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ABSTRACT

Aims: An analysis is presented to investigate the effects of suction and thermal radiation
on the unsteady convective flow and heat transfer in a third grade fluid over an infinite
vertical plate. The plate is porous to allow for possible wall suction.

Methodology: The governing time-based coupled partial differential equations, subjected
to their boundary conditions, are solved numerically by applying an efficient and
unconditionally stable Crank-Nicolson finite difference scheme. Numerical calculations are
carried out for different values of dimensionless parameters in the problem.
Results: An analysis of the results obtained establishes that the flow field is appreciably
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influenced by suction and viscoelastic parameters.

Conclusion: An increase in the suction parameter is observed to decrease the fluid
velocity. The result also shows that the temperature distribution decreases with an
increase in the thermal radiation parameter.

Keywords: Suction; thermal radiation; heat transfer; porous plate; third grade fluid.

NOMENCLATURES

Alphabetical Symbols

A4,,4,, 4, Rivlin-Ericksen tensor

B Planck’s constant

C » Specific heat at constant pressure

Gr Thermal Grashof number

g’ Acceleration due to gravity

h Step size

1 Identity tensor

i,j Grip points along y-direction and t-direction
n,a,b Numerical constants

Pr Prandtl number

p Scalar pressure

r Convergent term

T' Ambient temperature

T v[ Temperature at the wall/plate

T! Free stream concentration

t't Local time, dimensionless time

u',v' Velocity components in x and y directions

u Fluid velocity

U(t) Initial moving velocity

Vs Suction velocity

X,y Coordinate axes

X, External force in i"" direction

Greek Symbols

(04 Dimensionless second grade viscoelastic parameter
a,,a, Second grade viscoelastic material constant
p Dimensionless third grade viscoelastic parameter

BBy By Third grade material constant
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Br Volumetric coefficient of thermal expansion
0 Dimensionless temperature
772 Absorption coefficient
A Frequency
o Radiation absorption coefficient
K Thermal conductivity
U Dynamic viscosity
1% Kinematic viscosity
0] Suction parameter
Y2 Fluid density
T’ Stress tensor
Symbols
\Y Gradient operator
D
— Material derivative
Dt
0 s —
— Partial time derivative
ot
Subcripts

w Surface condition
p Constant pressure
00 Free stream condition

1. INTRODUCTION

Non-Newtonian fluids have been a subject of great interest to researchers because of their
various industrial and engineering applications. In contrast to the viscous fluids, the non-
Newtonian fluids cannot be described by the single constitutive relationship between the
stress and the strain rate. In a non-Newtonian fluid, the relation between the shear stress
and the strain rate is nonlinear and can even be time-dependent. A third grade non-
Newtonian fluid exhibits shear thinning/thickening effects. A third grade fluid is also capable
of describing the normal stress differences that is common to second grade fluids. Shear
thickening fluids are used in all wheel drive systems that utilize a viscous coupling unit for
power transmission. On the other hand, an example of shear thinning fluids is paint.
Fundamental areas of applications of these fluids are found in colloidal ceramics processing,
plastic manufacture, enhanced oil-recovery systems, lubricants containing polymer additives,
biological fluids, food processing, etc. This prevalence in application is due to diverse
features of such fluids in nature and industrial applications. Generally, the mathematical
problems in third grade non-Newtonian fluids are more complicated because of their high
nonlinearity and higher-order nature of differential equations than those in Newtonian fluids.
Despite these complexities of the non-Newtonian fluids, scientists and engineers are
engaged in the third grade non-Newtonian fluid dynamics.
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Erdogan [1] analyzed the flow of a third grade fluid in the vicinity of a plane wall suddenly set
in motion. In his observation for a short time, a strong non-Newtonian effect was present in
the velocity field. However, for a long time, the velocity field became Newtonian. The
problem of peristaltic flow of MHD third order fluid in a planar channel with slip condition was
investigated Hayat et al. [2]. The pumping and trapping phenomena were examined in the
presence of MHD and slip effects. They derived the solutions under long wavelength and low
Reynold’s number approximations. Hayat et al. [3] also gave an analytical solution to the
flow of a third grade fluid bounded by two parallel porous plates using homotopy analysis
method (HAM). They made a comparison with the exact numerical solution for various
values of the physical parameters.

