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Abstract
To make progress in science, we often build abstract representations of physical systems that
meaningfully encode information about the systems. Such representations ignore redundant
features and treat parameters such as velocity and position separately because they can be useful for
making statements about different experimental settings. Here, we capture this notion by formally
defining the concept of operationally meaningful representations. We present an autoencoder
architecture with attention mechanism that can generate such representations and demonstrate it
on examples involving both classical and quantum physics. For instance, our architecture finds a
compact representation of an arbitrary two-qubit system that separates local parameters from
parameters describing quantum correlations.

1. Introduction

Neural networks are among the most versatile and successful tools in machine learning [1–3] and have been
applied to a wide variety of problems in physics (see [4–6] for recent reviews). Many of the earlier
applications have focused on solving specific problems that are intractable analytically and for which
conventional numerical methods deliver unsatisfactory results. Conversely, neural networks may also lead to
new insights into how the human brain develops physical intuition from observations [7–14].

Recently, the potential role that machine learning might play in the scientific discovery process has
received increasing attention [15–22]. This direction of research is not only concerned with machine learning
as a useful numerical tool for solving hard problems, but also seeks ways to establish artificial intelligence
methodologies as general-purpose tools for scientific research.

An important step in the scientific process is to convert experimental data, which can be seen as a very
high-dimensional and noisy representation of a physical system, into a more succinct representation that is
amenable to a theoretical treatment by a human user. For example, when we observe the trajectory of an
object, the natural experiment is to record the position of the object at different times; however, our theories
of kinematics do not use time series of positions as variables, but rather describe the system using quantities,
or parameters, such as initial velocity and initial position. The description of a system in terms of initial
velocity and initial position is both succinct and operationally meaningful since the concept of velocity by
itself can be used to perform prediction tasks in many different physical settings. If we instead described the
system by e.g. the sum and difference of initial velocity and initial position (in some fixed units), this would
still succinctly represent the same information, but it would not be operationally meaningful and mostly
useless to a human interpreter. This is because the sum of initial velocity and initial position by itself is
generally not a useful quantity for making predictions. This notion is motivated by the following general
criterion for physical theories. We want a theory to describe a system in such a way that if different agents
perform different experiments on a systems, they only need to know a subset of the parameters describing
this system. We call this criterion efficient communicability: we imagine that one agent has a full description
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of the system in terms of a set of parameters and wants to tell other agents about the aspects of the system
relevant to their experiments by sending a subset of parameters. Then, the parameters describing the full
system should be chosen in such a way as to minimize the required communication.

In this work, we formally introduce the concept of operationally meaningful representations and present
a neural network architecture for the automated discovery of such representations. To this end, we define an
operationally meaningful representation of a physical system as the minimal set of parameters that describes
the full system such that each parameter is relevant for different experiments one can actually perform on the
system. In line with this definition, we design a neural network architecture that can generate a meaningful
representation through an attention mechanism. We demonstrate that this architecture can indeed identify
parameters such as charge, mass, or even amplitudes of a quantum state in an operationally meaningful way
from high-dimensional experimental data.

2. Operationally meaningful representations

The field of representation learning is concerned with feature detection in raw data. While, in principle, all
deep neural network architectures learn some representation within their hidden layers, most work in
representation learning is dedicated to defining and finding good representations [23]. A desirable feature of
such representations is the interpretability of their parameters (stored in different neurons in a neural
network). Standard autoencoders, for instance, are neural networks which compress data during the learning
process. In the resulting representation, different parameters in the representation are often highly correlated
and do not have a straightforward interpretation. A lot of work in representation learning has recently been
devoted to separating or disentangling such representations in a meaningful way (see e.g. [24–28] and
appendix A).

When using neural networks to find such parameterisations, one encounters the limitation of standard
techniques from representation learning: typically, statistically independent factors of variation in the
training data set are disentangled. That is, disentanglement arises implicitly from the statistical distribution
of the data set. This works well for many practical problems [24]; however, for scientific applications, it is
desirable that parameters be separated according to a more fundamental and transparent criterion than the
distribution of experimental data.

To this end, we introduce operationally meaningful representations. In such a representation, parameters
that are useful for different operational tasks on a physical system should be stored in separate neurons. As an
example, take the physical system to be a charged mass. We consider a situation where one agent E has
performed a data collection experiment so that this agent has a high-dimensional representation of all
potentially relevant information about this system, e.g. its mass, charge, and colour. Other agents want to
predict the outcome of various evaluation experiments on this charged mass (their ‘operational task’),
e.g. colliding it with another (uncharged) mass or placing it in an external electric field. For this, these agents
will receive information about the system from agent E. The key restriction is that communication from
agent E to the other agents should be minimized, i.e. agent E will try to find a low-dimensional
representation of the system and only send the relevant parameters in this representation to each of the other
agents. For example, an agent D1 who performs a collision experiment between the system and an uncharged
particle with fixed mass only needs to know about the system’s mass. The requirement that communication
be minimised then means that agent E has to store the mass as a separate parameter so that it is possible to
communicate only the mass and no other information about the system to agent D1. Another agent D2 might
want to predict the force exerted on the system in an electric field, which requires knowledge of the system’s
charge, forcing agent E to store the charge in another separate neuron for efficient communicability.

More formally, consider experiments that are performed on a physical system which can be described by
some hidden parameter space Ω of objects and their interactions. We generally do not have direct access to
these hidden parameters of the physical system, but only to high-dimensional observational dataO
generated by performing data collection experiments Ed : Ω→O. Our goal is to extract an operationally
meaningful representation from such observational data. To evaluate whether a representation is
operationally meaningful, we consider multiple evaluation experiments Ei : Ω×Qi →Ai, which depend on
the systems parameters in Ω as well as additional variables or questions q ∈Qi and produce an outcome or
answer a ∈ Ai. Questions are known reference parameters that are required to make a correct prediction. For
example, in the collision experiment we considered above, the additional question variable might be (some
encoding of) the mass of the reference particle that we collide with our system, and the answer might be a
prediction of the system’s position one second after the collision. In this example, the evaluation experiment
only requires a subset of the system’s parameters as input, namely the mass.

In general, a representation E of a physical system is a map E :O→ RL that represents the observations by
variables in a real space of dimension L. Note that in the context of this paper, we refer both the agent and the
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representation to the same mapping E. We denote the dimension of a representation as dim(E) = L, where
we use dim(E) as shorthand for dim(Im(E)). A sub-representation E ′ :O→ RL ′

(for L ′ ⩽ L) is a map that
coincides with E on L′ of the output dimensions of E. That is, one can think of E′ as a ‘filtered’ map that first
applies E, but then only outputs L′ of the L output dimensions. With the above setup of data collection and
evaluation experiments, we can define an operationally meaningful representation as follows.

Definition 1 (Operationally meaningful representation). A representation E :O→ RL with an image set
E[O] =R⊂ RL is called operationally meaningful w.r.t. evaluation experiments {Ei}i=1,...,Q if and only if

(a) E is sufficient w.r.t. {Ei}i=1,...,Q: There exists a map Di :R×Qi →Ai such that
Di(E(Ed(ω)),q)≈ Ei(ω,q) for all q ∈Qi, ω ∈ Ω and i= 1, . . .,Q.

(b) E isminimal w.r.t. {Ei}i=1,...,Q: Any other representation E ′ :O→ RL ′
that is sufficient w.r.t.

{Ei}i=1,...,Q must have dim(E ′)⩾ dim(E).
(c) E is efficiently communicable w.r.t. {Ei}i=1,...,Q: ∀i= 1, . . .,Q, there exist sub-representations Ei that are

sufficient with respect to Ei and
∑Q

i=1 dim(Ei) is minimal, i.e. for any other representation E′ with
sufficient sub-representations E ′

i,
∑

dim(E ′
i)⩾

∑
dim(Ei).

Consider the example of the colliding charged particles above. A sufficient andminimal representation would
store information about the mass and charge, albeit not necessarily in separate neurons. In an efficiently
communicable representation however, the parameters mass and charge need to be stored in separate neurons
since there are evaluation experiments that only require one of these parameters but not the other. Here, the
existence of sub-representations implies that the representation E can be split into parts EIm(Ei) that can be
communicated to the respective agent Di. Parameters which are not relevant to any of the evaluation
experiments, e.g. the color of particles, will not be stored in the representation at all.

3. Architecture

We can construct a neural network architecture that autonomously generates operationally meaningful
representations as defined above. The architecture is based on an autoencoder modified with an attention
mechanism to enable the generation of efficiently communicable representations.

