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Abstract

Let X be a graph on n vertices and let B = {P (x) : x ∈ V (X)} be a collection
of n subgraphs of X, one for each vertex, B is an orthogonal double cover (ODC)
of X if every edge of X occurs in exactly two members of B and any two
members share an edge whenever the corresponding vertices are adjacent in
X and share no edges whenever the corresponding vertices are nonadjacent in
X. The main question is: given the pair (X, G), is there an ODC of X by G? An
obvious necessary condition is that X is a regular. In this paper, we are almost
exclusively concerned with the starter maps of the orthogonal double covers of
cayley graphs and using this method to construct ODCs by a complete bipartite
graph, a complete tripartite graph, caterpillar, and a connected union of a cycle
and a star whose center vertex belongs to that cycle.
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1 Introduction
Let X and G be graphs, such that G is isomorphic to a subgraph of X. An ODC of
X by G is a collection B = {P (x) : x ∈ V (X)} of subgraphs of X, all isomorphic to G,
such that

(i) every edge of X occurs in exactly two members of B and (ii) P (x) and P (y)
share an edge if and only if x and y are adjacent in X. The elements of B will be
called pages.

This concept is a natural generalization of earlier definitions of an ODC for
complete and complete bipartite graphs, that have been studied extensively (see
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the survey [1]). The main question is: given the pair (X,G), is there an ODC of X by
G? An obvious necessary condition is that X is a regular. In this case, the answer
is surely affirmative when G is a star: such ODCs will be called trivial.

An effective technique to construct ODCs in the above cases was based on the
idea of translate a given subgraph of G by a group acting on V (X). Thus, we want
to tackle this way this more general definition of ODC in the case of Cayley graphs.
In [2], Scapellato et al deals with Cayley graphs of degree 2 and 3. and offers some
insights on the case on ODC of Cayley graphs on cyclic groups. Multiplicative
notation for groups is handy and will be used as default. Here, in this paper we will
switch to additive notation when groups of residue classes are involved.

Note that an edge of a graph will often be identified with one of its arcs, so we
will write (x, y) instead of {x, y}.

An automorphism ϕ of B is a map from V (X) to itself such that ϕ(P (x)) = P (ϕ(x))
for all x. If a coloring is assigned to edges of X, the automorphism ϕ will be called
colour-preserving if whenever (x, y) ∈ E(X) the edges (x, y) and (ϕ(x), ϕ(y)) have the
same colour. An ODC B of X is cyclic (CODC) if the cyclic group of order |V (X)|
is a subgroup of the automorphism group of B, the set of all automorphisms of B.
Note that in this case X is necessarily a regular graph of degree |E(G)|.The identity
map on a fixed set will be denoted by 1. The order of the element x of the group Γ
will be denoted by o(x).

Throughout the article we make use of the usual notation: Γ = Zn for a finite
(additive) abelian group, Km,n for the complete bipartite graph with partition sets of
sizes m and n, Pn for the path on n vertices, Cn for the cycle with length n, Kn for
the complete graph on n vertices, K1 for an isolated vertex, G + H for the disjoint
union G ∪ H of G and H, and mG for m disjoint copies of G. Let n1, n2, . . . , nr, r ≥ 1,
be positive integres, n1, nr ≥ 1 and ni ≥ 0 for i ∈ {2, 3, . . . , r − 1}. The caterpillar Cr

(n1, n2, . . . , nr) is the tree obtained from the path Pr : = x1x2 . . . xr by joining vertex xi
to ni new vertives, i ∈ {1, 2, . . . , r}.

Let Γ be a finite group and A ⊆ Γ a subset of Γ, such that A−1 = A and 1 /∈ A.
Consider the Cayley graph X =Cay(Γ, A) where E(X) = {(x, ax) : x ∈ Γ, a ∈ A}.To
each arc (x, ax) of X we assign the colour a. Sometimes a or its inverse will be
mentioned as the colours of the corresponding edge. (Note that in [3] and elsewhere
it is also assumed that A is a spanning set for Γ. Here however this property is not
needed).

The following results were established in [2]
Let Γ be a finite group and σ be a permutation of Γ. We say that σ is balanced if

σ(yz)σ(xz)−1 = σ(y)σ(x)−1for all x, y, z ∈ Γ.

