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Abstract
Property analysis and prediction is a challenging topic in fields such as chemistry, nanotechnology
and materials science, and often suffers from lack of data. Federated learning (FL) is a machine
learning (ML) framework that encourages privacy-preserving collaborations between data owners,
and potentially overcomes the need to combine data that may contain proprietary information.
Combining information from different data sets within the same domain can also produce ML
models with more general insight and reduce the impact of the selection bias inherent in small,
individual studies. In this paper we propose using horizontal FL to mitigate these data limitation
issues and explore the opportunity for data-driven collaboration under these constraints. We also
propose FedRed, a new dimensionality reduction method for FL, that allows faster convergence
and accounts for differences between individual data sets. The FL pipeline has been tested on a
collection of eight different data sets of metallic nanoparticles, and while there are expected losses
compared to a combined data set that does not preserve the privacy of the collaborators, we
obtained extremely good result compared to local training on individual data sets. We conclude
that FL is an effective and efficient method for the physical science domain that could hugely
reduce the negative effect of insufficient data.

1. Introduction

In recent years, scientists have been exploring possibilities of applying machine learning (ML) algorithms to
a variety of applications in the physical sciences, including material science and nanotechnology, to acquire
data-driven insights for the field [1–4]. The majority of methods to date have focused on supervised learning
methods (such as regression) to predict structure/property relationships.

However, data sets in these domains tend to be small, particularly in nanotechnology, and this can limit
the types of ML methods that are applicable, and the types of insight that can be extracted [5]. Reasons
include the high cost of raw materials as well as the high cost of generating experimental results, due to the
time involved and the instruments required [6, 7]. Creating synthetic computational data for specific
materials can mitigate this issue, but this still requires high-performance supercomputers to simulate the
results with extensive domain knowledge, which are time and energy-consuming to run [8–11]. The
performance of many machine learning methods relies on the availability of large and reasonably
comprehensive data sets, particularly neural networks. This mismatch in the types of data sets that are typical
in materials science and nanotechnology, and the types of data sets required to train popular machine
learning models, presents both a limitation and an opportunity.

Failing the ability to generate more data, one possible solution to this mismatch is to combine several
different data sets from a group of different collaborators. Combining data can help scientists discover
patterns beyond their specific experiments, overcome the selection bias inherent in individual studies, and
collectively benefit from the increased amount of data and information. However, data from different sources
tend to be inconsistent, since individual studies are focused on specific goals, with different numbers of
sample instances, different numbers and types of feature variables, and different distributions. Additionally,
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even when collaborating, sharing data may not be feasible due to privacy or confidentiality concerns,
particularly in cases where potentially valuable intellectual property is involved.

Federated learning (FL) is a learning technique that has the potential to allow scientists to train models in
a collaborative, decentralised, and privacy-preserving way without sharing their local data assets [12]. FL
relies on collaborator hardware for the training process and uses a central coordinator (referred to as here as
a federator) to aggregate sub-models into a global model, even when there are differences in the sample space
(i.e. data identity) and feature space among the data sets. Previous applications for FL include Google virtual
keyboard [13], and many more in medical science and financial technology (fintech) [14–17].

There are three different types of FL: horizontal, vertical, or federated transfer learning. A horizontal FL
model takes advantage of the shared feature space among collaborators [18], making it similar to traditional
distributed machine learning techniques where large data sets are deliberately distributed to different
computing cores or devices by the coordinator for better parallelisation. This is consistent with the way ML is
currently used in the physical sciences. However, since the federator does not have access to any of the local
data, calculations including data pre-processing and model training are done locally on collaborator devices
and the aggregation process can be different depending on the underlying FL model. This makes sharing
knowledge of data cleaning or feature engineering such as data dimension reduction a challenge that is
particularly relevant to this domain.