The neural network architecture is presented in figure 1. An encoder E :O→ RL receives the
high-dimensional data o ∈ O of the physical system from the data collection experiment Ed and maps it onto
a latent space of some specified dimension L. In order to minimise the dimensionality of the representation,
we add a global filter φE : RL → Rl that outputs only l⩽ L of its L inputs, where l now is a parameter that is
optimized during the training of the neural network4. For each evaluation experiment Ei we add another
filter φi : Rl → Rli with li ⩽ l and a decoder Di :Ri ×Qi →Ai withRi ⊂ Rli (see figure 1)

We can now define separate loss functions for our criteria of sufficiency,minimality and efficient
communicability; the total loss function will be a weighted sum of these.

• Sufficiency: Ls =
∑Q

i=1(ai(o,qi)− a∗i (o,qi))
2,

• Minimality: Lm = dim(φE),
• Efficient communicability: Lc =

∑Q
i=1 dim(φi).

Here, a∗i (o,qi) is the outcome of the evaluation experiment for the question qi of decoder Di given the
physical system that generated the observations o. Similarly, ai is the corresponding prediction made by the
decoder Di.5

Due to the difficulty of implementing a function with a binary output in neural networks, we need to
replace the ideal losses Lm and Lc by a smoothed filter function. Such a smoothed filter specifies how much
noise should be added to a latent neuron; little noise means that the neuron is transmitted through the filter,
and lots of noise means that the neurons is blocked, as in that case the filter’s output will contain essentially
no information about the input neuron’s value. To sample the noise, we use the renormalisation trick [29],
which allows gradients to propagate through the sampling step. More details about the filters are provided in
appendix B. An extension of our architecture to multiple encoders can be found in appendix C.

In general, multiple rounds of hyperparameter optimization are necessary in order to find the
operationally meaningful representation. The best current candidate for such a representation is easily

4 Of course, we could equivalently just consider the output dimension L of E a trainable parameter that should be minimised. However,
to implement such an optimization in a neural network, it is easier to consider a separate filter function, which can then be ‘smoothed’
as explained at the end of this section.
5 For a∗i (o,qi) to be well-defined, we implicitly assume that the mapping from the hidden parametersΩ to the observations is injective.

3



Mach. Learn.: Sci. Technol. 3 (2022) 045025 H Poulsen Nautrup et al

Figure 1. Communicating autoencoder with filters. An encoder maps an observation obtained from the current experimental
setting onto a latent representation, part of which has to be communicated to decoders. Decoders receive additional information
specifying the question which they are required to answer for their evaluation experiments. The functions E,φE,φi, and Di,
representing encoder, filter, and decoder respectively, are each implemented as neural networks. To answer a given question,
i.e. predict the outcome of an evaluation experiment, each decoder receives the part of the representation that is transmitted by its
filter. The cost function is designed to minimise the error of the answer and the number of parameters that are transmitted from
the encoder to each of the decoders.

identified as the one that separates most latent variables while minimizing the evaluation loss. The number
of latent variables and their separation can be directly inferred from the filter values for the respective
neurons. These numbers can be used to design an automated search of parameters including the relative
weights for the losses Ls,Lm,Lc. In this way, we can guide the automated hyperparemter optimization to
improve the efficiency of our method while maintaining its representational power.

4. Examples

We demonstrate our method on two examples, one from classical mechanics, and one from quantum
mechanics. In appendix D we discuss and demonstrate how our architecture can be generalised to
reinforcement learning environments [30] as evaluation experiments. In all cases, the network finds
representations that comply with our operational requirements.

4.1. Experiments with charged particles
Here, we present an illustrative example from classical mechanics where our architecture generates an
operationally meaningful representation of charged particles.

Consider particles with massesm1,m2 and charges q1,q2, where both masses and charges are the hidden
parameters that are varied between training examples. We perform a data collection experiment
Ed : (m1,m2,q1,q2) 7→ (xc,1,xc,2,xem, 1,xem, 2) as follows:

(a) To generate xc,i, we elastically collide particle i (with massmi), initially at rest, with a reference massmref

moving at a fixed reference velocity vref, and observe a time series of positions xc,i = (x1c,i, . . . ,x
n
c,i) of the

particle after the collision. In practice, we use n= 10.
(b) To generate xem, i, we place particle i (with massmi and charge qi) at the origin at rest, and place a

reference particle with fixed massmref and charge qref at a fixed distance d0. Particles i= 1,2 are free to
move while the reference mass remains fixed. We observe a time series of positions
xem, i = (x1em, i, . . . ,x

n
em, i) of particle i as it moves due to the Coulomb interaction between itself and the

reference particle.

Different decoders now are required to predict the outcome of different evaluation experiments, pictured
in figure 2.
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Figure 2. Experiments with charged particles. (a) The decoder Di (i ∈ {1,2}) is required to predict the angle αi out of the plane
of the table at which a charged massmi has to be hit by a projectile with fixed massmfix such that it lands in a hole at a fixed
position in the presence of a fixed gravitational field. The decoder is given the velocity vi at which the projectile is moving as a
question. This experiment is carried out separately for each particle, i.e. there is no Coulomb interaction between the particles.
(b) The decoder D3 is required to predict an angle φ1 in the plane of the table at which the charged particle (m1,q1) has to be hit
by a projectile with fixed massmfix such that it rolls into the hole under the influence of the electric field generated by the other
particle (m2,q2), whose position is fixed. For D4, the roles of the two particles are reversed.

• Decoders D1 and D2 are each given projectiles with a fixed mass mfix. As question input, Di is given the
(variable) velocity vi with which this projectile will hit mi. The projectile hits mi at an angle αi in the yz-
plane, and the mass will fly towards the target hole under the influence of gravity. The decoder is asked to
predict the angle αi for whichmi lands directly in the hole, similar to a golfer hitting a perfect lob shot that
lands in the hole without bouncing.

• Decoders D3 and D4 are given projectiles. The velocities of these projectiles are again given as a question
input. The decoder D3 has to predict the angle φ1 in the xy-plane so that whenm1 is hit with the projectile
at this angle and moves in the Coulomb field ofm2 (which stays fixed), it will roll into the hole. For D4, the
roles ofm1 andm2 are reversed.

In both cases, we restrict the velocities given as questions to ones where there actually exists a (unique)
angle that makes the particle land in the hole.

To analyse the learnt representation, we plot the activation of the latent neurons for different examples
with different (known) values ofm1,m2,q1,q2 against those known values. This corresponds to comparing
the learnt representation to a hypothesised representation that we might already have. The plots are shown in
figure 3. The first and second latent neurons are linear inm1 andm2, respectively, and independent of the
charges; the third latent neuron has an activation that resembles the function q1 · q2 and is independent of the
masses. This means that the first and second latent neurons store the masses individually, as would be
expected since the evaluation experiments in figure 2(a) only require individual masses and no charges. The
third neuron roughly stores the product of the charges, i.e. the quantity relevant for the strength of the
Coulomb interaction between the charges. This is used by the decoders dealing with the evaluation
experiments in figure 2(b), where the particle’s trajectory depends on the Coulomb interaction with the
other particle. As demonstrated in appendix C.2, a setting with multiple encoders can lead to an additional
separation of the two charges.

4.2. Quantum state tomography experiments
Here, we demonstrate that our architecture generates an operationally meaningful representation of a
two-qubit, i.e. a four dimensional, quantum system. Finding a representation of such a system from
measurement data is a non-trivial task called quantum state tomography [31]. We consider evaluation
experiments that collect the outcomes of many different local and nonlocal measurements, respectively. We
find that our architecture generates a representation that autonomously separates local, single-qubit
parameters from nonlocal parameters that represent quantum correlations.

In this example, the encoder E has access to a data collection experiment consisting of two devices, where
the first device creates (many copies of) a quantum system in a state ρ, which depends on the (hidden)
parameters of the device. The second device can perform binary measurements (with output 0 or 1),
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Figure 3. Results for the charged collision experiments. The used network has 3 latent neurons and each column of plots
corresponds to one latent neuron. For the first row we generated input data with fixed charges q1 = q2 = 0.5 and variable masses
m1,m2 in order to plot the activation of latent neurons as a function of the masses. We observe that latent neuron 1 and 2 store the
massesm1,m2 respectively while latent neuron 3 remains constant. In the second row, we plot the neurons’ activation in response
to q1,q2 with fixed massesm1,m2 = 5. Here, the third latent neuron approximately stores q1 · q2, which is the relevant quantity
for the Coulomb interaction while the other neurons are independent of the charges. The third row shows which decoder receives
information from the respective latent neuron. Roughly, the y-axis quantifies how much information of the latent neuron is
transmitted by the 4 filters to the associated decoder as a function of the training epoch. Positive values mean that the filter does
not transmit any information. Decoders 1 and 2 perform non-interacting collision experiments with objects (m1,q1) and
(m2,q2), respectively. Decoders 3 and 4 perform the corresponding electromagnetic collision experiments. As expected, we
observe that the information aboutm1 (latent neuron 1) is received by decoders 1 and 3 and the information aboutm2 (latent
neuron 2) is used by decoders 2 and 4. Since decoders 3 and 4 answer questions about electromagnetism experiments, the product
of charges (latent neuron 3) is received only by them (the green line of decoder 3 in the last plot is hidden below the red one).

described by projections |ψ〉〈ψ |, where |ψ〉 is a pure state of two qubits6. For all data collection
experiments, we fix 75 randomly chosen observables |ψ1〉〈ψ1 | , . . . , |ψ75〉〈ψ75 |. For a given state ρ, the input
to the encoder E then consists of the probabilities to measure each of the fixed 75 observables, respectively.
The state ρ is varied between training examples.