Sajid and Hayat [4] also proposed a non-similar series solution to two-dimensional boundary
layer flow of a third grade fluid over a stretching sheet. Sajid et al. [5] considered heat
transfer characteristics in an electrically conducting third grade fluid. They employed non-
similar analytic solution for MHD flow and heat transfer in a third order fluid over a stretching
sheet. The series solution to the unsteady boundary layer flow of a third grade fluid was
developed by Abbasbandy and Hayat [6]. Siddiqui et al. [7] investigated the heat transfer
flow problem of a third grade fluid between two heated parallel plates for the constant
viscosity model. Three flow problems of Couette flow, plane Poiseuille flow and plane
Couette-Poiseuille flow were examined by them. They employed the homotopy perturbation
technique to obtain their results. Hayat et al. [8] studied exact solutions of the thin film flow
problem for a third grade fluid on an inclined plane. They compared their results with those
of Siddiqui et al. [7] and concluded that their solutions were valid for large values of the
material parameter.

Analyses of flow scenario on porous surfaces find applications in extrusion of plastic,
petroleum engineering, contamination technologies, biotechnology and non-Newtonian
chemical materials processing. One can refer to some useful works of Hayat and his co-
workers [9-15], regarding the flow and heat transfer in a third grade fluid with different
geometries and diverse physical characteristics. Sahoo [16] numerically analyzed the
problem of Heimenz flow and heat transfer of a third grade fluid using the finite difference
technique with Richardson’s extrapolation. Also, Ellahi et al. [17] presented the heat transfer
analysis on the laminar flow of an incompressible third grade fluid through a porous flat
channel. They provided analytical solution for temperature distribution for various values of
the controlling parameters, compared the results obtained with the numerical solution and
the comparison showed the fact that the accuracy was remarkable. Sahoo and Do [18]
investigated the effects of slip on sheet-driven flow and heat transfer of a third grade fluid
past a stretching sheet. They employed an effective second order numerical scheme of finite
difference technique with Broyden’s method and addressed the issue of paucity of boundary
conditions involved.

Furthermore, Ellahi and Hamed [19] numerically made an interesting study for the steady
non-Newtonian flows with heat transfer, MHD and nonslip effects. Nayak et al. [20] studied
the flow and heat transfer of a third grade fluid past a porous vertical plate. They obtained
solutions through a numerical approach. Sibanda et al. [21] proposed the problem of heat
transfer flow of a third grade fluid between parallel plates using the spectral homotopy
analysis method. Explicit analytical expressions for the non-linear momentum and energy
equations were solved using the homotopy perturbation method. Recently, Hayat et al. [22]
carried out an analysis for the characteristics of melting heat transfer in the boundary layer
flow of third grade fluid in a region of stagnation point past a stretching sheet. They
developed the series solutions by homotopy analysis method and compared their results
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with the previous studies. Baoku et al. [23] reported the solution to the problem of MHD
partial slip flow, heat and mass transfer of a viscoelastic third grade fluid over an insulated
porous plate embedded in a porous medium. They presented numerical experiments of
midpoint scheme with Richardson’s extrapolation to solve the governing coupled highly
nonlinear ordinary differential equations of momentum, energy and concentration. They also
showed the effects of the various physical parameters on the velocity, temperature and
concentration distributions.

The influence of thermal radiation on flow and heat transfer processes is of paramount
interest in physics and engineering, particularly in the design of many advanced energy
conversion systems operating at high temperature (Seddeek [24]), in power generator
system, cooling of nuclear reactors, high temperature plasma and in controlling heat transfer
in polymer processing industry where quality of the final products largely depends on the
heat controlling factors. Thermal radiation, within such energy conversion systems, occurs
because of the emission by the hot walls and working fluid. Plumb et al. [25] studied the
effect of horizontal cross-flow and radiation on natural convection from vertical heated
surface in saturated porous media. Rosseland diffusion approximation was utilized for the
convective flow with radiation. Hossain and Takhar [26], Takhar et al. [27], Hossain et al. [28]
extensively investigated the effect of radiation on heat transfer problems.

