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A Reinforcement Learning Based Decision Support Tool for 
Epidemic Control: Validation Study for COVID-19
Mohamed-Amine Chadi and Hajar Mousannif

Department of Computer Science, University of Cadi Ayyad, Marrakech, Morocco

ABSTRACT
Epidemics such as COVID-19 present a substantial menace to 
public health and global economies. While the problem of epi
demic forecasting has been thoroughly investigated in the lit
erature, there is limited work studying the problem of optimal 
epidemic control. In the present paper, we introduce a novel 
epidemiological model (EM) that is inherently suitable for ana
lyzing different control policies. We validated the potential of 
the developed EM in modeling the evolution of COVID-19 infec
tions with a mean Pearson correlation of 0.609 CI 0.525–0.690 
and P-value < 0.001. To automate the process of analyzing 
control policies and finding the optimal one, we adapted the 
developed EM to the reinforcement learning (RL) setting and 
ran several experiments. The results of this work show that the 
problem of optimal epidemic control can be significantly diffi
cult for governments and policymakers, especially if faced with 
several constraints at once, hence, the need for such machine 
learning-based decision support tools. Moreover, it demon
strated the potential of deep RL in addressing such real-world 
problems.
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Introduction

Epidemics present a substantial menace to public health and global economies. 
In one year, from December 2019 to December 2020, the number of COVID- 
19 infections and deaths around the world reached 80 million and 2 million, 
respectively (WHO 2020). The exceptional public health interventions that 
have been undertaken show the degree of threat epidemics can present to 
governments, public health, health-care systems as well as global economies 
(Ferguson et al. 2020; WHO 2020). Measures such as lockdown and travel 
restriction are essential given the high infection rate of COVID-19 and the 
limited resources of hospitals. These non-pharmaceutical measures become 
even more important when the epidemic is caused by a new virus and no 
medication or vaccine is available. However, implementing such measures in 
a naïve way for a long time can cause serious damage to other important 
sectors, such as the economy. Researchers have developed epidemiological 
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models (EMs) such as the susceptible-infected-recovered (SIR) and suscepti
ble-exposed-infected-recovered (SEIR) models, as well as their variants 
(Giordano et al. 2020; Ian, Mondal, and Antonopoulos 2020; Prague et al. 
2020; Santos, Almeida, and de Moura 2021; Sun et al. 2020) to anticipate the 
evolution of the disease, and accordingly design public health policies. 
However, recent studies such as (Eker 2020; Moein et al. 2021) has shown 
that most EMs developed for forecasting the evolution of COVID-19 are 
inefficient, either because of their inability to model the dynamics of the 
disease in the case of simple EMs, their reliance on the availability of big 
datasets in the case of machine learning-based EMs, or their overcomplexity 
which makes the optimization of their parameters difficult in the case of larger 
EMs. Only a few EMs showed significant efficiency, among these is the 
SIDARTHE model by (Giordano et al. 2020). SIDARTHE stands for suscep
tible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatened (T), 
healed (H), and extinct (E) cases. Because the SIDARTHE model was able to fit 
the real data accurately, it was used to inform global public health policies. 
However, since in most cases policies are manually designed, their optimality 
cannot be guaranteed. Moreover, most policies are designed without consid
eration for other important constraints besides mitigating the damage to 
public health.

While the epidemic forecasting problem is thoroughly investigated in the 
literature. The problem of optimal epidemic control is limitedly addressed. In 
this respect, approaches such as age-based lockdown (Daron et al. 2020) and 
n-work-m-lockdown (Karin et al. 2020) were proposed. However, due to the 
large space of possible policies (each with certain intensity), the number of 
dependent variables (behavioral, epidemic, demographic, etc.), the non-trivial 
trade-off impact both on public health and on the economy, the task becomes 
very demanding in terms of computational performance and efficiency espe
cially because these traditional methods require the exploration of all possible 
options to ensure optimality.

In the last decade, an emerging field of the area of machine learning has 
demonstrated tremendous success in decision-making problems, that is, 
Reinforcement learning (RL). RL (Richard, Sutton, and Barto Andrew 2017) 
is a subclass of machine learning that deals mainly with learning optimal 
sequential decision-making. In RL, an agent is trained by interacting with an 
environment to maximize a reward. The success of RL is due to three main 
distinguishing reasons: firstly, the RL agent inherently accounts for, not only 
immediate costs/rewards but also, for future ones, resulting in learning the 
optimal sequence of actions for the tested environment (instead of each action 
independently). Secondly, RL is not bounded by human supervision data as in 
supervised learning, therefore, the performance of an RL agent might exceed 
human levels as demonstrated in many occasions such as (Mnih et al. 2013). 
Finally, RL combined with deep learning (i.e., Deep RL) can handle problems 
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presented with large spaces, such as the game Go (Silver et al. 2017), which was 
considered an impossible task given the theoretical complexity of more than 
10140 possible solutions (Herik, H. Jaap, Jos, and Van Rijswijck 2002).