Three decoders D1,D2 and D3 are now required to predict different evaluation experiments with the
two-qubit system:

• Decoders D1 and D2 each have to predict measurement probabilities on the first and second qubit, respect-
ively, given a parameterisation of a single-qubit measurement device.

• DecoderD3 is provided has to predict joint measurement output probabilities on both qubits, given a para-
meterisation of a two-qubit measurement device.

A measurement device measuring the projector |ω〉〈ω | is parametrised again by 75 randomly chosen
fixed projectors |φ1〉〈φ1 | , . . . , |φ75〉〈φ75 |, i.e. the i-th question input corresponds to the probabilities
p(ω,φi) := |〈φi|ω〉|2 for all i ∈ {1, . . . ,75}.

We find that three latent neurons are used for each of the local qubit representations as required by
decoders D1 and D2. These local representations store combinations of the x-,y- and z-component of the
Bloch sphere representation ρi = 1/2(1+ xσx + yσy + zσz) of the single-qubit reduced states ρ1,ρ2

6 The probability to get outcome 1 for a measurement |ψ⟩⟨ψ | is given by the Born rule p(ρ,ψ) := ⟨ψ|ρ |ψ ⟩.
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Figure 4. Results for the quantum mechanics example with two-qubit states. We consider a quantum mechanical system of two
qubits. An encoder Emaps tomographic data of a two-qubit state to a representation of the state. Three decoders D1,D2 and D3

are asked questions about the measurement output probabilities on the two-qubit system, where a question is given as the
parameterisation of a measurement. Decoders D1 and D2 are asked to predict measurement outcome probabilities on the first and
second qubit, respectively. The third decoder D3 is tasked to predict measurement probabilities for arbitrary measurements on the
full two-qubit system. Starting with 75 available latent neurons, we find that only 15 latent neurons are used (of which 6 are
shown) to store the parameters required to answer the questions of all decoders D1,D2 and D3. Decoder D3 requires access to all
parameters, while decoders D1 and D2 need only access to two disjoint sets of three parameters, encoded in latent neurons
27,38,42 and 6,10,26, respectively. The plots show the activation values for these latent neurons in response to changes in the local
degrees of freedom (x,y,z) of each qubit, with the bottom axes of the plots denoting the components of the reduced one-qubit
state ρ= 1/2(1+ xσx + yσy + zσz) on either qubit 1 or 2.

(see figure 4), where σx,σy,σz denote the Pauli matrices. In general, a two-qubit mixed state ρ is described by
15 parameters, since a Hermitian 4× 4 matrix is described by 16 parameters, and one parameter is
determined by the others due to the unit trace condition. Indeed, we find that the decoder D3 who has to
predict the outcomes of the joint measurements accesses 15 latent neurons, including the ones storing the
two local representations. Having chosen a network structure with 75 latent neurons (corresponding to the
dimension of the input to the encoder), the global filter successfully recognizes 60 superfluous latent
neurons. These numbers correspond to the numbers found in the analytical approach in [32].

It is worth noting that learning arbitrary quantum state representations from measurement data is
generally hard [33] and we do not expect our method to be scalable for the general task of quantum state
reconstruction. Instead, our example gives an interesting new perspective on it: if we are only interested in a
subsystem representation, we may require much less measurement data than for full-state tomography while
our architecture would still minimize the number of parameters needed to fully represent the subsystem. In
this way, we could avoid full-state tomography in favour of generating an operationally meaningful
representation of a subsystem.

5. Conclusion

Deep neural networks, while performing very well on a variety of tasks, often lack interpretability [34].
Therefore, representation learning, and in particular methods for learning disentangled, interpretable
representations, have recently received increased attention [17, 24, 27, 28, 35, 36]. However, while
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methods of disentangling representations are widespread and well established, they lack an operational
meaning.

In the scientific discovery process in particular, representations of physical systems and their operational
meaning play a central role. To this end, we have developed a neural network architecture that can generate
operationally meaningful representations with respect to experimental settings. Roughly, we call a
representation operationally meaningful if it can be shared efficiently to predict different experiments. We
have demonstrated our methods for examples in classical and quantum mechanics. Moreover, in
appendix D, we also consider cases where the experimental process may be framed as an interactive
reinforcement learning scenario [16]. Our architecture also works in such a setting and generates
representations which are physically meaningful and relatively easy to interpret. Deep learning methods have
already been applied across all scientific disciplines and quantum information in particular [37–39]. Our
method may find application here to facilitate the interpretability of these tools to a human user.

In this work, we have interpreted the learnt representation by comparing it to some known or
hypothesised representation. Instead, we could also seek to automate this process by employing unsupervised
learning techniques that categorise experimental data by a metric defined by the response of different latent
neurons. For the examples that we considered here, the learnt representation is small and simple enough to
be interpretable by hand. However, for more complex problems, additional methods for making the
representation more interpretable may be required. For example, instead of using a single layer of latent
neurons to store the parameters, a recent work has shown the potential of semantically constrained graphs
for this task [40]. In a complementary approach one could even generate a translation model for the
communication channels between agents [41]. The resulting translation of a latent space could then help to
interpret generated representations. We expect that these methods can be integrated into our architecture,
which may allow to produce interpretable and meaningful representations even for highly complex latent
spaces.

Data availability statement

The data that support the findings of this study are openly available at https://doi.org/10.5281/zenodo.
7113611 (for the classical and quantum examples) and https://doi.org/10.5281/zenodo.7113627 (for the
reinforcement learning example). The networks were implemented using the Tensorflow [42] and
PyTorch [43] library, respectively.

Acknowledgments

H P N, S J, L M T and H J B acknowledge support from the Austrian Science Fund (FWF) through the
DK-ALM: W1259-N27 and SFB BeyondC F7102. R I, H W and R R acknowledge support from from the
Swiss National Science Foundation through SNSF Project No. 200020_165843 and 200021_188541. T M
acknowledges support from ETH Zürich and the ETH Foundation through the Excellence Scholarship &
Opportunity Programme, and from the IQIM, an NSF Physics Frontiers Center (NSF Grant PHY-1125565)
with support of the Gordon and Betty Moore Foundation (GBMF-12500028). S J also acknowledges the
Austrian Academy of Sciences as a recipient of the DOC Fellowship. H J B acknowledges support by the
Ministerium für Wissenschaft, Forschung, und Kunst Baden Württemberg (AZ:33-7533.-30-10/41/1) and by
the European Research Council (ERC) under Project No. 101055129. This work was supported by the Swiss
National Supercomputing Centre (CSCS) under Project ID da04.

Author contributions

H P N, T M, and R I contributed equally to the initial development of the project, performed the numerical
work, and composed the manuscript. S J and L M T contributed to the theoretical and numerical
development of the reinforcement learning part. H J B and R R initialised and supervised the project. All
authors have discussed the results and contributed to the conceptual development of the project.

Appendix A. Related work

The field of representation learning is concerned with feature detection in raw data. While, in principle, all
deep neural network architectures learn some representation within their hidden layers, most work in
representation learning is dedicated to defining and finding good representations [23]. A desirable feature of
such representations is the interpretability of their parameters (stored in different neurons in a neural
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network). Standard autoencoders, for instance, are neural networks which compress data during the learning
process. In the resulting representation, different parameters in the representation are often highly correlated
and do not have a straightforward interpretation. A lot of work in representation learning has recently been
devoted to disentangling such representations in a meaningful way (see e.g. [24–28]). In particular, these
works introduce criteria, also referred to as priors in representation learning, by which we can disentangle
representations.

In natural language processing, specifically machine translation and summarisation, attention
mechanisms and multi-agent communication are used to efficiently predict words given a source
text [44–46]. In this context, attention mechanisms enable agents to focus on the relevant parts of an
(encoded) source sentence. Despite the prospect of using attention mechanisms to facilitate disentanglement,
these works are rarely concerned with the resulting representation produced by the encoding neural network.