Mansour [29] also analyzed the combined forced-convective flow over a flat plate immersed
in porous medium of variable viscosity. Sajid and Hayat [30] examined the problem of
radiation effects on the flow over an exponentially stretching sheet and solved the problem
analytically using the homotopy analysis method. The numerical solution for the problem
was then provided by Bidin and Nazar [31]. Anand et al. [32] critically observed radiation
effects on an unsteady MHD free convective flow past a vertical porous plate in the presence
of soret effect. Seethamahalakshmi et al. [33] investigated the unsteady MHD free
convective flow and mass transfer near a moving vertical plate in the presence of thermal
radiation. Some other research works that have been carried out on this area are those of
Makinde et al. [34], Srinivas and Muthuraj [35] and Singh et al. [36]. Lastly, Baoku et al. [37]
examined the influence of thermal radiation on a transient magnetohydrodynamic Couette
flow of a high Prandtl number fluid with temperature-dependent viscosity through a porous
medium. They employed an implicit finite difference scheme of Crank-Nicolson type to
investigate the effects of pertinent flow parameters.

The aim of this study is to investigate the suction and thermal radiation effects in a
thermodynamically compatible viscoelastic third grade fluid on unsteady flow and convective
heat transfer over an infinite porous plate which is set in motion with an oscillating
temperature applied to the plate. The governing coupled nonlinear partial differential
equations with sufficient initial and boundary conditions are solved by employing Crank-
Nicolson finite difference scheme with modified Newton’s method. The present problem with
radiative heat flux has not been considered in the scientific literature to the best knowledge
of the author, despite its important applications in industry and engineering.

2. MATHEMATICAL ANALYSIS

Consider the transient flow and heat transfer of an incompressible fluid of a third grade past
infinite porous plate. The x'- axis is taken along the plate vertically upwards and y' - axis is

normal to it as shown in Fig. 1. The plate is suddenly set in motion in its own plane with a
velocity U(t). An oscillating temperature is assumed to be applied on the plate in the
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presence of thermal radiation. It is also presumed that the plate is infinitely long. Thus, the
physical variables are functions of y’ and t" only. Hence, from the continuity equation, the
velocity field is described as:

u'=u'(y,t"), v =-V, (1)

Where u' and V' are the velocities of the fluid along x' and )’ axes respectively and

V, > 0 indicates suction velocity.

X
T=T,
v=V,

Fig. 1. Schematic diagram and coordinate system
2.1 Flow Analysis
The constitutive equation of an incompressible third grade fluid as given by Coleman and

Noll [38] is:

3
t'=-pl+ )5, )
i=1
Where S, = pd,, S, = a, A, + a, A’ and S, = B, A, + B,(A, A + A A, )+ p,(trd, )4, .
u,a,,a,, B, B,, B, being material constants, 7' the stress-tensor, p the pressure, I the

identity tensor and A, represents the kinematical tensors defined by, A4, =1,

A =Vu+(Vu)', 4, :(%-i-u-VjAn +Vu-A, +(Vu-4,), n=1,2.

Where Y is the velocity and ! is the time. A detailed thermodynamic analysis of the model,
represented by (2) is given by Fosdick and Rajagopal [39]. It was shown that if all the
motions of the fluid are to be compatible with thermodynamics in the sense that these
motions meet the Clausius-Duhem inequality and if it is assumed that the specific Helmholtz
free energy is a minimum when the fluid is locally at rest, then

(20, 20, |a, +a,|<\24uB, , B, =5, =0, ;20 and
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' = —pl + A, + oy A, + o, A + By(trd} )4, 3)

The stress components (2) by virtue of equation (1) are:

ou' ? ou' o*u'
Ty =—p+a2 = +2 2 A A~
oy oy’ oy'ot

2
ou' ou' o*u'

.. =—p+2a,+a,)] — | +(608,+26,)———,

y'y p ( 1 Z{ayyj ( ﬂl ﬁ2)ayr ayratr
£, =—p, (4)

ou' o*u' o*u' ou' ’ o*u'

T.,,= —a,V +a +2 + — | + —,

X'y /uay, 170 8)/’2 layyaty (ﬂZ 133)(8er ﬂl ayratrz

sz = 2-z'y = 0

Where Tx/)/l - Ty’xU Tyr =Ty, Ty =Ty

Inserting the stress components using (3) and velocity given by (1) in the equation of motion:
Dy,
pﬁz—ri+pX,.+r,.jqj (5)

Where D denotes the material derivative and pX; is the external force per unit mass in i"
Dt

direction, the governing equation of free convective flow field under the physical conditions
of the problem is obtained as:

ou’ ou’ o*u' ou' ou' ou'\ 8%’
ol Ly Ao +a -V +6, 2L
[(%' 0 8y') y@y’z 1(8)/'28!’ 0 6y’3J 3(8}/'} oy (6)