Of course, all automorphisms σ of Γ are balanced. Besides, for fixed a, b ∈ Γ,
the map σ(x) = axb is a balanced permutation.

Definition 1.1. Let A be any non-empty subset of Γ and let σ be a balanced permutation
of Γ. For a map f : A → Γ, the map taking a ∈ A into f(a−1)−1af(a) is denoted by f∗.
Let us call f a starter map for (Γ, A, σ) if f∗ is injective and satisfies:

yx−1∈ A if and only if ∃ a ∈ A f∗(a)σ(x) = σ(y). (1.1)

For example, if f is a map such that f∗ is the restriction to A of some automorphism
σ of Γ, then f is a starter map for (Γ, A, σ). Namely, f∗(a)σ(x) = σ(y) if and only if

395



British Journal of Mathematics and Computer Science 4(3), 394-401, 2014

σ(ax) = σ(y), which is equivalent to ax = y. We also note that if 1 /∈ A then f∗(a) 6= 1 for
all a ∈ A, elsewhere from condition (1.1) we would get the contradiction 1= xx−1 ∈ A.

Clearly, when using additive notation, a balanced map will be a permutation σ
satisfying σ(y + z)− σ(x+ z) = σ(y)− σ(x). The map f∗ will take a into −f(−a) + a+ f(a)
and condition (1.1) will be replaced by

y − x ∈ A if and only if ∃ a ∈ A f∗(a) + σ(x) = σ(y). (1.2)

Let X =Cay(Γ, A), σ be a balanced permutation of G and f be a starter map for
(Γ, A, σ). Define B(f) as the collection of graphs

P(x) = {(f(a)σ(x), af(a)σ(x)) : a ∈ A}. (1.3)

Theorem 1.1. Let X =Cay(Γ, A) and σ be a balanced permutation of Γ. If f is a starter
map for (Γ, A, σ). Then the collection B(f) forms an ODC of X by P (1). Moreover,
the group of right translations g 7→ xg of Γ form a colour-preserving automorphism
group of B(f).

For more results on ODCs of graphs, see ( [1], [4]).
In [5], Sampathkumar et al. completely setteled the existence proplem of CODCs

of 4-regular circulant graphs.
In [2], Scapellato et al studied the ODC of Cayley graphs and proved the following.

(i) All 3-regular Cayley graphs, except K4, have ODCs by P4.
(ii) All 3-regular Cayley graphs on Abelian groups, except K4, have ODCs by

P3 ∪K2.
(iii) All 3-regular Cayley graphs on Abelian groups, except K4 and the 3-prism

(Cartesian product of C3 and K2), have ODCs by 3K2.
In [6], Hartmann and Schumacher proved the following.
(i) Let H be a 2-regular graph. There exists an ODC of H by 2K2 with three

exceptions for H: C3, C4and 2C3.
(ii) Let H be a 3-regular graph containing a 1-factor and without a component

isiomorphic to K4. There exists an ODC of H by P4.
(iii) Let H be a 3-regular graph containing a 1-factor and |V (H)| ≥ 24. There exists

an ODC of H by P3 +K2. The other terminology not defined here can be found in [7].
In this paper, we are almost exclusively concerned with the starter maps of

the orthogonal double covers of cayley graphs and using this method to construct
ODCs by a complete bipartite graph, a complete tripartite graph, caterpillar, and a
connected union of a cycle and a star whose center vertex belongs to that cycle.
Note that the number of edges of G is |A|, equal to the number of vertices belonging
to non-trivial connected components.

2 Results and Discussion
The follwing theorem construct an ODC of Cayley graph by a complete bipartite
graph.

Theorem 2.1. For all positive integers m,n, p and mp = n − 3, there exists an ODC of
Cay(Zn, A) by Km,p.
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Proof. Let A = Zn\{0, 1, n−1}. For each a ∈ A; define the map f : A→ Zn by f(a) = x0 if
2 ≤ a ≤ p+1; f(a) = x1 if p+2 ≤ a ≤ 2p+1; . . . ; f(a) = xm−1 if (m−1)p+2 ≤ a ≤ mp+1, where
xj = 1− jp : 0 ≤ j ≤ m− 1. From the defination of f(a), P (0) is isomorphic to the graph
G = Km,p has edges E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For jp+ 2 ≤ a ≤ (j + 1)p+ 1,
f∗(a) = f(a) − f(−a) + a = xj − xm−(j+1) + a . And hence f∗ is injective as well as
surjective because of {f(a) − f(−a) + a : a ∈ A} = A.Therefore f∗ satisfies condition
(1.2) with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1).
Applying theorem (1.1), proves the claim.