A.1. β-variational autoencoders
Autoencoders are one particular architecture used in the field of representation learning, whose goal is to
map a high-dimensional input vector x to a lower-dimensional latent vector z using an encoding mapping
E(x) = z. For autoencoders, z should still contain all information about x, i.e. it should be possible to
reconstruct the input vector x by applying a decoding function D to z. The encoder E and the decoder D can
be implemented using neural networks and trained unsupervised by requiring D(E(x)) = x. β-variational
autoencoders (β-VAEs) are autoencoders where the encoding is regularised in order to capture statistically
independent features of the input data in separate parameters [24].

In [15] a modified β-VAE, called SciNet, was used to answer questions about a physical system. The
criterion by which the latent representation is disentangled is statistical independence equivalent to standard
β-VAE methods. In the present work, we use a similar architecture but impose an operational criterion in
terms of communicating agents for the disentanglement of parameters.

Another prior that was recently proposed to disentangle a latent representation is the consciousness
prior [35]. There, the author suggests to disentangle abstract representations via an attention mechanism by
assuming that, at any given time, only a few internal features or concepts are sufficient to make a useful
statement about reality.

A.2. Graph neural networks
Recently, graph neural networks (GNNs)[47] have been used to learn a dynamical model of interacting
systems [48, 49]. In these scenarios, GNNs predict the behaviour of dynamical systems while encoding a
model of the system in an interaction graph. In [48], the interaction structures are modelled explicitly by a
latent interaction graph embedded in a VAE architecture. By adding prior beliefs about the graph structure
such as sparsity, interpretable interaction graphs may be produced. In the present work, we refrain from
using GNNs since we do not want to make any assumptions about the underlying model. Indeed, using
GNNs requires prior knowledge about how to separate a physical system into sub-systems and poses certain
restrictions on the functions being implemented by the encoder and decoder.

A.3. Attentionmechanisms
In [44], an attention mechanism is introduced to facilitate machine translation with encoder-decoder
models. To that end, an encoder produces a sequence of annotations encoding the information about an
arbitrary input sentence. Then, an attention mechanism is used to filter (or weigh) the annotations in
accordance with their current relevance. The resulting context vector can be used by an encoder to produce a
translation. This attention mechanism has been extended to multiple encoder-decoder models for
multilingual neural machine translation [45] and summarisation [46]. In particular, in [46], a significant
improvement over existing methods for text summarisation has been achieved by allowing encoders to
communicate while producing a context vector. Here, we introduce a simplified attention mechanism that
facilitates the generation of concise and structured latent representations within a communication setting.
This is in contrast to other works employing attention mechanisms where the interpretability of latent
representations is usually considered irrelevant.

A.4. State representation learning
State representation learning (SRL) is a branch of representation learning for interactive problems [50]. For
instance, in reinforcement learning [30] it can be used to capture the variation in an environment created by
an agent’s action [27, 28, 36, 51]. In [27] the representation is disentangled by an independence prior which
encourages that independently controllable features of the environment are stored in separate parameters. A
similar approach was recently introduced in [28] where model-based and model-free reinforcement learning
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are combined to jointly infer a sufficient representation of the environment. The abstract representation
becomes expressive by introducing representation and interpretability priors. Similarly, in [36] robotic priors
are introduced to impose a structure reflecting the changes that occur in the world and in the way a robot can
interact with it. As shown in [28] and [36], such requirements can lead to very natural representations in
certain scenarios such as creating an abstract representation of a labyrinth or other navigation tasks.

In [52] many reinforcement learning agents with different tasks share a common representation which is
being developed during training. They demonstrate that learning auxiliary tasks can help agents to improve
learning of the overall objective. One important auxiliary task is given by a feature control prior where the
goal is to maximise the activations of hidden neurons in an agent’s neural network as they may represent
task-relevant high-level features [53, 54]. However, this representation is not expressive or interpretable to
the human eye since there is no criterion for disentanglement.

A.5. Quantum state representation learning
Interestingly, various representation learning methods have been developed specifically for quantum state
representation [33, 55–60]. Despite the large dimensionality of the Hilbert spaces, these methods have
become increasingly efficient at representing specific [59, 60] and arbitrary [33, 55–58] quantum states.
Specifically, attention-based methods have recently been shown to exhibit an empirical learning advantage
over other methods for the task of quantum state tomography [33]. However, while the learning problem is
similar, these works do not address the separability of variables for interpretability. We expect that such
efficient methods for state tomography [33, 56] can be combined with our filter methods to autonomously
generate operationally meaningful representations for complex quantum systems.

A.6. Projective simulation
The projective simulation (PS) model for artificial intelligence [61] is a model for agency which employs a
specific form of an episodic and compositional memory to make decisions. It has found applications in
various areas of science, from quantum physics [16, 62, 63] to robotics [64, 65] and the modelling of animal
behaviour [66]. Its memory consists of a network of so-called clips which can represent basic episodic
experiences as well as abstract concepts. Besides the usage for generalisation [67, 68], these clip networks
have already been used to represent abstract concepts in specific settings [17, 65]. In [17], PS was used to
infer the existence of unobserved variables such as mass, charge or size which make an object respond in
certain experimental settings in different ways. In this context, the authors point out the significance of
exploration when considering the design of experiments, and thereby adopt the notion of reinforcement
learning similar to [16]. In line with previous works, we will also discuss reinforcement learning methods for
the design of experimental settings. Unlike previous works however, we provide an interpretation and formal
description of decision processes which are specifically amenable to representation learning. Moreover, we
employ neural networks architectures to infer continuous parameters from experimental data. In contrast,
PS is inherently discrete and therefore better suited to infer high-level concepts.

In this work, we suggest to disentangle a latent representation of a neural network according to an
operationally meaningful principle, by which agents should communicate as efficiently as possible to share
relevant information to solve their tasks. Technically, we disentangle the representation through an attention
mechanism according to different questions or tasks, as described in more detail in the main text.

Appendix B. Implementation of filters

Due to the difficulty of implementing a binary value function with neural networks, we need to replace the
ideal cost Lc by a comparable version with a smooth filter function. To this end, instead of viewing the latent
layer as the deterministic output of the encoder (the generalisation to multiple decoders is immediate), we
consider each latent neuron j as being sampled from a normal distributionN (µj,σj). The sampling is
performed using the renormalisation trick [29], which allows gradients to propagate through the sampling
step. The encoder outputs the expectation values µj for all latent neurons. The logarithms of the standard
deviations log(σj) are provided by neurons, which we call selection neurons, that take no input and output a
bias; the value of the bias can be modified during training using backpropagation. Using the logarithm of the
standard deviation has the advantage that it can take any value, whereas the standard deviation itself is
restricted to positive values. The ideal filter loss Lc =

∑
j dim(φj) is replaced by L̃c =−

∑
j log(σj).

Analogously, we replace the minimisation loss Lm by a smoothed version L̃m.
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The intuition for this scheme is as follows: when the network chooses σj to be small (where the standard
deviation of µj over the training set is used as normalisation), the decoder will usually obtain a sample that is
close to the mean µj; this corresponds to the filter transmitting this value. In contrast, for a large value of σj, a
sample fromN (µj,σj) is usually far from the mean µj; this corresponds to the filter blocking this value. The
loss L̃c is minimised when many of the σj are large, i.e. when the filter blocks many values.

Instead of thinking of probability distributions, one can also view this scheme as adding noise to the
latent variables, with σj specifying the amount of noise added to the j-th latent neuron. If σj is large, the noise
effectively hides the value of this latent neuron, so the decoder cannot make use of it.

We also note that L̃c is in principle unbounded. However, in practice this does not present a problem
since the decoder can only approximately, but not perfectly, ignore the noisy latent neurons. For sufficiently
large σj, the noise will therefore noticeably affect the decoders’ predictions, and the additional loss incurred
by worse predictions dominates the reduction in L̃c obtained from larger values for σj.

The success of this method to lead to an approximation of a binary filter depends on the weighting of the
success loss in relation to the communication loss. This weight is a hyperparameter of the machine learning
system.

Appendix C. Multiple encoders

C.1. Architecture
Up to now, we have assumed that there exists one encoder E who has access to the entire system to make an
observation and to communicate its representation. However, just as different decoders Di only deal with a
part of the system, we can consider the more general scenario of having multiple encoders E1, . . . ,Ej. In this
scenario, each encoder Ei makes different measurements on the system. For example, one encoder might
observe a collision experiment between two particles, while another observes the trajectory of a particle in an
external field. Here, only the aggregate observations of all encoders E1, . . . ,Ej provide sufficient information
about the system required for the decoders D1, . . . ,Dk to make predictions.

