 

hi+1  = r. hi, non par                                                                                                                       (3)             
 

that is: 
 

hi+1  =  r.hi.exp(– a.f.pi)                                                                                                             (4) 
 

The density pi+1 of parasites at generation i+1 is proportional to the density hi, par of parasitized hosts 
at generation i: 
 

pi+1  = v.(hi, par) 
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with ‘v’ as the average number of viable parasites individuals issued from each parasitized host 
individual (proportional, in particular, to the egg clutch-size laid by ovipositing female of the parasite, 
at the expense of a single host individual). The density of mated ovipositing females of the parasite at 
generation i+1 being, accordingly, equal to (f.pi+1). 
 
Accounting for the expression (1) of hi, par, it comes: 
 

pi+1  =  v.hi.(1 – exp(– a.f.pi))                                                                                                    (5) 
 
Note, incidentally, that equations (4) and (5) comply with the classical formalism of HASSELL: see 
equations (1) and (2) with m = 0 in reference [9]. 
 
A.2- The extended Nicholson & Bailey model involving both (i) the contribution of immigration-
emigration and (ii) the limitation of available feeding resource for the host 
 
A.2.1 Immigration-emigration 
 
Let eH and eP be the additional contributions (at each generation) of the balance between the 
immigration and the emigration of the host (resp. the parasite), in complement to the host and parasite 
densities computed above. It comes: 
 

hi+1  =  r.hi.exp(– a.f.pi) + eH                                                                                                     (6) 
 
pi+1 = v.hi.(1 – exp(– a.f.pi)) + eP                                                                                              (7) 

 
A.2.2 Limitation of available feeding resource for the host  
 
Moreover, let ‘R’ be the density of available feeding resource for the host insects (typically, for an 
herbivore insect, the density of leaves of the appropriate plant species, acceptable for the successful 
development of offspring) and ‘c’ the mean consummation of resource necessary to the full 
development of a host individual. Thus, the carrying capacity for the host insects (i.e. the density of 
host individuals that could be fed by the hypothetically exhaustive consummation of the available 
resource) is ‘K’, with: 
 

K = R/c                                                                                                                                     (8) 
 
The relationship between the densities of host individuals at the successive generations i and i+1, 
provided by equation (4) (or equation (6) accounting for immigration-emigration), should then be 
modified to account for the limiting carrying capacity ‘K’. 
 
The consequences of the limited availability – if any – of resource for the host depend, in particular, 
upon the pattern of intra-specific competition for this resource among co-occurring host individuals. 
Let consider successively two extreme hypotheses in this respect. 
 
        * according to a first – somewhat unrealistic – hypothesis, intra-specific competition for resource 
among co-occurring host individuals would be ideally avoided until the threshold of complete 
consummation of the entire available resource is finally reached. This would imply quite a strict 
regular pattern of distribution of eggs (and of the subsequent pattern of distribution of offspring) 
among the displayed resource, so as to prevent any scramble competition to occur at any time, until 
all available resource is actually consumed. The corresponding behavior of ovipositing host-females – 
aiming at reducing at most the loss liable to intra-specific competition – would undoubtedly have some 
positive selective value per se. Yet, on the other hand, it would also require, as emphasized above, an 
accurate planning a priori of the spatial distribution of eggs among the displayed resource, based on a 
prior knowledge of the diet just necessary for each future larva. And this hypothetical behavior of 
ovipositing host-females would also involve, in turn, a significant cost devoted to the recognition and 
the avoidance of already egg-laid areas, as well as an extra time-expenditure when foraging for 
resource to comply efficiently with this ideal prior planning. So that it seems finally rather unlikely that 
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such a refined behavior of ovipositing females may have developed significantly (at least apart from 
the specific case of explicitly territorial species). According to this hypothetical and rather unlikely 
behavior, the density, hi+1, of host individuals at generation i+1 would simply conform to equation (6) 
as far as hi+1 remains below the carrying capacity K and, beyond, equal this capacity K. 
 
A less drastic hypothesis, that yet implies a still rather unlikely pattern of oviposition, leads to the very 
classic logistic model in discrete time: 
 

 hi+1  =  (r.hi, non par + eH).[1 – (hi, non par + eH)/K]                                                                          (9) 
 
which can provide oscillations of the host and parasite abundances that are not only periodic but also 
pseudo-periodic or even chaotic.  
  
        * now, according to a second, opposite, hypothesis, the pattern of oviposition displayed by host-
females (or, as well, the pattern of the subsequent distribution of offspring) is assumed being more or 
less random among the displayed resource. Which implies the absence of any particular effort from 
host-females to avoid possible intra-specific competition for resource among co-occurring host 
individuals. This second hypothesis should well deserve more particular attention, as it seems more 
likely in most host-insects, being understood that, in some case, the field reality may be somewhat an 
intermediate between these two, opposite, hypothesis.  
 