The follwing theorem construct an ODC of Cayley graph by a complete tripartite
graph.

Theorem 2.2. For all positive integers r, s, n and n = rs, there exists an ODC of
Cay(Zn, A)by K1,(r−1),(s−1).

Proof. Let A = Zn\{0}. For each a ∈ A; define the map f : A → Zn by f(a) = 0 if
1 ≤ a ≤ s − 1; f(a) = (r − 1)s if s ≤ a ≤ 2s − 1; f(a) = (r − 2)s if 2s ≤ a ≤ 3s − 1;
. . . ; f(a) = s if (r − 1) s ≤ a ≤ rs − 1. From the defination of f(a); P (0) is isomorphic
to the graph G = K1,(r−1),(s−1) has edges E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For
1 + ls ≤ a ≤ (l + 1)s − 1 : 0 ≤ l ≤ r − 1; f∗(a) = f(a) − f(−a) + a = −(2l + 1)s + a; for
a ∈ { s , 2s , . . . , (r−1)s}; f∗(a) = f(a)−f(−a)+a = −a. And hence f∗ is injective as well
as surjective because of {f(a)− f(−a) + a : a ∈ A} = A.Therefore f∗ satisfies condition
(1.2) with σ = 1, which implies that f(a)is a starter map with respect to (Zn, A, 1).
Applying theorem (1.1), proves the claim.

In the following theorem, we construct the orthogonal double covers of Cayley
graphs by Cl ∪v K1,m where m is a positive integer (the union of cycle Cl and a star
K1,m whose center vertex v belongs to that cycle).

Theorem 2.3. Let l,m, n be positive integers such that l < n and 3 ≤ l ≤ 9.Then there
exists an ODC of Cay(Zn, A) by Cl ∪v K1,m.

Proof For 3 ≤ l ≤ 9 we define a suitable starter map with respect to
(Zn, A, 1) in each case of l :

Case 1. l = 3
For n ≥ 5, A = Zn\{0} and for each a ∈ A, define f : A → Zn by f(a) = 0 if

a = 2; f(a) = 4 if a ∈ {n − 2, n − 1} and f(a) = 2 otherwise. From the defination of f(a);
P (0) is isomorphic to the graph G = C3 ∪2 K1,n−4 has edges E(G) = {(f(a), f(a) + a) :
a ∈ A} ∈ B(f). For a ∈ {1, 2, n − 2, n − 1}; f∗(a) = f(a) − f(−a) + a = −a; for otherwise,
f∗(a) = f(a)− f(−a) + a = a. And hence f∗ is injective as well as surjective because of
{f(a)−f(−a)+a : a ∈ A} = A. Therefore f∗ satisfies equation condition (1.2) with σ = 1,
which implies that f(a) is a starter map with respect to (Zn, A, 1). Applying theorem
(1.1), proves the claim.

Case 2. l = 4
For n = 2m, m > 3, A = Z2m\{0,m − 1,m + 1} and for each a ∈ A, define f : A →

Z2m by f(a) = m if a ∈ {1, 2m − 1} and f(a) = 2m + 1 − a otherwise. From the
defination of f(a); P (0) is isomorphic to the graph G = C4 ∪1 K1,2m−7 has edges
E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {1,m, 2m− 1}; f∗(a) = f(a)− f(−a) + a = a;
for otherwise, f∗(a) = f(a) − f(−a) + a = −a. And hence f∗ is injective as well as
surjective because of {f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition
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(1.2) with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1).
Applying theorem (1.1), proves the claim.

For n = 2m + 1, m ≥ 5, A = Z2m+1\{0,m − 1,m + 2} and for each a ∈ A, define
f : A→ Z2m+1 by f(a) = 0 if a = 1; f(a) = 2 if a = 2m and f(a) = m+ 3 otherwise. From
the defination of f(a); P (0) is isomorphic to the graph G = C4∪m+3K1,2m−6 has edges
E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {1, 2m}; f∗(a) = f(a)− f(−a) + a = −a; for
otherwise, f∗(a) = f(a)− f(−a) + a = a. And hence f∗ is injective as well as surjective
because of {f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition (1.2)
with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1). Applying
theorem (1.1), proves the claim.

