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ABSTRACT

Steady, laminar, incompressible and fully developed fluid flow of two immiscible
electrically conducting fluids between two infinite inclined parallel plates has been studied
when the two plates are maintained at different constant temperatures and . A
constant magnetic field B0 is applied transverse to the plates and a constant electric field
E0 is applied across the channel. The whole system is rotated at an angular velocity about
an axis perpendicular to the channel plates. The transport properties of the two fluids are
taken to be constant. Approximate solutions for temperature, primary and secondary
velocity distributions are obtained using regular perturbation method because the resulting
equations are coupled and non-linear. It is observed that in the short circuit case (E = 0),
as rotation increases both the primary velocity and temperature distribution decrease
where as secondary velocity oscillates. It is also observed that for the open circuit case( = ±1) as the rotation increases the secondary velocity becomes oscillatory. In case of= −1, the increasing rotation tends to accelerate the primary velocity, but in case of
positive E, it accelerates the primary velocity in the opposite direction. For the open circuit
case (E = ±1), as the rotation increases the temperature decreases for small values of
rotation and increases for large rotation.

Keywords: Rotating fluids; heat transfer; magnetohydrodynamics; inclined channel; two-
phase flow.
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NOMENCLATURE

B0 :magnetic field strength
:ratio of the coefficients of thermal expansion,( / )
:specific heat at constant pressure

E :Electric load parameter,[ (⁄ )]
E0 :Electric field strength
Ec :Eckert number, ( ) / ∆
g :acceleration due to gravity
h :ratio of the heights of the two phases, (ℎ /ℎ )
Gr :Grashof number, [g ℎ ∆ /ν ]
K :ratio of the thermal conductivities, ( / ), :thermal conductivities of phase I and II respectively

:Hartmann number, ℎ ( / )
:ratio of the viscosities, ( / )
:ratio of the densities ( / )
:non dimensional pressure gradient, [ℎ ( / )/ ]
:Prandtl number, /
:Reynolds number, [( ℎ /ν )]
:Rotation parameter, ℎ ⁄
:temperature, :temperature of the boundaries
:primary velocity
:secondary velocity
:average velocity. , :space coordinates

Greek Symbols

β :coefficient of thermal expansion
:electrical conductivity∅ :angle of inclination
:density
:kinematic viscosity
:viscosity
:product of Prandtl number and Eckert number ( . )∆ :difference in temperature [ − ]
:non dimensional temperature, [( − )/∆ ]

Ω :angular velocity

Subscipt

:value for phase
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1. INTRODUCTION

The phenomenon of magnetohydrodynamic two-phase flow between two parallel plates with
heat transfer aspects is of considerable importance in engineering and technology. In the
chemical industry two-phase flows occur in both heat exchange equipment, gas-liquid
contactors and chemical reactors such as packed column, spray and bubble columns,
agitated vessels etc. Another important area where our knowledge of two-phase flow is vital
is in nuclear reactor design (water-cooled reactors and sodium-cooled fast breeder reactors
etc). Romig [1] studied the influence of electric and magnetic fields on heat transfer to
electrically conducting fluids. Rudraiah et al. [2] analyzed nonlinear magnetoconvection and
its applications to solar convection problems. Shail [3] studied the two-phase flow between
two parallel insulated plates in which one phase being electrically conducting and the other
phase is electrically non-conducting. Lohrasbi and Sahai [4] studied the MHD two-phase flow
with heat transfer aspects in a horizontal channel in which one phase being electrically
conducting and the other phase is electrically non-conducting. Malashetty and Leela [5]
carried out a theoretical study on MHD heat transfer in two fluid flow for short circuit case.
Subsequently, Malashetty and Leela [6] analyzed MHD heat transfer in two-phase flow by
assuming that the fluid in both regions to be electrically conducting for the open circuit case.
Raju and Murty [7] studied the hydromagnetic two-phase flow and heat transfer through two
parallel plates in a rotating system for the open circuit case. Chauhan and Rastogi [8,9]
discussed Hall current and heat transfer effects on  MHD flow and MHD couette flow in a
channel partially filled with a porous medium in a rotating system. Seth et al. [10] presented
the Hartmann flow in a rotating system in the presence of inclined magnetic field with Hall
effects. Recently, Raju and Valli [11] have studied the MHD two-layered unsteady flow and
heat transfer through a horizontal channel in the presence of an applied magnetic and
electric fields in a rotating system. In the present problem, hydromagnetic two fluid flow with
heat transfer aspects between two infinite inclined parallel plates in a rotating frame of
reference is investigated in the presence of a uniform electric field.