+pﬂrg(T’_T;)

2.2 Heat Transfer Analysis
Neglecting viscous dissipation, the heat transport equation is obtained as:

DT
oC, o KV°’T -Vq, 7)
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Assuming the conditions of optically thin environment, the radiative heat flux, aq/ay, in the

0

a !
energy equation takes the form Takhar, et al. [27]: a—q,:4772(T'—T’) where
y

F OB
n’ :J(&lﬁj; n*, &, A and B are respectively absorption coefficient, radiation
0

absorption coefficient, frequency and Planck’s constant.
The governing equation of temperature flow field is obtained as:

oT' oT' o°T’ 5
A 7 I —4n*(T' -T! 8
pCp(at, , ay,} o (r'-17) (8)

In the energy equation (7), the term representing viscous and joule dissipation are assumed
to be neglected as they are really very small in slow motion free convective flows.

Initial and boundary conditions for the flow field are:

t'<0:y=0,u'"=0,T"=0,

U2n+l

n

\%

t'=0:u'=U(')= " when y' =0

T'=T! +(T. =T, )cosh't', when y' =0 9)

u'=0, %=O,when y' =

T'">T), when y' — o

. . . ' U2”+| a't grn H . . .

For computing the solution, choosing U(t )= —né t where v =~ is the kinematic
yoj

viscosity and introducing the following dimensionless variables:

u' U a'v t'U? b'v V.

u:—,yzy—,az—z,t= ,b:—z,a)z—0 (10)
U v U v U U

Equation (6), with the similarity transformation for scaling temperature in heat transfer
analysis (T" = (T —T!)+T_), becomes:

1300



Physical Science International Journal, 4(6): 1293-1310, 2014

Vo KU o U e _a WU O
vo v oy pvioy: pvieyor p v ooy

7 2 2
v LU [ou) U s o(r T )+ T —T!]
p V4 ay ayz T w © © ©
ou Voou_pOu U ou aU” Vo0

_a Uy pvdy’ p oo pviU®»

B, U*(ou o v rr o
p v \oy) oy U

(11)

Similarly, equation (8) becomes:

U? 060 V,U 00
C = (-1 )=2-22pC (T -T )=
o, U -1y Y e 1)
Uu?,., ..,\0°0 A
- sz (1! -1) - 4T, -T. )%
2 2
00 V,00_ x 20 4V 12

ot U(’iy_,onvéy2 pC,U?

Using the above equations (11-12), equations (6) and (8) reduce to:

ou ou 0’u o’u o’u ou ’ o0u
——0—=—Fta_—G_——wa_—+f| — >+ Gro (13)
ot oy Oy oy’ot oy ov ) oy
2
0 hry R (14)
ot oy Proy
2 4 T c ,
whereozzalU2 ,,B:6'B3l§ ,Gr:ﬂgv( . ”),Pr:Vp LR, = 4n v2
PV pv U K pCpU

Using the dimensionless variables in (10), the initial and boundary conditions become:
t<0:y=0,u=0,0=0;
t=0:u=U(t)=1"t", when y=0;
6 =cosbt, when y=0; (15)
ou

u=0,—=0,60=0; when y —» .
oy
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3. NUMERICAL SIMULATION

The governing nonlinear coupled partial differential equations (13) and (14) with the initial
and boundary conditions (15) are solved by employing Crank-Nicolson finite difference
scheme which has been discussed by Ganesan and Palani [40], Conte and De Boor [41],
Jain [42] and Baoku et al. [37]. Therefore, the governing equations based on the unsteady
state conditions are discretized using the method. The finite difference equations
corresponding to these governing equations are given as:

orh r o oar r orh a oar
Upj —U; ;= TJFEJF?_T Uisjn T E_TJF?_T i1,
roo

+a)—rh+£u +———rh 2 —2 TN LY
4 2Ty TS 2 Ji AL e

(04 COOH’(

+? Uy i

+U.

i+2,j+H

U, _2“1'—1,./ +2“i+1,j U ) (16)