Case 3. l = 5

For n > 10, A = Zn\{0, 4, n − 4} and for each a ∈ A, define f : A → Zn by
f(a) = 2 if a ∈ {2, n − 1}; f(a) = 6 if a = n − 2 and f(a) = 0 otherwise. From the
defination of f(a); P (0) is isomorphic to the graph G = C5 ∪0K1,n−8 has edges E(G) =
{(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {1, 2, n− 2, n− 1}; f∗(a) = f(a)− f(−a) + a = −a;for
otherwise, f∗(a) = f(a)− f(−a) + a = a. And hence f∗ is injective as well as surjective
because of {f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition (1.2)
with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1). Applying
theorem (1.1), proves the claim

Case 4. l = 6

For n > 7, A = Zn\{0} and for each a ∈ A, define f : A → Zn by f(a) = 4 if
a ∈ {1, n − 2}; f(a) = 0 if a ∈ {2, 3}; f(a) = 6 if a ∈ {n − 3, n − 1}and f(a) = 3 otherwise.
From the defination of f(a), P (0) is isomorphic to the graph G = C6 ∪3 K1,n−7 has
edges E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {1, 2, 3, n − 3, n − 2, n − 1}; f∗(a) =
f(a)−f(−a)+a = −a; for otherwise, f∗(a) = f(a)−f(−a)+a = a. And hence f∗ is injective
as well as surjective because of {f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies
condition (1.2) with σ = 1, which implies that f(a) is a starter map with respect to
(Zn, A, 1). Applying theorem (1.1), proves the claim.

Case 5. l = 7

For n = 2m+ 1, m > 5, A = Z2m+1\{0, 4, 6, 2m− 5, 2m− 3} and for each a ∈ A, define
f : A→ Z2m+1 by f(a) = 1 if a ∈ {1, 2m}; f(a) = 2 if a = 2; f(a) = 6 if a = 2m−1; f(a) = 2m−1
if a ∈ {8, 2m−7} and f(a) = 0 otherwise. From the defination of f(a); P (0) is isomorphic
to the graph G = C7 ∪0 K1,2m−11 has edges E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For
a ∈ {2, 2m − 1}; f∗(a) = f(a) − f(−a) + a = −a; for otherwise, f∗(a) = f(a) − f(−a) + a = a.
And hence f∗ is injective as well as surjective because of {f(a)−f(−a)+a : a ∈ A} = A.
Therefore f∗ satisfies condition (1.2) with σ = 1, which implies that f(a) is a starter
map with respect to (Zn, A, 1). Applying theorem (1.1), proves the claim.

Case 6. l = 8

For n ≥ 14, A = Zn\{0, 2, 4, n − 2, n − 4} and for each a ∈ A, define f : A → Zn by
f(a) = 1 if a ∈ {1, n− 1}; f(a) = 5 if a ∈ {3, n− 3}; f(a) = 3 if a ∈ {5, n− 5}and f(a) = n+ 6− a
otherwise. From the defination of f(a); P (0) is isomorphic to the graph G = C8 ∪6

K1,n−13 has edges E(G) = {(f(a), f(a)+a) : a ∈ A} ∈ B(f). For a ∈ {1, 3, 5, n−5, n−3, n−1};
f∗(a) = f(a)− f(−a) + a = a; for otherwise, f∗(a) = f(a)− f(−a) + a = −a. And hence f∗

is injective as well as surjective because of {f(a) − f(−a) + a : a ∈ A} = A. Therefore
f∗ satisfies condition (1.2) with σ = 1, which implies that f(a) is a starter map with
respect to (Zn, A, 1). Applying theorem (1.1), proves the claim.