2. FORMULATION OF THE PROBLEM

The geometry under consideration consisting of a steady, laminar and fully developed two
fluid magnetohydrodynamic convective flow driven by a constant pressure gradient
 xp  between two infinite inclined parallel plates making an angle ∅ with the
horizontal. Fig. 1. illustrates the physical configuration. A magnetic field of uniform strength

is applied normal to the plates and the uniform electric field is applied across the
channel. The whole system is rotated with an angular velocity Ω in a counter-clockwise
direction about an axis normal to the plates. The regions 0 ≤ ≤ ℎ and −ℎ ≤ ≤ 0 are
occupied by two different electrically conducting incompressible fluids with different
densities, viscosities, thermal and electrical conductivities. The transport properties of both
fluids are taken to be constant.

With these assumptions, the governing equations of motion and energy for both phases are:
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Fig. 1. Physical configuration

where are the primary and secondary velocity components along x and z
directions respectively, Ti is the temperature, βi is the coefficient of thermal expansion, g is
the acceleration due to gravity.

“By the addition of electromagnetic field, the fluid and the thermometric boundary conditions
are unchanged. The no-slip condition demands the vanishing of velocity at the wall. In
addition to the above conditions, the fluid velocity, shear stress, temperature and heat flux
must be continuous across the interface”.

The boundary and interface conditions on primary and secondary velocity distributions are:

;0)(,0)( 1111  hwhu );0()0(),0()0( 2121 wwuu  ;0)(,0)( 2222  hwhu (4)
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Since the walls are maintained at constant different temperatures Tw1 and Tw2 at y = h1 and
y = -h2 respectively, the boundary conditions on T1 and T2 are as follows:
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In making these equations dimensionless, the following transformations are used:
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“Here Gr is the Grashof number, Ec is the Eckert number, Pr is the Prandtl number, Re is
the Reynolds number, M is the Hartmann number, P is the non-dimensional pressure
gradient and is the average velocity”. With the above non-dimensional quantities, the
governing equations (1), (2) and (3) become:
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Here A = bmnh , B = msh , C = mh , D = K/m, F = Kh s (11)

and A, B, C, D and F are all equal to 1 for phase-I.

The non-dimensional forms of the boundary and interface conditions from (4) to (6) will
transform as:

;0)1(;0)1();0()0();0()0(;0)1(;0)1( 22212111  wuwwuuwu (12)

.011 2121  yat
dy
dw

mhdy
dwand

dy
du

mhdy
du

(13)



Physical Science International Journal, 4(9): 1260-1279, 2014

1265

01,0)1(),0()0(,1)1( 21
2211  yat

dy
d
hKdy

d 


. (14)

The asterisks have been dropped for simplicity.

Further writing 111 iwuq  and 222 iwuq  , (15)

equations (8), (9) and (10) can be written in complex form as:
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which are to be solved subject to the boundary and interface conditions:
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3. SOLUTIONS

The governing equations of motion (16) and energy (17) are to be solved subject to the
boundary and interface conditions (18) and (19). Due to the inclusion of the dissipation
terms, the equations are coupled and non-linear and the solutions of which are obtained
using perturbation technique. Since the Eckert number is of order 10-5 and is very small, the
product Pr Ec (=ε) is very small and is used in the regular perturbation method. The
solutions are assumed in the following form:

......),(),(),( 1100  iiiiii qqq  (20)

where qi0, θi0 are solutions for the case ε equal to zero. qi1, θi1 are perturbed quantities
relating to qi0, θi0 respectively. Substituting the above solutions in the equations (16), (17)
and then equating the coefficients of like powers of ε to zero, we get the zeroth and first
order equations as follows:
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3.1 Zeroth Order Equations
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3.2 First Order Equations
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The corresponding boundary conditions (18) and (19) reduce to:
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We note that q10 = u10 + iw10 , q20 = u20 + iw20 , q11 = u11 + iw11 and q21 = u21 + iw21. (29)

Solutions of the zeroth order equations (21) and (22) using boundary conditions (25) and
(26) are as follows:
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Solutions of the first order equations (23) and (24) using boundary conditions (27) and (28)
are:
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The constants involved in equations from (32) to (41) are not given for the sake of brevity.
Solutions of zeroth and first order equations from (21) to (24) are solved numerically, fixing
some of the parameters namely P=-5, b=1, Re=5, n=1.5 and K=1. The varying parameters
are M, Gr, Φ, m, h, s and R. As the zeroth order solutions are linear, only first order
temperature profiles are drawn. This shows that the heat transfer up to the zeroth order is
only due to the conduction. In the figures., all the other parameters except the varying one
are chosen from the set (M, Gr, ∅, m, h, s, R) = (2, 5, 30º, 0.5, 1, 2, 2).