Another challenge when applying FL to science and technology is the overhead caused by model
parameter transmission between the central federator and decentralised collaborators. This issue is similar to
distributed ML where large volumes of data are transferred between machines on a frequent basis.
Researchers have taken the approach of reducing the dimension of those data sets, either through feature
selection or feature extraction, to cope with this overhead. This is also a standard method for reducing
calculation time in ML tasks when confronted with data sets with large feature space typically used
throughout (nano)materials informatics [19]. However, there has been little attention given to how a FL
pipeline can incorporate dimension reduction undertaken by a collaborator. In distributed ML tasks
dimension reduction can be performed centrally before distributing data to different calculation cores, but
this is impossible in a FL workflow since no data is shared.

Therefore, a standard procedure for data processing and dimension reduction in FL context is essential to
the application of FL in this domain, as an effective dimension reduction process could significantly improve
the communication efficiency of a FL pipeline, making it more widely applicable [20]. In this paper we
address this issue and propose a new method, FedRed, to allow collaboration-based dimension reduction in a
federated data pre-processing phase (FDPP) for horizontal FL frameworks using a modified principle
components analysis (PCA). The purpose of the FDPP is to allow different collaborators to acknowledge
differences or similarities in their data distribution and act on them before training, so that collaborator data
sets can be better prepared to suit the specific learning task. This method is developed and integrated into a
FL workflow demonstrated on a group of different nanoparticle data sets. The results show that FL is an
effective tool for collaboration in physical science and by adopting FedRed the characteristics of individual
data sets (such as size and dimensionality) can be accounted for or emphasised.

2. Methodology

The underlying horizontal FL pipeline developed in this study was designed to execute a learning task with
four steps, including ‘connection establishing’, ‘meta-data exchanging’, ‘federated data pre-processing’, and
‘federated model training’, where the third step corresponds to our proposed method, FedRed. When the
pipeline terminates, a shared global model is generated. Pseudo-code for the federator and collaborator is
provided below in algorithms 1 and 2. As mentioned above, this step draws on PCA to reduce the data sets in
a consistent way that preserves as much local information as possible. This pipeline was implemented in
Python, and is available online [21].

2.1. Principle component analysis
PCA aims to minimise the MSE caused by projecting an original data set X= {x1,x2, . . . ,xm} ∈M×N onto
a hyper-plane in dimension K, where K<< N, by maximising the variance captured by the principle
components (PCs), denoted by u1,u2, . . . ,uk. The first PC, u1, is calculated by maximising the Lagrangian
given by:

uT1Su1 +λ1(1− uT1u1) (1)

where λ1 is a factor and S is the covariance matrix defined as:
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Algorithm 1. Federator Pipeline

InitialiseFederator(model, hyperparameters);
ListenOnPort();
whileWaitForAllClients do
if NewClientConnections then

SaveClientInfo();
AskClientToWait();

end if
end while
forall ConnectedClients do

Send(model, hyperparameters);
AskClientToProceed();

end forall
FederatedDataPreprocess();
for i := 0 . . . CommunicationRounds do
whileWaitForClientToReport do
if ClientReports then

SaveClientModelInfo();
AskClientToWait();

end if
end while
newGlobalModel← AggregateClientsModelInfo();
forall ConnectedClients do

Send(newGlobalModel);
end forall

end for
End();

Algorithm 2. Collaborator Pipeline

InitialiseClient();
if ConnectedToHostPort then

SendSelfInfo();
end if
localModel← GetFederatorMessage();
WaitForFederatorToProceed();
FederatedDataPreprocess();
for i := 0 . . . CommunicationRounds do

modelInfo← Train(localModel, localData);
SendToFederator(modelInfo);
WaitForFederatorToProceed();
localModel← GetFederatorMessage();

end for
End();

S=
1

K

K∑
k=1

(xk − x)(xk − x)T (2)

u1 is calculated to be an eigenvector of S while λ1 is the largest eigenvalue. Similarly, other PCs are calculated
iteratively, and the final projection matrix we use to reduce the dimensionality of X can be denoted as
U= {u1,u2, . . . ,uk} ∈K×N. The ratio of variance captured (explained) can be calculated by divide the sum
of eigenvalues of the PCs by the sum of all eigenvalues of the covariance matrix, which can be represented as:

R=

∑K
i=1λi∑N
j=1λ j

. (3)

2.1.1. Federated PCA
The federated adaptation of PCA assumes each data set has a unique distribution the final projection must
reflect this uniqueness to some degree. To have weighted contribution from each collaborator, we sum all the
projection matrices {U1,U2, . . . ,Un} and take the average as:
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Figure 1.Multi-round communication for the federated PCA process with steps explained.