Case 7. l = 9

For n = 2m+1, m > 6, A = Z2m+1\{0, 4, 8, 2m−7, 2m−3} and for each a ∈ A, define f :
A→ Z2m+1 by f(a) = 1 if a ∈ {1, 2m}; f(a) = 2m−3 if a ∈ {2, 2m−1}; f(a) = 2 if a = 3; f(a) = 3
if a ∈ {5, 2m− 4}; f(a) = 8 if a = 2m− 2 and f(a) = 0 otherwise. From the defination of
f(a); P (0) is isomorphic to the graph G = C9∪0K1,2m−13 has edges E(G) = {(f(a), f(a)+
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a) : a ∈ A} ∈ B(f). For a ∈ {3, 2m − 2}; f∗(a) = f(a) − f(−a) + a = −a; for otherwise,
f∗(a) = f(a)− f(−a) + a = a. And hence f∗ is injective as well as surjective because of
{f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition (1.2) with σ = 1, which
implies that f(a) is a starter map with respect to (Zn, A, 1). Applying theorem (1.1),
proves the claim. �

In the following theorem, we construct the orthogonal double covers of Cayley
graphs by a caterpillar .

Theorem 2.4. Let r, n, p, q be positive integers such that 2 ≤ r ≤ 6, r < n.Then there
exists an ODC of Cay(Zn, A) by Cr(p, 0, 0, . . . 0, q).

Proof. For 2 ≤ r ≤ 6 we define a suitable starter map with respect to (Zn, A, 1)
in each case of r :

Case 1. r = 2
For n ≥ 8, A = Zn\{0, 3, n− 3} and for each a ∈ A, define f : A→ Zn by f(a) = 0 if

a = 1; f(a) = 1 if a ∈ {2, n− 2}; f(a) = 2 if a = n− 1 and f(a) = n+ 2− a otherwise. From
the defination of f(a); P (0) is isomorphic to the graph G = C2(3, n − 7) has edges
E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {2, n − 2}, f∗(a) = f(a) − f(−a) + a = a;
for otherwise f∗(a) = f(a) − f(−a) + a = −a. And hence f∗ is injective as well as
surjective because of {f(a) − f(−a) + a : a ∈ A} = A.Therefore f∗ satisfies condition
(1.2) with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1).
Applying theorem (1.1), proves the claim.

Case 2. r = 3
For n = 2m, m ≥ 5, A = Z2m\{0, 2, 3, 2m − 3, 2m − 2} and for each a ∈ A, define

f : A → Z2m by f(a) = m + 2 if a ∈ {1,m − 1, 2m − 1} and f(a) = m otherwise. From
the defination of f(a); P (0) is isomorphic to the graph G = C3(2, 0, 2m− 9) has edges
E(G) = {(f(a), f(a)+a) : a ∈ A} ∈ B(f). For a ∈ {m−1,m+1}; f∗(a) = f(a)−f(−a)+a = −a;
for otherwise, f∗(a) = f(a)−f(−a)+a = a. And hence f∗ is injective as well as surjective
because of {f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition (1.2)
with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1). Applying
theorem (1.1), proves the claim.

For n = 2m + 1, m ≥ 5, A = Z2m+1\{0, 1, 3, 2m − 2, 2m} and for each a ∈ A, define
f : A → Z2m+1 by f(a) = m + 2 if a ∈ {2,m, 2m − 1} and f(a) = m + 1 otherwise. From
the defination of f(a); P (0) is isomorphic to the graph G = C3(2, 0, 2m− 8) has edges
E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {m,m+ 1}, f∗(a) = f(a)− f(−a) + a = −a;
for otherwise, f∗(a) = f(a) − f(−a) + a = a. And hence f∗ is injective as well as
surjective because of{f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition
(1.2) with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1).
Applying theorem (1.1), proves the claim.

Case 3. r = 4
For n = 2m, m > 3, A = Z2m\{0,m, } and for each a ∈ A, define f : A → Z2m

by f(a) = 0 if a = 1; f(a) = 2 if a = 2m − 1; f(a) = 1 if a = m − 1; f(a) = 2m − 1
if a = m + 1 and f(a) = m + 1 otherwise. From the defination of f(a); P (0) is
isomorphic to the graph G = C4(2, 0, 0, 2m − 7) has edges E(G) = {(f(a), f(a) + a) : a ∈
A} ∈ B(f). For a ∈ {1,m− 1,m+ 1, 2m− 1}; f∗(a) = f(a)− f(−a) + a = −a; for otherwise,
f∗(a) = f(a)− f(−a) + a = a. And hence f∗ is injective as well as surjective because of
{f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition (1.2) with σ = 1, which
implies that f(a) is a starter map with respect to (Zn, A, 1). Applying theorem (1.1),
proves the claim.