4. CONCLUSIONS

Magnetohydrodynamic two fluid flow with heat transfer aspects in an inclined channel is
studied analytically. The resulting differential equations are solved using regular perturbation
method for obtaining approximate solutions for temperature, primary and secondary velocity
distributions.

The effect of rotation parameter R and the electric load parameter E on primary and
secondary velocity distributions is discussed in the two cases E=0 and E=±1. The short
circuit case (E=0) for both the velocities is considered in the Figs. 2 and 3. The open circuit
case (E=±1) for primary velocity is considered in Figs. 4, 5 and the same case for secondary
velocity is shown in Figs. 6 and 7. It is observed that for E=0 the effect of increasing rotation
parameter is to decrease the primary velocity distribution. But for E=0, as the rotation
increases the secondary velocity oscillates. In the case E=-1 the increasing rotation tends to
accelerate the primary velocity but in case of positive E, it accelerates the primary velocity in
the opposite direction. In the open circuit case (E=±1), as the rotation increases the
secondary velocity becomes oscillatory. Figs. 8 and 9 represent the effect of electric load
parameter E and the ratio of viscosities m on primary and secondary velocity distributions
respectively. In the case E=1, both primary and secondary velocities decrease for increasing
values of m where as in case of negative E, both the velocities increase as m increases. The
effect of electric load parameter E and the Hartmann number M on primary and secondary
velocities is shown in Figs. 10 and 11 respectively. In case of negative E, as M increases,
primary velocity increases but secondary velocity decreases. In the case E=1, as M
increases primary velocity decreases and secondary velocity oscillates.

Fig. 2. Primary velocity profiles for different values of rotation parameter R for E=0
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Fig. 3. Secondary velocity profiles for different values of rotation parameter R for E=0

Fig. 4. Primary velocity profiles for different values of rotation parameter R for E=1

Fig. 5. Primary velocity profiles for different values of rotation parameter R for E=-1

R=0.1
R=0.5

R=1.5
R=2R=3

R=4R=5

-1

-0.5

0

0.5

1

-0.01 0.04 0.09 0.14 0.19 0.24 0.29 0.34 0.39
y

w

-1

-0.5

0

0.5

1

-0.15 -0.1 -0.05 0 0.05 0.1
y

u

R=3R=4R=5
R=2

R=1

R=0.5

R=5
R=4R=3R=2

-1

-0.5

0

0.5

1

-0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
y

u

R=5
R=4 R=3 R=2

R=1

R=0.5



Physical Science International Journal, 4(9): 1260-1279, 2014

1271

Fig. 6. Secondary velocity profiles for different values of rotation parameter R for E = 1

Fig. 7. Secondary velocity profiles for different values of Rotation parameter R for
E = -1

Fig. 8. Primary velocity profiles for different values of ratio of viscosities m for E = ±1
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Fig. 9. Secondary velocity profiles for different values of ratio of viscosities m for
E = ±1

Fig. 10. Primary velocity profiles for different values of Hartmann number M for E = ±1