U=
1

n

n∑
i=1

wiUi (4)

where U is the final projection matrix for all collaborators.
Weighting can be done in a number of ways, including intuitive weighting metrics such as averaging, the

size of a data set, or the explained variance ratio of a local PCA process. When using data sets sizes as the

metric, wi =
|Xi|∑n
j=1|X j| ; and when using explained variance ratio, wi =

Ri∑n
j=1 R j

, where Ri is the explain ratio

defined in equation (3). Alternatives are possible, depending on the goals of the combined study.
In the present work we implemented federated PCA as a multi-step pipeline within the horizontal FL

framework as shown in figure 1.
After receiving the ‘averaged’ PCs, individual collaborators use them to perform dimension reduction

locally to reduce their local data set to a more general state. In our experiments, we compared the
effectiveness of all three of the intuitive metrics mentioned above (average, size, and explained variance ratio).
Averaging refers to cases where the final reduction matrix is the average of all locally generated reduction
matrices. Size refers to cases where a weight that is equal to the percentage of data instance number of a data
set among all data sets is applied to each of the reduction matrices before averaging. Similarly, the explained
variance ratio refers to cases where the weight is the ratio of the explained of variance of a local PCA process.
Since we set a target explained variance ratio for finding the number of principle components needed, a
smaller data set typically needs a small number of PCs while a larger data set will need more. We take the
largest number among all clients such that all clients reach the target explained variance ratio (allowing some
to exceed it). By having more PCs than needed, smaller data sets have a higher explained variance ratio than
larger data sets. By applying this value as a weight for a reduction matrix, smaller data sets can contribute
more to the final reduction matrix, mitigating the possibility of collaborators with larger data sets biasing the
final model.

2.1.2. Federated feature selection
Aside from feature extraction methods such as PCA, feature selection methods can be adjusted to a similar
pipeline. Instead of setting a target explained variance ratio, the number of features can be agreed by
collaborators at the outset. The mutually selected set of features could be chosen by voting and a threshold of
vote numbers with potential weights on client votes. This approach is not presented here, but the overall
workflow is the same.

2.2. Base models
We chose two models, linear regression and artificial neural network (ANN), as base models for the FL
pipeline. Linear regression is well suited to finding linear relationships, while ANN adds possibilities of
discovering non-linear patterns. However, when given insufficient training data, it is hard for both models to
learn non-trivial patterns.
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Table 1. Data sets and descriptions.

Name Method Condition Temperature Particle size Instances

Pt-large (collab0) Molecular
Dynamics (MD)

Both Kinetically and
Thermodynamically
Limited

273 K 973 K >6000 atoms 341

Pt-small (collab1) Molecular
Dynamics (MD)

Both Kinetically and
Thermodynamically
Limited

273 K 973 K <3000 atoms 754

Ag-classical
(collab2)

Molecular
Dynamics (MD)

Kinetically Limited 273 K to 973 K 157 atoms to
14115 atoms

4000

Pd-highT (collab3) Molecular
Dynamics (MD)

Both Kinetically and
Thermodynamically
Limited

>773 K 158 atoms to
16262 atoms

1100

Ag-quantum
(collab4)

Density
Funcitonal Tight
Binding (DFTB)

Thermodynamically
Limited

0 K 13 atoms to
2947 atoms

425

Au-thermo
(collab5)

Molecular
Dynamics (MD)

Thermodynamically
Limited

323 K to 923 K 236 atoms to
13804 atoms

2400

Au-kinetic
(collab6)

Molecular
Dynamics (MD)