The formalisation is analogous to section 3 and we only sketch it here: each encoder function
Ei :Oi → RLi has its own domain of observations and latent spaces. The domain of the filter functions of the
decoders D1, . . . ,Dk is now a cartesian product of the output spaces of the encoders (i.e. the output vectors of
the encoders are concatenated and used as inputs to the filters).

In the case where a physical system has an operationally natural division into k interacting subsystems, a
typical case would be to have the same number of encoders E1, . . . ,Ek as decoders D1, . . . ,Dk, where both Ei
and Di act on the same i-th subsystem. Here, we expect that Ei and Di are highly correlated, i.e. the filter for
Di transmits almost all information from Ei, but less from other agents El. In this case, one can intuitively
think of a single agent per subsystem i, that first makes an observation about that subsystem, then
communicates with the other agents to account for the interaction between subsystems, and uses the
information obtained from the communication to make a prediction about subsystem i.

C.2. Results
In this appendix, we provide details about the representation learnt by a neural network with two encoders
for the example involving charged masses introduced in section 4.1. The setup is the same as that in
section 4.1, with the only difference being that we now use two encoders (the number of decoders and the
predictions they are asked to make remain the same). Accordingly, we split the input into two parts: the
measurement data from the data collection experiments involving object 1 are used as input for encoder 1,
and the data for object 2 are used as input for encoder 2. Each encoder has to produce a representation of its
input. We stress that the two encoders are separated and have no access to any information about the input of
the other encoder. The representations of the two encoders are then concatenated and treated like in the
single-encoder setup; that is, for each decoder, a filter is applied to the concatenated representation and the
filtered representation is used as input for the decoder.

The results for this case are shown in figure 5. Comparing this result with the single-encoder case in the
main text, we observe that here, the charges q1 and q2 are stored individually in the latent representation,
whereas the single encoder stored the product q1 · q2. This is because, even though the decoders still only
require the product q1 · q2, no single encoder has sufficient information to output this product: the inputs of
encoders 1 and 2 only contain information about the individual charges q1 and q2, respectively, but not their
product. Hence, the additional structure imposed by splitting the input among two encoders yields a
representation with more structure, i.e. with the two charges stored separately.
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Figure 5. Results for the charged collision experiments using two encoders. The used network has 4 latent neurons and each
column of plots corresponds to one latent neuron. For an explanation of how these plots are generated, see the caption of figure 3.
We observe that latent neurons 2 and 3 store the massesm1 andm2, respectively, while latent neurons 1 and 4 are independent of
the mass. Latent neurons 1 and 4 store (a monotonic function of) the charges q1 and q2, respectively, and are independent ofm1

andm2. The third row shows that the charges q1 and q2 are only transmitted to decoders 3 and 4, which are asked to make
predictions about electromagnet collision experiments (the blue line of decoder 1 and the green line of decoder 3 are hidden
under the orange and red lines, respectively, in both of these plots). The massm1, stored in the latent neuron 2, is transmitted to
decoders 1 and 3, which are the two decoders that make predictions about object 1. Analogously,m2 is transmitted to decoders 2
and 4, which make predictions about object 2.

Appendix D. Reinforcement learning

In the main text, we have considered scenarios where decoders make predictions about specific experimental
settings and disentangle a latent representation by answering various questions. There, we understood
answering different questions as making predictions about different aspects of a subsystem. Instead, we could
have understood answers as sequences of actions that achieve a specific goal. For example, such a (delayed)
goal may arise when building experimental settings that bring about a specific phenomenon, or more
generally when designing or controlling complex systems. In particular, we may view a prediction as a
one-step sequence.

In the case of predictions, it is easy to evaluate the quality of a prediction, since we are predicting
quantities whose actual value we can directly observe in Nature. In contrast, the correct sequences of actions
may not be easily accessible from a given experimental setting: upon taking a first action, we do not yet know
whether this was a good or bad action, i.e. whether it is part of a ‘correct’ sequence of actions or not. Instead,
we might only receive a few, sparsely distributed, discrete rewards while taking actions. In the typical case,
there is only a binary reward at the end of a sequence of actions, specifying whether we reached the desired
goal or not. Even in a setting where a single action suffices to reach a goal, such a binary reward would
prevent us from defining a useful answer loss in the same manner as before. To see this, consider the toy
example in figure 2(a) again: the decoder had to predict an angle αi, given a (representation of the) setting,
specified by the parameters (mfix,m1,q1,m2,q2) and a question vi, in order to shoot the particle into the hole.
We assumed that we can evaluate the ‘quality’ of the angle chosen by the decoder by comparing it to the
optimal angle. Instead, this evaluation experiment could be viewed as a game where an agent is required to
shoot the object into a hole. In this case, the agent only has access to a binary reward specifying whether or
not it successfully hit the (finite-sized) hole. Then, we cannot define a smooth answer loss, which is required
for training a neural network.

The problem that the feedback from the environment, i.e. the reward, is discrete or delayed can both be
solved by viewing the situation as a reinforcement learning environment: given a representation of the setting
(described by the masses and charges) and a question (a velocity), the agent can take different actions
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(corresponding to different angles at which the mass is shot) and receives a binary reward if the mass lands in
the hole. Therefore, we can employ reinforcement learning techniques and learn the optimal answer.

In reinforcement learning [30], an agent learns to choose actions that maximise its expected, cumulative,
future, discounted reward. In the context of our toy example, we would expect a trained agent to always
choose the optimal angle. Hence, predicting the behaviour of a trained agent would be equivalent to
predicting the optimal answer and would impose the same structure on the parameterisation. In this
example, the optimal solution consists of a single choice. In a more complex setting, it might not be possible
to perform a (literal and metaphorical) hole-in-one. Generally, an optimal answer may require sequences of
(discrete or continuous) actions, as it is for example the case for most control scenarios. In the settings we
henceforth consider, questions might no longer be parameterised or given to the agent at all. That is, the
question may be constant and just label the task that the agent has to solve.

In this appendix, we impose structure on the parameterisation of an experimental setting by assuming
that different agents only require a subset of parameters to take a successful sequence of actions given their
respective goals. To this end, we explain how experimental settings may be understood in terms of instances
of a reinforcement learning environment and demonstrate that our architecture is able to generate an
operationally meaningful representation of a modified standard reinforcement learning environment by
predicting the behaviour of trained agents.

Moreover, in appendix F, we lay out the details for the algorithm that allows us to generate and
disentangle the parameterisation of a reinforcement learning environment given various reinforcement
learning agents trained on different tasks within the same environment. There, we also prove that this
algorithm produces agents which are at least as good as the trained agents while only observing part of the
disentangled abstract representation. The detailed architecture used for learning is described in appendix G
and is combing methods from GPU-accelerated actor-critic architectures [69] and deep energy-based
models [70] for projective simulation [61].

D.1. Experiments as reinforcement learning environments
In [16] the design of experimental settings has been framed in terms of reinforcement learning [30] and here
we formulate a similar setting: an agent interacts with experimental settings to achieve certain results. At each
step the agent observes the current measurement data and/or setting and is asked to take an action regarding
the current setting. This action may for instance affect the parameters of an experimental setting and hence
might change the obtained measurement data. The measurement results are subsequently evaluated and the
agent might receive a reward if the results are identified as ‘successful’. The correspondence between
experiments as described in this appendix and reinforcement learning environments can be understood as
follows (cf figure 6(a)). An experimental setting is interpreted as the current, internal state of an environment.
Themeasurement data then corresponds to the observation received from the environment. The agent
performs an action according to the current observation and its question. Actions may affect the internal
state of the experimental setting. For instance, the experimental parameters describing the setting can be
adjusted or chosen by an agent through actions. The reward function, which takes the current measurement
data as input, describes the objective that is to be achieved by an agent.

Since the same experiment can serve more than one purpose, we can have many agents interact with the
same experimental setting to achieve different results. In fact, we can expect most experiments to be
highly complex and have many applications. For instance, photonic experiments have a plethora of
applications [71] and various experimental and theoretical gadgets have been developed with these tools for
different tasks [72–74]. In this context, we may task various agents to develop gadgets for different task. At
first, we assume that all reinforcement learning agents have access to the entire measurement data. Once they
have learnt to solve their respective tasks, we can employ our architecture from the main text to predict each
agent’s behaviour. Effectively, we can then factorise the representation of the measurement data by imposing
that only a minimal amount of information be required to predict the behaviour of each trained
reinforcement learning agent. That is, we interpret the space of possible results in an experiment as
high-dimensional manifold. When solving a given task however, an agent may only need to observe a
submanifold which we want to parameterise.