Fig. 11. Secondary velocity profiles for different values of Hartman number M for
E = ±1
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Figs. 12 and 13 show the effect of E and the inclination angle Φ on primary and secondary
velocities respectively. From the figures. it is observed that in the open circuit case (E=±1)
both the velocities increase for increasing values of Φ. The effect of E and Grashof number
Gr, on primary and secondary velocities is shown in Figs. 14 and 15 respectively. As the
Grashof number Gr increases, both the velocities also increase. Figs. 16 and 17 represent
the effect of E and the ratio of heights h on primary and secondary velocities respectively. It
is concluded that for increasing values of h, both the velocities increase in case of E = -1 and
decrease in case of E = 1. The effect of E and the ratio of electrical conductivities s on
primary and secondary velocities is represented in Figs. 18 and 19 respectively. From the
figures, it is observed that as s increases, both the velocities also increase in case of E=-1
and decrease in case of E=1. The effect of electric load parameter E and the rotation
parameter R on temperature distribution θ in the three cases E=0, E=+1 and E=-1 is shown
in Figs. 20, 21 and 22 respectively. It is observed that for the short circuit case (E=0), as the
rotation increases, the temperature decreases. While for the open circuit case (E=±1), as the
rotation increases, the temperature decreases for small values of rotation and increases for
large rotation (say R=2, 5 etc). Fig. 23 shows the effect of E and the ratio of viscosities m on
the temperature distribution. In the open circuit case (E=±1), the temperature distribution
decreases for increasing values of m. The effect of E and the Hartmann number M on the
temperature distribution is represented in Fig. 24. From the figure, it is noticed that as the
Hartmann number M increases, the temperature distribution decreases. Fig. 25 represents
the effect of the inclination angle Φ and electric load parameter E on temperature
distribution. We observe that as the inclination angle Φ increases, the temperature increases
in case of E=1 and decreases in case of E=-1. The effect of E and the ratio of heights h on
the temperature distribution is shown in Fig. 26. From the figure, it is identified that for the
increasing values of h, the temperature also increases in case of E=1 but in case of E=-1,
the temperature increases for small values of h and decreases for large values of h. The
effect of electric load parameter E and the Grashof number Gr on temperature distribution is
represented in Fig. 27. It is observed that in case of positive E, the increasing Grashof
number tends to accelerate the temperature, but in case of negative E, it accelerates the
temperature in the opposite direction.

Fig. 12. Primary velocity profiles for different values of angle of inclination Ø for
E = ±1
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Fig. 13. Secondary velocity profiles for different values of angle of inclination Ø for
E = ±1

Fig. 14. Primary velocity profiles for different values of Grashof number Gr for E = ±1

Fig. 15. Secondary velocity profiles for different values of Grashof number Gr for
E = ±1
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Fig. 16. Primary velocity profiles for different values of ratio of heights h for E = ±1

.

Fig. 17. Secondary velocity profiles for different values of ratio of heights h for E = ±1

Fig. 18. Primary velocity profiles for different values of s for E = ±1
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Fig. 16. Primary velocity profiles for different values of ratio of heights h for E = ±1

.

Fig. 17. Secondary velocity profiles for different values of ratio of heights h for E = ±1

Fig. 18. Primary velocity profiles for different values of s for E = ±1
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Fig. 16. Primary velocity profiles for different values of ratio of heights h for E = ±1
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Fig. 17. Secondary velocity profiles for different values of ratio of heights h for E = ±1

Fig. 18. Primary velocity profiles for different values of s for E = ±1
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Fig. 19. Secondary velocity profiles for different values of s for E = ±1

Fig. 20. Temperature profiles for different values of Rotation parameter R for E=0

Fig. 21. Temperature profiles for different values of Rotation parameter R  for  E = 1
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Fig. 19. Secondary velocity profiles for different values of s for E = ±1

Fig. 20. Temperature profiles for different values of Rotation parameter R for E=0
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Fig. 19. Secondary velocity profiles for different values of s for E = ±1

Fig. 20. Temperature profiles for different values of Rotation parameter R for E=0

Fig. 21. Temperature profiles for different values of Rotation parameter R  for  E = 1
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Fig. 22. Temperature profiles for different values of Rotation parameter R  for  E = -1

Fig. 23. Temperature profiles for different values of ratio of viscosities m for E = ± 1

Fig. 24. Temperature profiles for different values of Hartman number M for E = ± 1
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Fig. 22. Temperature profiles for different values of Rotation parameter R  for  E = -1

Fig. 23. Temperature profiles for different values of ratio of viscosities m for E = ± 1

Fig. 24. Temperature profiles for different values of Hartman number M for E = ± 1
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Fig. 22. Temperature profiles for different values of Rotation parameter R  for  E = -1

Fig. 23. Temperature profiles for different values of ratio of viscosities m for E = ± 1

Fig. 24. Temperature profiles for different values of Hartman number M for E = ± 1
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Fig. 25. Temperature profiles for different values of angle of inclination Ø for E = ± 1

Fig. 26. Temperature profiles for different values of ratio of heights h for E = ± 1

Fig. 27. Temperature profiles for different values of Grashof number Gr for E = ± 1
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Fig. 25. Temperature profiles for different values of angle of inclination Ø for E = ± 1

Fig. 26. Temperature profiles for different values of ratio of heights h for E = ± 1

Fig. 27. Temperature profiles for different values of Grashof number Gr for E = ± 1
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Fig. 25. Temperature profiles for different values of angle of inclination Ø for E = ± 1
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