—2 ,Jj+H

N Br (”i+1, j+1)z +(ui—l, j+l)z +(”i+1 j)z +(”i—1, j)z —2u,,, i ja +2u,, i
32h| —2u —2u +2u, —2u.. u

i1, M i1, Ui, i, Ui

Hit,  —2u U )+r Gri’o, ;

i-l,j 1—1 J—1

( H—l J+H 2“ ]+1

R,rh’
‘9i i+ orh +L ‘9i+| T L_a)_’”h 0[4 i+1 2_7”+ el ‘9i j+1
/ 2 Pr / Pr 2 / Pr 2 /

2
N (1 B Rd;h JHI',_/

Where i designates the grip point along y -direction, j along ¢ -direction and » = A%Z :

1 JH

(17)

The numerical finite difference method of Crank-Nicolson type does not restrict the value of
r to be chosen. Hence, the equations of motion and energy are reduced to system of

algebraic nonlinear coupled-equations. The mesh size 4 is 0.05 with time step ¢t =0.1.
The values of u(y,t) and G(y,t) are known at all grip points when ¢ =0 from the initial
conditions. Modified Newton’s iterative technique is then used to solve the system of
nonlinear algebraic equations. Computations are carried out by moving along Y _direction.

After computing values corresponding to each ! at a time level, the values at the next time
level are determined in similar manner.

The implicit nature of Crank-Nicolson method is unconditionally stable and has local
truncation error O[(At)z,hZJ which tends to zero as Af and /” tend to zero. There is no
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drawback of conditionally stability from one level to the next. The implicit method gives
stable solutions and requires iterative procedure which was done at step forward in time
because this problem is an initial-boundary value problem with a finite number of spatial grip
points. Though, the corresponding difference equations do not automatically guarantee the
convergence of the mesh 4 — 0. To achieve maximum numerical efficiency, the tridiagonal
procedure was used to solve the two point conditions for (14) and four point conditions for
(13). The above procedure was transformed into Maple code as described by Heck [43]. The
convergence of the process was quite satisfactory and the numerical stability of the method
was guaranteed by the implicit nature of the scheme. Hence, the scheme is consistent;
stability and consistency ensure convergence.

4. DISCUSSION OF RESULTS

The investigation focuses on the flow fields when a vertically upward porous plate suddenly
starts moving with a velocity in its own plane and temperature field, assumed to be
oscillating, is applied to the plate in the presence of suction and thermal radiation. The
governing equations of the flow and temperature fields are solved using Crank-Nicolson
implicit finite difference scheme with modified Newton’s method and approximate solutions
are obtained for the velocity and temperature profiles. The effects of the pertinent
parameters on the flow and temperature fields are analyzed and discussed with the help of
velocity profiles (Figs. 2 - 6) and temperature profiles (Figs. 7-9).

4.1 Velocity Profiles

The effects of various parameters on the velocity field are investigated through simulations
using the method above and results are shown as graphs for two major cases; n=0.8, i.e.

when the plate starts moving with variable accceleration and 7 =1, i.e. when the plate starts
with a constant acceleration. Fig. 2 analyzes the influence of suction parameter @ for cases

n=0.8 and n=1. It is observed that an increase in the suction parameter @ decreases

the fluid velocity at any point of the fluid, and higher velocity profile is attained when n = 0.8
. This implies that suction which is the removal of fluid from the domain via the porous plate
can be used to control the fluid dynamics. Thus, suction enhances adherence of the fluid to
the plate which in turn retards the flow. This observation is in conformity with that of Beg et

al. [44]. Figs. 3 and 4 depict the effect of viscoelastic parameters & and S on the velocity
field. It is observed that as the viscoelastic parameter « increases, the velocity field
increases. The influence of £ on the velocity profile is noticeable when there is small
increment in time interval. An increase in [ corresponds to a slight growing in the velocity

profiles for both cases of constant and variable accelerations. Hence, the viscoelastic
parameters are seen to boost the velocities to the plate surface with suction present. This
observation agrees with that reported by Beg et al. [44].

As the free convection current exists by virtue of temperature difference (T'—TCX')), the
v
Grashof number Gr can realistically take any real number WhenOSbSE. Gr>0

corresponds to cooling of the plate while G <0 corresponds to heating of the plate due to
free convection current. Therefore, both positive and negative values have been chosen for
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Grashof number. An increase in Grashof number G7 increases the fluid velocity near the
plate when the plate is being heated for both 7 =0.8 and n =1 in Fig. 5. However, when
the plate is being cooled, the fluid velocity decreases as the Grashof number increases.