Assuming thus a (more or less) random distribution of eggs – and, thus, a (more or less) random 
distribution of offspring among the displayed resource – and then considering the resulting degree of 
crowding in resource exploitation by host offspring, it comes, in conformity with the Poisson 
distribution: 
 

hi+1  =  K.[1– exp(– (r.hi, non par + eH)/K)]                                                                                  (10) 
 
That is a more progressive, asymptotic approach of the saturation of resource exploitation quantified 
by a negative exponential – which is distinctly less brutal than is, for example the linear approach to 
saturation involved in the logistic model, and still less brutal, a fortiori, than the outcome from the first 
hypothesis. 
 
Accounting for the expression (2) of hi, non par, it comes finally: 
 

hi+1  =  K.[1– exp (– (r.hi.exp(– a.f.pi) + eH)/K)]                                                                       (11) 
 
The expression (7) of the density of mated females of parasites, pi+1, remains unchanged: 
 

pi+1 = v.hi.(1 – exp(– a.f.pi)) + eP                                                                                            (12) 
 
In contrast with the logistic model evoked above, the present model only generates regular, non-
chaotic kinds of oscillations, as a result of the more progressive approach to saturation of resource 
exploitation by the host. Indeed, this more regular oscillations are in better accordance with many field 
records. 
 
In addition, note that: 
 
        * In the inevitably simplified approach of the model, the interactive dynamics of the host-parasite 
system is governed by only six main drivers: ‘r’ and ‘K’ [both relevant to the host]; ‘a.f’ (whatever the 
respective values of ‘a’ and ‘f’) and ‘v’ [both relevant to the parasite]; ‘eH’ and ‘eP’ [both dependent on 
the environmental biological context]. All or part of these six main drivers being, in turn, variously 
dependent on the abiotic environmental context (climate, etc…).  
 
        * The above equations are given in terms of the areal densities of the parasite (pi), of the host (hi) 
and of the available resource per host (K =R/c). Now, an alternative approach is to consider the 
respective densities of the host and the parasite relative to the carrying capacity K, that is to consider 
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h’i = hi/K and p’i = pi/K. This way may arguably be preferred for most practical concerns, as h’i more 
straightforwardly highlights the degree of damage inflict by the host to the feeding resource – damage 
which, in turn, is often of practical – economic or esthetic – concern.  Accordingly, equations (11) and 
(12) can be rewritten by replacing hi by K.h’i ; pi by K.p’i ; eH by K.e’H and eP by K.e’P.  
It comes accordingly: 
 

h’i+1  =  hi+1/K  =  1– exp (– (r.h’i.exp(– a.f.K.p’i) + e’H))                                                    (11 bis) 
and: 

p’i+1  =  pi+1/K  =  v.h’i.(1 – exp(– a.f.K.p’i)) + e’P                                                               (12 bis) 
 
A.2.3  Dependence of the immigration rates of the parasite and the host on the average 

densities of parasite and host in the meta-population context 
 
Up to now, the immigration rates, eH and eP, have been considered constant along the time elapsed 
(i.e. along the successive generations of host and parasite). In particular, no relationship has been 
considered, that would link the immigration rates of the parasite and the host to the corresponding 
densities of parasite and host in the more or less distant homologous populations. Yet, it is 
uncommon that the host and parasite populations are completely isolated from such more or less 
distant homologous populations. In this “meta-population” context, some exchanges (immigration / 
emigration) involving both the parasite and the host individuals likely exist between the more or less 
distant local populations, owing to the unavoidable partial dispersal of individuals away from their 
native locations. Accordingly, the net immigration rates, eP and eH, are expected to represent some 
definite fraction ‘ε’ of the corresponding local densities pi and hi of the parasite and host (or their 
respective averages along a cyclic period when cyclic regime actually occurs). This fraction ‘ε’ thus 
accounts for the relative intensity of the immigration contribution to the dynamics of the interacting 
host-parasite system under study. Note that, under cyclic regime, the relative contribution ε of 
immigration is modulated by the possible partial or even complete synchronization of cycles between 
the more or less distant homologous host/parasite populations. With ε decreasing with increasing 
synchronization and ε ultimately falling down to zero in the hypothesis of total synchronization. 
 
Let h*i and p*i be the average values of pi and hi in the meta-population system (i.e. across the 
neighboring populations); it comes accordingly, at generation i+1: 
 

eH = ε.h*i  and  eP = ε.p*i     or, as well,      e’H = ε.h’*i  and  e’P = ε.p’*i                                  (13) 
 
These expressions having to be introduced in equations (11), (12) or (11bis), (12bis) respectively. Of 
course, the value of ‘ε’ may possibly differ for the host and for the parasite species. 
 
A.2.4 Implementing the heuristic model 
 
In spite of its extended parts detailed above, this model remains of course an approximation of a far 
more complex reality. Yet, as it is, with its additional improvements as compared to the original 
Nicholson and Bailey model, it offers valuable opportunities of conceptual, speculative investigations 
and, thereby, may serve as a convenient “heuristic” tool, designed to highlight some influential trends 
regarding how the interacting dynamics of the host/parasite system actually answers various 
modifications in the driving parameters (‘a’, ‘f’, ‘v’, ‘r’, ‘K’, ‘eP’, ‘eH’) of this dynamics. 
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