Thermodynamically
Limited

273 K to 973 K 236 atoms to
14277 atoms

1600

Pd-lowT (collab7) Molecular
Dynamics (MD)

Both Kinetically and
Thermodynamically
Limited

<373 K 236 atoms to
16083 atoms

1000

2.3. Evaluationmetrics
We claim FL is an effective framework in this study by comparing the predictive behaviour of a global
model’s performance on data sets compared to a client’s locally trained model’s performance on another data
set. The effect of the FedRed pipeline can be measured by comparing the reduction matrix generated on a
combined data set with that generated via collaboration. We expect the collaboration-generated matrix to
have a closer distance to the matrix generated when we have all collaborator data in one data set than when
they remain separated. Upon this observation, we can claim that the FedRed pipeline is better in capturing
the overall trend of a particular field.

In addition to this, each collaborator could be assigned a specific weight to make the final reduction
matrix closer to, or farther away from, its locally generated one, such that the final reduction matrix reflects
trend captured in this data set to a lesser or greater degree. After providing a weighting metric, we can
compare whether the final model has the expected predictive performance on each of the data sets to validate
the effectiveness.

2.4. Data sets
Our work uses eight computational nanoparticle data sets as described in table 1, each produced using either
quantum mechanical electronic structure or classical molecular dynamics (MD) high-performance
computer simulations. The data sets were not generated as part of this study, and are all publicly available
(see Data Availability Statement).

Each data set has been been characterised using the same set of 105 features and one continuous
numerical target label (the formation energy, in electron volts). There are no categorical features, and no
instances are shared between the datsets. Each of these data sets is measured either on different materials
(silver, gold, palladium, and platinum), was simulated using different method (i.e. MD and DFTB), was
simulated under different conditions (thermodynamically-limited or kinetically-limited, high temperature
or low temperature), or with different nanoparticle sizes (i.e. number of atoms) to reflect data diversity
between collaborators. As we will show, FL is a suitable framework for tasks in this area, and by using FedRed
the performance of the FL pipeline can be significantly improved.

3. Results and discussion

3.1. Baseline
To establish a baseline we joined all eight data sets together into one large comprehensive data set and used it
to trains a linear regressor and an ANN. The result is shown in figure 2. Due to large training sample size, the
loss in the baseline is very small (approximately 1.32× 10–6 per instance on average), meaning the model has
extremely good prediction ability with the presence of all available data. It is expected that result generated
using FL techniques would be inferior to this baseline by a small amount due to statistical heterogeneity
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Figure 2. Loss for training on the joint data set over 1000 training iterations.

[12, 20, 22], but it is extremely advantageous to have a high performing baseline from which to assess the
final loss.

It may appear counter-intuitive to see an ANN performing worse than a linear model in figure 2,
however, the losses generated by both models are extremely small. Both models perform very well on this
data set, which clearly has an underlying linear pattern. In such cases a more complicated model, such as
ANN, will have over-fitting issues, which can lead to higher testing losses.

3.2. FL effectiveness
A series of experiments were carried out to validate the effectiveness of the FL framework in our study,
comparing models trained only on the local data set of each collaborator with models trained collaboratively
using FL. During the FL training process, Federated PCA was applied with even contributions from all
collaborators.

Firstly, a separate, local model was trained on each of the eight data sets individually (representing a
non-collaborative situation). Each of the eight locally generated models was then tested on all test sets with
per-instance losses of each model for each data set plotted in figure 3(a) for the linear regressor and
figure 3(b) for the ANN, where the legend indicates which data set the model was trained on. This could be
considered an unsophisticated type of collaboration, sharing a model for others to use on their local data
without retraining.

For the FL generated model, each of the eight data sets was treated as a different collaborator and a model
was trained collaboratively with the same hyper-parameters as the local training approach. We plotted the
per-instance losses on testing data sets held aside prior to the training in figure 4.