Regarding the use of RL for epidemic control, recent investigations were 
elaborated. For instance, in (Probert et al. 2019), RL was investigated for foot- 
and-mouth disease control, and similarly for the influenza pandemic (Libin 
et al. 2021). Recently, for the ongoing pandemic of COVID-19, RL-based 
approaches were proposed for optimal control and containment of the spread 
of the disease (Arango and Pelov 2020; Harshad, Ganu, and Seetharam 2020; 
Ohi et al. 2020; Padmanabhan et al. 2021). However, in the explored literature, 
the provided EMs-based environments are either restricted to a specific disease 
other than COVID-19 as in (Libin et al. 2021; Probert et al. 2019) or allow 
limited policy space, such as cyclic lockdown only, or on/off control as in 
(Arango and Pelov 2020; Harshad, Ganu, and Seetharam 2020; Ohi et al. 2020; 
Padmanabhan et al. 2021).

In the present paper, we investigate an RL-based approach for automating 
the process of analyzing and recommending control policies given different 
constraints in the context of epidemics. At first, we wanted to use an existing 
EM to adapt it to the RL setting and use it as an environment for training RL 
agents. For this, the SIDARTHE model discussed previously seemed a better 
candidate. However, as mentioned by the authors of the model, finding 
a solution for SIDARTHE is computationally complex. It is worth mentioning 
that the computational complexity of the SIDARTHE model was addressed in 
recent work by (Khalilpourazari and Hashemi Doulabi 2021b, 2021a; 
Khalilpourazari et al. 2021; Khalilpourazari, Soheyl, and Hossein Hashemi 
2021). Indeed, in (Khalilpourazari and Hashemi Doulabi 2021b), the authors 
proposed a stochastic fractal search algorithm that can find a high-quality 
solution for the SIDARTHE model and efficiently determines many epide
miological parameters, thus, solving the EM in a relatively short time with high 
accuracy. In (Khalilpourazari et al. 2021), they introduced another approach 
for the same purpose as previously, accelerating the convergence of the search 
for optimal solutions for the SIDARTHE model. The proposed algorithm was 
named Gradient-based Grey Wolf Optimizer (GGWO), which according to 
the authors, it has demonstrated superior performance to most existing algo
rithms. In (Khalilpourazari and Hashemi Doulabi 2021a; Khalilpourazari, 
Soheyl, and Hossein Hashemi 2021), the authors designed a hybrid reinforce
ment learning (RL) based algorithm to efficiently solve the SIDARTHE model. 
The algorithm uses Q-learning (Richard, Sutton, and Barto Andrew 2017) to 
learn to switch between six optimization algorithms to maximize a defined 
reward that is proportional to the quality of the resulting solution.

Although the computational complexity of the SIDARTHE model was 
mitigated in the explored work, incorporating public health interventions in 
the dynamics of the model for policy optimization as well will most likely 
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increase the complexity anew, especially when adding more constraints to 
the policy optimization process, which might diverge us from the focus of 
this paper. For this reason, in the present paper, we aim to develop a novel 
EM designed specifically for this task (i.e., RL-based analysis and recom
mendation of epidemic control policies). Despite being specifically developed 
for policy optimization; the developed EM must demonstrate at least accep
table efficiency in modeling the evolution of the disease as well to be of 
practical use. Therefore, we will validate the developed EM using real data of 
the evolution of COVID-19 in 10 Moroccan cities before using it for policy 
optimization.

The remainder of this paper is set as follows: In section 2, we present the 
EM we developed, its mathematical dynamics, and its validation result. In 
section 3, we adapt the developed EM to the RL setting, test the performance 
of selected deep RL algorithms, and conduct experiments inspired by real 
scenarios of epidemic control. Finally, in section 4, we summarize and 
discuss the main contributions of this research and provide future 
directions.

The Epidemiological Model

Dynamics of the Epidemiological Model

We aim to develop an EM that incorporates the impact of most public health 
measures in its dynamics to be inherently suitable for optimal control 
policies analysis and recommendation. To base our EM on solid theoretical 
foundations, we exploited the results of several state-of-the-art studies from 
the literature of epidemiology that can be summarized into the following 
points:

The reproduction rate (R0) of COVID-19 varies between a value of 1.4 and 
2.4. additionally, demographic density and population size contribute propor
tionally to the increase of the infection rate of COVID-19 (Achaiah, 
Subbarajasetty, and Shetty 2020; Bhadra, Mukherjee, and Sarkar 2021; Kadi 
and Khelfaoui 2020).

Travel restriction, lockdown, social distancing, mask-wearing, and vaccina
tion can considerably decrease the infection rate as explained in (Bergwerk 
et al. 2021; Chinazzi et al. 2020; Jarvis et al. 2020; Leech et al. 2021; Murano 
et al. 2021; Oraby et al. 2021).