Due to the close resemblance to reinforcement learning, we consider a standard problem in
reinforcement learning in the following and demonstrate that our architecture is able to generate an
operationally meaningful representation of the environment. More formally, we consider
partially-observable Markov decision processes [75] (POMDP). Given the stationary policy of a trained
agent, we impose structure on the observation and action space of the POMDP by discarding observations
and actions which are rarely encountered. This structure defines the submanifold which we attempt to
parameterise with our architecture. A detailed description of these environments is provided in appendix E.
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Figure 6. Experiments and reinforcement learning environments. (a) In reinforcement learning an agent interacts with an
environment. The agent can perform actions on the environment and receives perceptual information in form of an observation,
i.e. the current state of the environment, and a reward which evaluates the agent’s performance. An agent can also interact with an
experimental setting (pictured as a complex network of gears) to answer its question by e.g. adjusting some control parameters
(represented as red gears). It receives perceptual information in form of measurement data which may also have been analysed
to provide an additional assessment of the current setting. (b) Sub-grid world environment. In this modified, standard
reinforcement learning environment, agents are required to find a reward in a 3D grid world. Different agents are assigned
different planes in which their respective rewards are located. Agents observe their position in the 3D gridworld and can move
along any of the three spatial dimensions. An agent receives a reward once it has found the X in the grid. Then, the agent is reset to
an arbitrary position and the reward is moved to a fixed position in a plane intersecting the agent’s initial position.

D.2. Example with a standard reinforcement learning environment
D.2.1. Setup
Here, we consider the simplest version of a task that is defined on a high-dimensional manifold while the
behaviour of a trained agent may become restricted to a submanifold. Consider a simple grid world task [30]
where all agents can move freely in a three-dimensional space whereas only a subspace is relevant to finding
their respective rewards (see figure 6(b)). Despite the apparent simplicity of this task, actual experimental
settings may be understood as navigation tasks in complicated mazes [16]. This reinforcement learning
environment can be phrased as a simple game.

• Three reinforcement learning agents are positioned randomly within a discrete 12× 12× 12 grid world.
• The rewards for the agents are located in a (x, y)-, (y, z)- and (x, z)-plane relative to their respective initial
positions. The locations of the rewards in their respective planes are fixed to (6,11), (11,6) and (6,6).

• The agents observe their position in the grid, but not the grid itself nor the reward.
• The agents can move freely along all three spatial dimension but cannot move outside the grid.
• An agent receives a reward if it can find the rewarded site within 400 steps. Otherwise, it is reset to a random
position and the reward is re-positioned appropriately in the corresponding plane.

Generally, in reinforcement learning the goal is to maximise the expected future reward. In this case, this
requires an agent to minimise the number of steps until a reward is encountered. Therefore, the optimal
policy of an agent is to move on the shortest path towards the position of the reward within the assigned
plane. Clearly, to predict the behaviour of an optimal agent, we require only knowledge of its position in the
associated plane. We refer to appendix F for a concise protocol to predict behaviour of a reinforcement
learning agent. A detailed description of the architecture can be found in appendix G.

D.2.2. Results
The optimal policy of an agent is to move on the shortest path towards the position of the reward within its
assigned plane. Predicting the behaviour of an optimal agent, we require only knowledge of its position in the
associated plane. Indeed, we observe that 5 additional, redundant latent neurons are filtered by the encoder’s
filter φE such that the remaining dimension of the representation is 3. In addition, the information about
the coordinates should be separated such that the different agents have access to (x,y),(y,z) and (x, z),
respectively. Using the minimal number of parameters, this is only possible if the encoding agent A encodes
the x,y,z coordinates of the agents B1,B2 and B3 and communicates their respective position in the plane7.

7 Because the observation space is discrete, an encoding agent can, in principle, ‘cheat’ and encode multiple coordinates into a single
neuron. In practice, this does not happen for sufficiently large state spaces.

14



Mach. Learn.: Sci. Technol. 3 (2022) 045025 H Poulsen Nautrup et al

Figure 7. Results for the reinforcement learning example. We consider a a 12× 12× 12 3D grid world. The used network has in
total 8 latent neurons but 5 redundant neurons are filtered by the encoder (not shown). Each column of plots corresponds to one
of the remaining latent neurons. For the first and second row we generated input data in which agent’s position is varied along
two axes and fixed to 6 in the remaining dimension. The latent neuron activation is plotted as a function of the agent’s position.
We observe that the latent neurons 1,2 and 3 respond to changes in the x-, y- and z-position, respectively. The third row shows
which decoder receives information from the each latent neuron. Roughly, the y-axis quantifies how much of the information in
the latent neuron is transmitted to the decoders by the 3 respective filters and the global filter associated with the encoder as a
function of the training episode. Positive values mean that the filter does not transmit any information. Decoder 1 has to make a
prediction about the performance of a trained reinforcement learning agent whose goal is located within a (x, y)-plane relative to
its starting position. We observe that decoder 1 indeed only receives information about the agent’s x- and y-position, i.e. latent
variables 1 and 2. Similarly, predictions made by decoders 2 and 3 only require knowledge of the agents’ (y, z)- and (x, z)-position,
respectively, which is confirmed by the selection neuron activations (the blue line of decoder 1 in the second plot is hidden behind
the orange one).

We verify this by comparing the learnt representation to a hypothesised representation. For instance, we
can test whether certain neurons respond to certain features in the experimental setting, i.e. reinforcement
learning environment. Indeed, it can be seen from figure 7 that the neurons of the latent layer only respond
separately to changes in the x,y or z position of an agent respectively. Note that the encoding agent uses a
nonlinear encoding of the x- and z-parameters. Interestingly, this reflects the symmetries in the problem: the
reward is located at position x= z= 6 whenever x or z are relevant coordinates for an agent, whereas for the
y-coordinate, the reward is located at position 11. The encoding used by the network in this example suggests
that an encoding of discrete bounded parameters may carry additional information about the hidden reward
function, which may eventually help to improve our understanding of the underlying theory.

Appendix E. Reinforcement learning environments for representation learning

In this appendix, we give a formal description of the reinforcement learning environments that we consider
for representation learning. As we will see, the sub-grid world example in appendix D is a simple instance
of such a class of environments. In general, we consider a reinforcement learning problem where the
environment can be described as a Partially Observable Markov Decision Process [75] (POMDP), i.e. a MDP
where not the full state of the environment is observed by the agent. We work with an observation space
O= {o1, . . .,oN}, an action space A= {a1, . . .,aM} and a discount factor γ ∈ [0,1). This choice of
environment does not reflect our specific choice of learning algorithm used to train the agent, as the latter
does not construct so-called belief states that are commonly required to learn optimal policies in a POMDP.
Rather, we want to show that our approach is applicable to slightly more general environments than Markov
Decision Processes (MDPs) for which the learning algorithms we use are proven to converge to optimal
policies in the limit of infinitely many interactions with the environment [30, 76]. The generalisation to
POMDPs still preserves the ‘Markovianity’ of the environments and allows to consider only stationary (but
not necessarily deterministic) policies π(a|o), associated to stationary expected returns Rπ(o).
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Figure 8. Observation and action space of the reinforcement learning environment. The environment is described by a POMDP
with an observation space O and action space A= A1 ×A2. The policy π of the agent restricts the space (O×A) to a subset that
we assume to describe an MDP. For example, MDP1 corresponds to a policy π1 of one agent and MDP2 corresponds to a policy
π2 of another agent. The observation-action space is therefore restricted to a subset (O×A)|πi(a|o)⩾1/|A| according to the learnt
policy πi of an agent. Depicted is an action a which is contained in this subset MDP2 together with an action ā which is contained
in the complement (O×A)|π2(a|o)<1/|A| of this subset.

Now consider an agent which exhibits some non-random behaviour in this environment, which is
characterised by a larger expected return than from a completely random policy. Such a stationary policy
may restrict observation-action space (O×A) to a subset (O×A)|π(a|o)⩾1/|A| of observations and actions
likely to be experienced by the agent depending on its learnt policy π and the environment dynamics. This
notation indicates that, in any given observation, we discard actions that have probability less than random
(i.e. less than 1

|A| ) of being taken by the agent, indicating that the agent’s policy has learnt (un)favoring

actions. In general, discarding actions also restricts the observation space. The subset (O×A)|π(a|o)⩾1/|A|,
along with the POMDP dynamics, describes a new environment. For simplicity, we assume that the restricted
environment can be described by an MDP. This is trivially the case if the original environment is itself an
MDP, and also the case for the sub-grid world environment discussed in the main text. The MDP inherits the
discount factor γ ∈ [0,1) of the original POMDP, which allows us to consider w.l.o.g. finite-horizon MDPs8,
which are MDPs of finite episodes lengths (here, we set the maximum length to 3lmax). A conceptual view on
this POMDP restricted by policies is provided in figure 8.