We observe a significant difference between the two training approaches. In the case of the individual
locally trained models, the predictive ability was extremely unstable, even on the same data set they trained
on (see figures 3(a) and (b)). The MSE loss varies significantly between data sets, however, the pattern of loss
change with different models on each data set is similar. For example, Pt-large (see table 1) has the largest
loss for all eight data sets while Pt-small has the lowest loss regardless of the model. These two data sets were
generated using the same computational method and simulation approach, with the same temperature range
but different nanoparticle size ranges. This indicates there may be some generic pattern that has been
captured by different models. In addition to this, all losses have a relatively high value. The worst prediction,
with models trained on Pd-highT data and tested on Pt-large data, yielded more than 10 000 MSE loss. This
can be due to the two data sets being significantly different but also because there is insufficient data in
Pd-highT to train on to achieve reasonable performance on Pt-large. Similar trends can be found when
comparing results using ANN as the base model (see figure 3(b)). Both observations on this result suggest
that the unsophisticated collaboration approach of training on one data set and using the model on another
is unwise, even if it is compelling to researchers.

For the shared model generated from the FL framework in figure 4, the losses are extremely small and
only vary in a small range. This indicates that in this use case, FL is capable of generating a much better
global model that can be confidently used on all data sets compared to training using only local data sets.

Comparing with the baseline result in figure 2, however, we observe an increase in losses generated from
models trained using the FL pipeline. This is an expected behaviour due to statistical heterogeneity between
data sets from different collaborators, and the small size of some of the collaborator data set with respect to
the comprehensive combination. Although it is generally desirable to have lower loss, it is not always possible
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Figure 3. Locally generated (a) linear regression and (b) ANN model effects on each data set. Note that the y-axis differs to
manage low losses using the ANN.

Figure 4. Effects of the federated learning generated models on testing sets.

to combine data sets (perhaps due to IP and privacy reasons). Fortunately losses from the FL pipeline is
already extremely low compared to individual local training, meaning the pipeline is effective in this
scenario. While the performance with a combined data set is higher, if this is not practical the losses due to
federation are small when compared to no collaboration at all.
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Figure 5. Per-collaborator, per-instance losses using different PC aggregation metrics, including (a) using weighting by the
average, (b) weighting by the data set size, and (c) weighting by the ratio of the explained variance of each collaborator dimension
reduction. The base model is linear regression for these plots.

3.3. FedRed effectiveness
To explore the effectiveness of our federated dimension reduction method, FedRed, we measured each
collaborator testing loss during the training phase. From figure 5(a), we can see the collaborator testing error
changes when we use the average of the reduction matrices generated from all collaborator data sets. The
scores are similar to those seen in figure 4 when models converge. Figures 5(b) and (c) shows the same
measurements weighed by the data set size and ratio of the explained variance as PC aggregation metrics,
respectively. We can observe for Collaborator4, owner of the Ag-quantum data set, its per-instance loss is
approximately 2× 10–4 and 3× 10–4 respectively when using average and size weightings. This reduces to
1.5× 10–4 when we use the explained variance ratio. We believe this is a result of the change in reduction
matrix because the Ag-quantum data set has the second smallest number of sample instances (only 3.6% of
the whole population) and the final reduction matrix is closer to that of Ag-quantum, resulting in an model
capable of better performance on this data set.
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Figure 6. Impact of more aggressive dimension reduction, including (a) MSE loss generated by models with different explain
ratios, and (b) processing time of 200 training iterations by models with different explain ratios. 100% explain ratio means no
PCA applied and all data information is preserved.

However, we also observed behaviour that is unexpected. Collaborator0, owner of the Pt-large data set,
has a much higher loss when we use the explained variance ratio aggregation metric. Collaborator0 has the
smallest data set, but its behaviour is opposite to that of Collaborator4, with the Ag-quantum data set, who
has the second smallest. This indicates a much more complicated relationship where the size of the set is
insufficient to anticipate performance. Comparing these two data sets (see table 1), we can see they consist of
two different chemical elements, but were also generated using two different computational methods, under
different conditions and temperatures, and having totally different nanoparticle sizes. While the data sets are
both relatively small, they differ in every other way possible. From a domain expert perspective, we believe
the difference in training behaviour are a function of the physical differences of the nanoparticles and the
computational difference of the simulations, highlighting that the FL pipeline, and the addition of FedRed,
preserves the scientific information and does not homogenise the output. This capability may provide
domain experts with clues when studying the physical properties of these nanoparticles, by discussing model
outcomes with the other collaborators, but without ever sharing any data.