For n = 2m + 1, m > 3, A = Z2m+1\{0,m,m + 1} and for each a ∈ A, define f : A →
Z2m+1 by f(a) = 0 if a = 1; f(a) = 2 if a = 2m; f(a) = 1 if a = m−1; f(a) = 2m−1 if a = m+ 2
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and f(a) = m + 1 otherwise. From the defination of f(a); P (0) is isomorphic to the
graph G = C4(2, 0, 0, 2m − 7) has edges E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈
{1,m−1,m+2, 2m}, f∗(a) = f(a)−f(−a)+a = −a; for otherwise, f∗(a) = f(a)−f(−a)+a = a.
And hence f∗ is injective as well as surjective because of {f(a)−f(−a)+a : a ∈ A} = A.
Therefore f∗ satisfies condition (1.2) with σ = 1, which implies that f(a) is a starter
map with respect to (Zn, A, 1). Applying theorem (1.1), proves the claim.

Case 4. r = 5
For n = 2m, m > 4, A = Z2m\{0,m− 2,m+ 2} and for each a ∈ A, define f : A→ Z2m

by f(a) = m if a ∈ {2, 2m−2}; f(a) = 2 if a ∈ {m, 2m−1} and f(a) = 0 otherwise. From the
defination of f(a); P (0) is isomorphic to the graph G = C5(1, 0, 0, 0, 2m − 8) has edges
E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {1, 2m− 1}; f∗(a) = f(a)− f(−a) + a = −a;
for otherwise, f∗(a) = f(a) − f(−a) + a = a. And hence f∗ is injective as well as
surjective because of {f(a) − f(−a) + a : a ∈ A} = A. Therefore f∗ satisfies condition
(1.2) with σ = 1, which implies that f(a) is a starter map with respect to (Zn, A, 1).
Applying theorem (1.1), proves the claim.

For n = 2m+1, m > 3, A = Z2m+1\{0, 1, 2m} and for each a ∈ A, define f : A→ Z2m+1

by f(a) = 1 if a ∈ {m − 1,m + 1}; f(a) = 2 if a = m; f(a) = 2m − 1 if a = m + 2 and
f(a) = m+ 1 otherwise. From the defination of f(a); P (0) is isomorphic to the graph
G = C5(1, 0, 0, 0, 2m− 7) has edges E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {m−
1,m,m+1,m+2}; f∗(a) = f(a)−f(−a)+a = −a; for otherwise f∗(a) = f(a)−f(−a)+a = a.
And hence f∗ is injective as well as surjective because of {f(a)−f(−a)+a : a ∈ A} = A.
Therefore f∗ satisfies condition (1.2) with σ = 1, which implies that f(a) is a starter
map with respect to (Zn, A, 1). Applying theorem (1.1), proves the claim.

Case 5. r = 6
For n > 10, A = Zn\{0, 4, n− 4} and for each a ∈ A, define f : A→ Zn by f(a) = 5 if

a ∈ {1, n−1}; f(a) = 0 if a ∈ {2, n−2}; f(a) = 1 if a ∈ {3, n−3} and f(a) = n+2−a otherwise.
From the defination of f(a); P (0) is isomorphic to the graph G = C6(1, 0, 0, 0, 0, n − 9)
has edges E(G) = {(f(a), f(a) + a) : a ∈ A} ∈ B(f). For a ∈ {1, 2, 3, n − 3, n − 2, n − 1};
f∗(a) = f(a) − f(−a) + a = a; for otherwise, f∗(a) = f(a) − f(−a) + a = −a. And
hence f∗ is injective as well as surjective because of {f(a) − f(−a) + a : a ∈ A} =
A. Therefore f∗ satisfies condition (1.2) with σ = 1, which implies that f(a) is a
starter map with respect to (Zn, A, 1). Applying theorem (1.1), proves the claim.
�

3 Conclusion

In conclusion, we pose the following conjectures:
Conjecture 1. we conjecture that if l,m, n are positive integers where n > l and

n > m there is an ODC of a Cayley graph Cay(Zn, A) where |A| = m by Cl ∪v K1,m−l.
Conjecture 2. we conjecture that if m,n, r, i are positive integers where n > r,

n > m and n > i there is an ODC of a Cayley graph Cay(Zn, A) where |A| = m by
Cr(i, 0, 0, . . . 0,m− (i+ r − 1)).
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