Appendix F. Representation learning in reinforcement learning environments

In our approach to factorising abstract representations of reinforcement learning agents, we assume that an
agent’s policy can impose structure on an environment (as described in appendix E) and we want this
structure to be reflected in its latent representation. Therefore, decoders need to predict the behaviour of a
reinforcement learning agent while requiring minimal knowledge of the latent representation. However, we
still lack a definition of what it means for a decoder to predict the behaviour of an agent. Here, we consider
decoders predicting the expected rewards for these agents given the representation communicated by the
encoder. Later, we show that this is enough to produce a policy which is at least as good as the policy of the
reinforcement learning agent.

To be precise, each decoder attempts to learn the expected return Rπ(o,a) given an observation-action
pair (o,a) ∈ (O×A)|π(a|o)⩾1/|A| under the policy π of an agent. For observation-action pairs outside the
restricted subset we assign values 0. The input space of the decoder and the restriction to the subset is
illustrated in figure 8. In fact, decoders not only learn to predict R for a single action but for a sequence of
actions {a(1), . . . ,a(l)}l with length l⩾ 1. This is because it can help stabilise the latent representation of

8 An infinite-horizon MDP with discount factor γ ∈ [0,1) can be ε-approximated by a finite-horizon MDP with horizon lmax =

logγ(
ε(1−γ)

maxo |R(o)|
).
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Figure 9. Generating training data. The training data of the decoder is sampled from the environment in three main steps (for a
complete list see appendix F.1). 2. Starting from an initial observation o(0), the observation o(m) is reached by following the policy
π of the agent. This is equivalent to sampling o(m) from the probability distribution Pπ(o(m)). 3. A sequence of l actions {a(i)}l is
randomly sampled from the action space, as restricted by the subset (O×A)|π(a|o)⩾1/|A|, and executed on the environment. We

write ai ∀i= 1, . . . , |Aj| for actions restricted to the subset at a given observation om+j. 4. Finally, lmax actions are drawn from the
policy π with the restriction π(a|o) ⩾ 1/|A|. These last actions are executed on the environment and their associated rewards are
collected to compute an estimate of Rπ(o,{a(i)}l).

environments with small actions spaces and simple reward functions. In practice however, l= 1 is sufficient
to obtain a proper representation. In the same way, we can help to stabilise the latent representation by
forcing an additional decoder to reconstruct the input from the latent representation. For brevity, we write
{a(i)}l for sequences of actions of length l.

The method described in this appendix, allows us to pick a number of reinforcement learning agents
that have learnt to solve various problems on a specific kind of reinforcement learning environment (see
appendix E) and parameterise the subspaces relevant for solving their respective tasks. Specifically, the
procedure splits into three parts:

(a) Train reinforcement learning agents.
(b) Generate training data for representation learning from reinforcement learning agents (see

appendix F.1).
(c) Train encoders with decoders on training data such that they can reproduce (w.r.t. performance) the

policy of the reinforcement learning agents (see appendix F.2).

The purpose of this appendix is to prove that the trained decoders contain enough information to derive
policies that perform as well as the ones learnt by their associated agents. Only if this is the case, we can claim
that the structure imposed by the decoder reflects the structure imposed on the environment by an agent’s
policy. To that end, we start by (ii) introducing the method to generate the training data, followed by (iii) a
construction of a policy from a trained decoder with given performance bounds.

F.1. Training data generation
The decoders are trained to predict the return values Rπ(o,{a(i)}l) for observations o and sequences of
actions {a(i)}l of arbitrary length l⩽ lmax, given a policy π. The training data is then generated as follows (see
figure 9):

(a) Sample two numbersm, l uniformly at random from {1, . . . , lmax}.
(b) Start an environment rollout with the trained agent’s policy π form steps until the observation o(m) is

reached.
(c) Continue the rollout with l actions which are sampled uniformly at random from the action space as

restricted by the subset (O×A)|π(a|o)⩾1/|A|
9.

9 Note that these actions need to be sampled sequentially from the current policy of the agent, given an observation.
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(d) The rollout is completed with lmax steps according to the policy π of the agent restricted to the subset.
(e) The rewards rj associated to the last lmax steps are collected and used to evaluate an estimate of

Rπ(o,{a(i)}l) =
∑lmax

j=1 γ
j−1rj.

(f) Collect a tuple consisting of observation o(m), actions {a(i)}l and reward Rπ(o,{a(i)}l)
)
.

(g) Collect tuples
(
o(m),{ā(i)}l,0

)
for all actions ā(i) which are not in the restricted subset

(O×A)|π(a|o)⩾1/|A|.
(h) Repeat the procedure.

Note, that this algorithm does not require any additional control over the environment beyond
initialisation and performing actions. That is, it can be generated on-line while interacting with the
environment. In the case of a deterministic MDP and policy, one iteration of this algorithm yields the exact
values of Rπ(o,{a(i)}l). In the case of a stochastic MDP or policy, one obtains instead an unbiased estimate of
these values due to the possible fluctuations caused by the stochasticity of the environment dynamics and the
policy. Repeated iterations of the algorithm followed by averaging of the estimates allows to decrease the
estimation error. We neglect this estimation error in the next section.

The collected tuples are used to train the encoder and decoder through the answer loss La as discussed in
the main text. In practice, short action sequences are sufficient to factorise the abstract representation of the
trained agents. In the example of the main text, l= 1 was used. We kept the general description of the return
function with arbitrary sequence lengths as a possible extension for more stable factorisations.

F.2. Reinforcement learning policy from trained decoders
Let us call RNN the function learnt by the decoder. We prove that a policy π ′ satisfying
Rπ ′(o(0))⩾ Rπ(o(0))∀o(0) in the MDP can be constructed from the decoder if it was trained with a certain
loss ε.

Theorem 1. Given a POMDP with observation-action space O×A and a policy π that restricts the POMDP
into an MDP with observation-action space (O×A)|π(a|o)⩾1/|A|, there exists a policy π

′ that satisfies
Rπ ′(o(0))⩾ Rπ(o(0))∀o(0) in the MDP and that can be derived from a function which is ε-close (in terms of a
mean squared error), with ε> 0, to:

R̃π(o,a) =

{
Rπ(o,a) if (o,a) ∈ (O×A)|π(a|o)⩾1/|A|

0 otherwise

Proof. For clarity, we first prove that the construction of π ′ is possible if the return values are learnt perfectly,
i.e. the training loss L is zero. Later, we relax this assumption and show that the proof still holds for non-zero
values of the loss.

We choose the loss function to be a weighted mean square error on the subset extended to arbitrary length
action sequences, i.e. (O×

⋃
k=1,...,lmax

Ak)|π(a|o)⩾1/|A|,

L=
∑

o,{a(i)}l

Pπ(o)
1

lmax
∏

i |Ai|
(Rπ(o,{a(i)}l)−RNN(o,{a(i)}l))2.

An analogous approach yields similar results for other loss functions. Here, Pπ(o) is the probability that the
observation o is obtained given that the agent follows the policy π and Ai is the action space from which the
action a(i) is sampled, as restricted by the subset. Now, let us further restrict the sum to action sequences of
length one, i.e.

L′ =
∑
o,a

Pπ(o)
1

lmax|A1|
(Rπ(o,a)−RNN(o,a))

2,

for which it is easily verified that L ′ ⩽ L.
Using RNN, we derive the following policy:

π ′(a|o) =

{
1 if a= argmaxa ′RNN(o,a ′)

0 otherwise
(1)

Since RNN(o,a) corresponds to the return of the policy π after observing o and taking action a, maximising
this return hence leads to a return Rπ ′(o)⩾ Rπ(o) ∀o ∈ OMDP.
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In the following, we discuss the implications of the decoder not learning to reproduce Rπ perfectly, i.e.L=
ε > 0. More precisely, we derive a bound on ε under which a policy π ′ satisfying Rπ ′(o(0))⩾ Rπ(o(0))∀o(0) in
the MDP can still be constructed from the decoder.

The decoder can be used to construct the policy π ′ defined in equation (1) if the approximation error of
RNN is small enough to distinguish the largest and second-largest return values Rπ(o,a) given an observation
o. In the worst case, this difference can be as small as the smallest difference between any two returns given an
observation

ε′ = γ lmaxδR,

where δR =mini |ri+1 − ri| is the minimal non-zero difference between any two values the reward function of
the environment can assign (including a reward r= 0).