Despite possible explanations and implications to the domain, in this example all three models in figure 5
have similar cumulative losses among all testing instances. Therefore, it is hard to tell which model performs
best on all data sets. However, this is not necessarily the case for every use case and data sets. It is
recommended that researchers experiment with different settings before choosing their desired method.
Future work to develop new evaluation methods specific to federated learning (as we have done here for
federated dimension reduction) would be beneficial to the community.

Another aspect to consider is the affect of using different explained ratios. Figure 6(a) shows the
cumulative loss of all clients when tested on models generated with different explained ratios (different
numbers of components). In this experiment, higher explained ratio has lower loss. Due to the pattern of
federation (figure 5) being largely unaffected by the number of components, the cumulative loss for these
three experiments are similar. This may not necessarily be the case for all applications, but it encourages
using fewer components and exploiting the other benefits. In contrast, the processing time shows a
significant advantage on cases when FedRed is applied. Figure 6(b) shows the processing time of 200
iterations on eight collaborators and it is much faster when dimension reduction is used, though this
advantage saturates due to the federation overhead. Both of these results indicate a general effectiveness of
FedRed in addition to its advantages on specifying the aggregation metric.

In previous literature [23] distributed PCA has been well discussed in terms of convergence guarantees
and communication efficiency optimisation. We acknowledge that the FedRed method has the same essence
of obtaining an ‘average consensus’ among collaborators, meaning FedRed is in alignment with the
previously reported results. However, there are two advances over the existing work. Firstly, FedRed could be
used in a feature selection scenario in addition to PCA as described in section 2.1.2. Secondly, we emphasise
there are possible domain implications that comes with different weighting metrics, so our approach gives
researchers the opportunity to apply there domain knowledge or technical preferences, depending on the
circumstances of the collaborations.
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There are possible ways of improving the FedRed scheme that have not been discussed here. Iteratively
improving the PCs on a local scale before each round of aggregation could be desirable propagandising local
features, but introduces risks such as over optimisation (potentially resulting in increased over-fitting) and a
reduction in global generality. Alternative feature extraction methods other than PCA can also be explored
and analysed in this setting. These are interesting research questions that are worth exploring in future works.

At this point it is prudent to point out that in this demonstration we have only considered situations
where all collaborators have data sets with the same features, i.e. using horizontal FL, as there is some
consistency in the way physical scientists characterise chemicals, materials and nanoparticles. However, in
some cases features in collaborators data sets may be different, making vertical FL and federated transfer
learning [18, 24] more suitable to help learning new features from others’ data sets. This is also a
recommended direction for future research.

4. Conclusion

In this paper we have confirmed the applicability of horizontal federated learning to data sets typical of
materials informatics and nanoinformatics, and designed and demonstrated a new federated dimension
reduction scheme within the federated learning pipeline to help prepare heterogeneous data sets for learning.
Upon applying federated learning to the nanoparticle case study in this paper, we observed significant
predictive performance gains during testing. FedRed, helps to reduce the statistical heterogeneity of different
data sets by providing a shared reduction matrix to all collaborators contributing to the federated model,
while preserving the scientific differences of each local data set. The effectiveness of the method was validated,
and was shown to outperform the crude but compelling reuse of individually trained models on alternative
data sets. In general the use of the explained variance ratio for weighing the contribution from collaborating
data sets brings the predictions closer to the benchmark of a fully shared, non-private, integrated data set.

Given the privacy-preserving nature of federated learning, we believe the incorporation of the new
federated dimension reduction scheme is an effective framework towards solving the problem of data
insufficiency in this field by providing researchers a means of collaboration using methods they can trust.
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