Also, Fig. 6 shows that an increase in Prandtl number Pr increases the fluid velocity in both
cases of constant and variable accelerations. It is worth mentioning that these findings on

Gr and Pr are in consonant with those of Sahoo [45].

‘o= 3_ n=0_8

- ' = 10_ n=1_.0

- + 'm= 7. n=08"
* ' = 5. n=1.0"

- ' = 10. n=0_8

o 'm= 3. n=1.0

< ' = 7. n= 1.0

o ' = 5. n=0_8

Fig. 2. Effect of @ on velocity field when 7 =0.8 and n =1 with o =1, =1,
Gr=10, Pr=10

[ |
&

wno

gaapRnann
.-

FRoRbLnEO
RN

= T =
=oll==ooll

3+ 0o &

Fig. 3. Effect of « on velocity field when n=0.8 and n =1 with o =5, f =1,
Gr=10, Pr=10
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- - 'B=0.05.n= 0.8
.3 - 'B=5.n =08
= 'B=0.1m = 0.8"
o2 + ‘B=22.1n = 10"
o1
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Fig. 4. Effect of S on velocity field when n=0.8 and n=1 with =1, =35,

Gr=10,Pr=10
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Fig. 5. Effect of Gr on velocity field when n=0.8 and n =1 with o =1, f =1,

ow=10, Pr=10
o_18 —
0.16 -]
o_14 —
o122 o "Pr=2. n1=—1"
E = "Pr=2. n=0_8"
o.10 ] - "Pr =7, m= 1"
- - - "Pr=10.n = 0.8
o008 ] = Pr=5.mn=1"
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Fig. 6. Effect of Pr on velocity field when n=0.8 and n =1 with o =1, =1,
Gr=10, =5
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4.2 Temperature Fields

The temperature of the flow field suffers a substantial change with the variation of the flow
parameters such as suction parameter @, Prandtl number Pr and thermal radiation

parameter R,. These variations are shown in Figs. 7-9. Fig. 7 expresses the influence of

suction parameter @ on the temperature field. A growing @ is found to decrease the
temperature of the flow field at all points in the domain. Similarly, it is observed in Fig. 8 that

the effect of increasing Pr reduces the temperature field. This observation on Pr quite
conforms to that reported by Sahoo [45]. Lastly, it is evident from Fig. 9 that at lower value of

R, , there is little or no influence of R, on the temperature profile whereas at higher value of
R, , the effect of R, on temperature distribution is noticeable. Hence, the consequence of

increasing R, has the influence of decreasing the temperature of the flow field.

4 ¢ 0 ¢
ggge
[T I
'—‘Uf-\..:l

Il

=}
=
TR A T T T T I N B

Fig. 7. Effect of @ on temperature field when R, =5 and Pr=10
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<, - "Pr = 0.5"
1 °. = "Pr = 0.6"
o2 L=t = |
-*
. {>El
=
0.1 ] e
=]
. P
o %—j
] 1 2 3 4
-

Fig. 8. Effect of Pr on temperature field when R, =5 and v =5
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Fig. 9. Effect of R, on temperature field when @ =5 and Pr=10

5. CONCLUSION

In this study, the influence of suction and thermal radiation is investigated on the transient
flow and heat transfer of a third grade viscoelastic fluid through a vertical porous plate. An
implicit finite difference numerical scheme of Crank-Nicolson type is employed to discretize
the system of coupled partial diffential equations and modified Newton’s method is used to
solve the system of algebraic nonlinear equations obtained after discretization. The above
scheme is transformed into the Maple code to simulate the solutions of the problem. This
solution procedure is valid for all values of viscoelastic parameters unlike perturbation and
power series methods that are valid for small values of viscoelastic parameters.

Therefore, results of physical interest on the velocity and temperature distribution of the flow
field are summarized below:

» The fluid velocity increases when the value of the second grade viscoelastic
parameter « increases. Also, it increases with an increase in the third grade
viscoelastic parameter £ for small increment in the time interval.

» The suction parameter @ has the influence of reducing the velocity and temperature
field.

» As the Prandtl number increases, it also increases the velocity field but it reduces
the temperature distribution of the flow field.

» The fluid velocity increases when the plate is being heated and decreases when the
plate is being cooled with higher velocity profile noticeable when the plate starts
moving with variable acceleration.

> The effect of increasing the thermal radiation parameter R, decreases the
temperature distribution of the flow field.
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