Let us set,

L′ ⩽ ε=
γ2lmaxδ2Rδπ
16|A|lmax

where δπ =mino∈OMDP{Pπ(o) | Pπ(o) 6= 0}. That is,∑
o,a

Pπ(o)
1

lmax|A1|
(Rπ(o,a)−RNN(o,a))

2 ⩽ γ2lmaxδ2Rδπ
16|A|lmax

and hence, ∀(o,a) ∈ (O×A)|π(a|o)⩾1/|A|

Pπ(o)
1

lmax|A1|
(Rπ(o,a)−RNN(o,a))

2 ⩽ γ2lmaxδ2Rδπ
16|A|lmax

(Rπ(o,a)−RNN(o,a))
2 ⩽ γ2lmaxδ2R

16

|Rπ(o,a)−RNN(o,a)|⩽
ε′

4
.

It is sufficient for RNN to approximate Rπ with precision ε ′

4 . Therefore, it is sufficient to bound the error
of the loss function L by

ε⩽ γ2lmaxδ2Rδπ
16|A|lmax

.

This worst case analysis shows that the error needs to be exponentially small with respect to the parameters of
the problem so that we can derive strong performance bounds of the policy on the entire subset. In practice,
we expect to be able to derive a functional policy even with higher losses during the training of the decoder.

Appendix G. Model implementation for representation learning in reinforcement
learning environments

In this appendix, we give the details for the architecture that has been used to factorise the abstract
representation of a reinforcement learning environment. The code has been made available at https://github.
com/HendrikPN/reinforced_scinet. For convenience, we repeat the training procedure here:

(a) Train reinforcement learning agents.
(b) Generate training data for representation learning from reinforcement learning agents (see

appendix F.1).
(c) Train encoders with decoders on training data to learn an abstract representation (see appendix F.2).

The whole procedure is encompassed by a single algorithm (see figure 10).

G.1. Asynchronous reinforcement and representation learning
Due to the highly parallelisable setting, we make use of asynchronous methods for reinforcement
learning [69]. That is, at all times, we have stored the neural network models in the shared memory of a
graphics processing unit (GPU). Both, predicting and training, are therefore outsourced to the GPU while
interactions of various agents with their environments are happening in parallel on central processing units
(CPUs). The interface between the GPU and CPU is provided by two main processes which are assigned their
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Figure 10. Architecture for representation learning in reinforcement learning settings. We store neural network models in the
shared memory of a graphics processing unit (GPU). As in [69], we make use of an asynchronous approach to reinforcement
learning. NA copies for each of k different agents interact with copies of the environment. Observations are queued and
transferred to the GPU by prediction processes which also distribute policies, returned by the GPU, to the agents. Batches of
observations, actions and rewards are queued and transferred to the GPU by trainer processes for updating the neural networks.
On the GPU, batches of observations obtained from predictors are evaluated with deep energy-based projective simulation
models [70] to obtain a policy, and batches from policy trainers are used to update the model via the loss in equation (2).
Everything above the red dotted line concerns the training of the reinforcement learning agents’ policy analogous to [69]. Below
the dotted line, we depict our architecture which is trained by predicting discounted rewards obtained by trained reinforcement
learning agents (see appendix F). We allow switching between training the policy and training the representation (i.e. selection of
latent neurons). From training the policy to learning the representation, the training data changes only slightly. Importantly, in
both cases, the data can be created on-line by reinforcement learning agents.

own threads on CPUs, predictor10 and training processes. Predictor processes get observations from a
prediction queue and batch them in order to transfer them to the GPU where a forward pass of the deep
reinforcement learning model is performed to obtain the policies (i.e. probability distributions over actions)
which are redistributed to the respective agents. Training processes batch training data as appropriate for the
learning model in the same way as predictors batch observations. This data is transferred to the GPU to
update the neural network. In our case, we need to be able to switch between two such training processes.
One for training a policy as in [69] and as required by step (i) of our training procedure, and one for
representation learning as required by step (iii). Interestingly, the training data which is used by the policy
trainers in step (i) is very similar to the training data which is used by the selection trainers in step (iii).
Therefore, in the transition from step (i) to (iii), we just have to slightly alter the data which is sent to the
training queue as required by the algorithm in section F.1. Note that the similarity of the training data for the
two training processes is due to the specific deep reinforcement learning model under consideration as
described in the following section. For further details on the implementation of asynchronous reinforcement
learning methods on GPUs see [69].

G.2. Deep energy-based projective simulationmodel
The deep learning model used for the numerical results obtained here is a deep energy-based projective
simulation (DPS) model as first presented in [70]. We chose this model because it allows us to easily switch
between training the policy and training the decoders since the training data is almost the same for both. In
fact, besides different initial biases and network sizes, the models used as reinforcement learning agents and
the models used for decoders are the same.

The DPS model predicts so-called h-values h(o,a) given an observation o and action a. The loss function
aims to minimise the distance between the current h-value ht(o,a) and a target h-value htart (o,a) at time t,
given as

L= |ht(o,a)− htart (o,a)|. (2)

10 Here we adopt the notation from [69]. That is, the predictor processes used here are not related to the prediction process associated
with decoders in the main text.
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Note that we are free to choose other loss functions such as the mean square error, or a Huber loss. We want
the current h-value to be updated such that it maximises the future expected reward. Approximating this
reward at time t for a given discount factor, we write

Rt =

lmax∑
j=1

(1− η)j−1rt+j

where η ∈ (0,1] is the so-called glow parameter accounting for the discount of rewards rt+j obtained after
observing o and taking action a at time t up to a temporal horizon lmax. The target h-value can then be
associated with this discounted reward as follows,

htart (o,a) = (1− γPS)ht(o,a)+Rt,

where γPS ∈ [0,1) is the so-called forgetting parameter used for regularisation. The h-values are used to derive
a policy through the softmax function,

π(a|o) = eβh(o,a)∑
a′ e

βh(o,a′)
,

where β > 0 is an inverse temperature parameter which governs the drive for exploration versus exploitation.
The tabular approach to projective simulation has been proven to converge to an optimal policy in the limit
of infinitely many interactions with certain MDPs [76] and has shown to perform as good as standard
approaches to reinforcement learning on benchmarking tasks [77]. For a detailed description and motivation
of the DPS model we refer to [70].

Note that the training data required to define the loss in equation (2) consists of tuples containing
observations, actions and discounted rewards (o,a,R). Since this is in line with the training data required for
training the decoders as described in appendix F.1, this model is particularly well suited for the combination
with representation learning as introduced in this paper.

Appendix H. Classical mechanics derivation for charged masses

In this appendix, we provide the analytic solution to the evaluation experiment in section 4.1 that we use to
evaluate the cost function for training the neural networks. This is a fairly direct application of the generic
Kepler problem, but we include the derivation for the sake of completeness. We use the notation of [78].

The setup we consider is shown in figure 11. Our goal is to derive a function v0(φ) that, for fixed q,Q,d0
and given φ, outputs an initial velocity for the left mass such that the mass will reach the hole. Introducing
the inverse radial coordinate u= 1

r , the orbit r(θ) of the left mass obeys the following differential equation
(see e.g. [78, section 4.3]):

d2u

dθ2
+ u=

k

l2
, (3)

with the constant

k=
−qQ

4πε0m
(4)

and the mass-normalised angular momentum

l= r2
dθ

dt
. (5)

This is a conserved quantity and we can determine it from the initial condition of the problem

l= d0v0 cosφ. (6)

The general solution to equation (3) is given by

u= Acos(θ− θ0)+
k

l2
, (7)

where A and θ0 are constants to be determined from the initial conditions. The initial conditions are

r(θ = 0) =
1

Acos(θ0)+
k
l2
= d0, (8)
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Figure 11. Setup and variable names for a charged mass being shot into a hole. A charged particle with massm and charge q
moves in the electrostatic field generated by another charge Q at a fixed position. The initial conditions are given by the velocity v0
and the angle φ. We want to determine the value for φ that will result in the particle landing in the target hole, given a velocity v0.

dr

dθ

∣∣∣∣
θ=0

=
−A sinθ0(

Acosθ0 +
k
l2

)2 v0 cosφd0
= v0 sinφ. (9)

Combining these yields

Acosθ0 =
1

d0
− k

l2
, (10)

A sinθ0 =− 1

d0
tanφ. (11)

The condition that the mass reaches the hole is expressed in terms of r(θ) as follows:

r
(
θ =

π

4

)
=

1

Acos(π4 − θ0)+
k
l2
=
√
2d0 . (12)

Using cos(π/4− θ0) = cos(θ0)/
√
2+ sin(θ0)/

√
2 and the definition of l as well as equations (10) and (11),

we can solve this for v0:

v20 =
(
√
2− 1)k

d0

1

cosφ sinφ
. (13)

Restricting φ to a suitably small interval, this function is injective and has a well-defined inverse φ(v0).
The neural network has to compute this inverse from operational input data. To generate valid
question-answer pairs, we evaluate v0(φ) on a large number of randomly chosen φ (inside the interval where
the function is injective).
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