High testing rate and isolation have an important role in lowering the 
number of infections per day as it helps identify asymptomatic carriers 
(Cohen and Leshem 2021; Mercer and Salit 2021).

An increase in the healthcare capacity (especially in intensive care units) can 
moderately help to reduce the mortality rate (Deschepper et al. 2021; Sen- 
Crowe et al. 2021).
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Besides the healthcare capacity, the rate of fatality as well affects the 
mortality rate. The rate of fatality is inherent to the disease and varies from 
one to another (e.g., the fatality rate varies between 0.3% and 4.3% (Rajgor 
et al. 2020) for Coronavirus and around 85% for Ebola (Kadanali and Karagoz 
2016)).

The probability of reinfection is around 16% only because the previous 
infection induces an effective immunity to future infections in most indivi
duals (Hall et al. 2021; Okhuese 2020).

Studies such as (Bergwerk et al. 2021) suggest that vaccinated individuals 
may still get infected. The rate of effectiveness of the vaccine discussed in the 
mentioned study is around 61%. That is, only 61% of vaccinated individuals 
are guaranteed to have effective immunity against COVID-19.
Given the points above, and the RL setting. In the following, we define actions 
(A1-A7) that represent public health interventions, and states (S1-S4) describ
ing current measurements of the evolution of the epidemic as well as the 
mathematical relationships between them:

● A1: Travel restriction
● A2: Lockdown
● A3: Distance work and education
● A4: Provide masks and impose their wearing
● A5: Increase the testing rate (test and isolate if positive)
● A6: Increase the health-care capacity (e.g., hospital beds)
● A7: Increase the vaccination rate
● S1: The transmission rate
● S2: The identification rate
● S3: The death rate
● S4: The probability of reinfection

The transmission rate (s1) represents the proportion of individuals that will 
be infected among a normal population. Formulated as: 

s1 ¼
1 � A1þA2þA3þA4

4

� �
� Density � R0þ CurInf

N

� �h i
� A7 � 0:61ð Þ; ifV ¼ 1

1 � A1þA2þA3þA4
4

� �
� Density � R0 � CurInf

N

h i
; ifV ¼ 0

8
<

:

(1) 

where V is the availability of vaccines. That is, as explored previously (in 
points (1) and (2)), the transmission rate gets reduced if more travel restric
tion, lockdown, social distancing, mask-wearing were imposed. However, it is 
increased if the density of the studied region is high. The reproduction rate 
(R0) contributes proportionally to the transmission rate. Additionally, we 
consider that the more infections exist currently compared to the normal 
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population, the higher the R0 should be. For this, we set the R0 to its minimum 
value (1.4) mentioned previously and add to it the value of the ratio Cur Inf

N , 
where N is the population size and Cur Inf is the number of current infections. 
This ratio will always be a small value given the huge values of N of regions 
(cities, countries, etc.) compared to the number of infected individuals. The 
last term in the equation is to model the impact of vaccination. Given point 
(7), if vaccination is implemented (V = 1), the transmission rate is reduced by 
61% that represents the effectiveness of the vaccine investigated in the men
tioned study.

Note that the value of the density is mapped from the real scale to a scale of 
values between 0 and 1. Please, see appendix A for more details.

The identification rate (s2): Here, we hypothesize that besides the role of the 
testing rate as explored in point (3), the incubation period and the severity of 
the symptoms also affect the identification of carriers. The longer the incuba
tion period and the less severe are the symptoms, the less identifiable a disease 
becomes. COVID-19, for instance, has an incubation period that varies 
between 6.5 and 12.5 days (Quesada et al. 2021), often followed by moderate 
to no symptoms, as opposed to Ebola, for example, whose incubation period is 
around 12.7 days (Martin, Dowell, and Firese 2011) followed by the severe 
manifestation of symptoms. This is among the main reasons COVID-19 has 
spread much more than other epidemics (the lack of symptoms for a longer 
period). Therefore, the equation for S2 is: 

s2 ¼ A5 � 1 � incubation periodð Þ (2) 

Note that the value of the incubation period is mapped from the real scale to 
a scale of values between 0 and 1. Please, see appendix A for more details.

The death rate (s3): based on points (4) and (5), the death rate is propor
tional to the fatality rate inherent to the disease, and the more we invest in the 
healthcare capacity, the more we can mitigate the death rate. Thus, it is 
formalized as: 

s3 ¼ 1 � A6ð Þ � fatality rate (3) 

The reinfection rate (s4): based on points (6) and (7), the reinfection rate is 
formalized as the portion of individuals that are the non-effectively vaccinated 
times a probability of reinfection of around 16%: 

s4 ¼ 1 � A7 � 0:61ð Þð Þ � Probability of reinfection (4) 
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Population Class Model Based on the Elaborated Dynamics

To clarify even further, we developed a population-class model illustrated in 
Figure 1 that is driven by the above-explained epidemiological dynamics, 
where: Cur Inf: current infections, N: normal population, First Inf: individuals 
infected for the first time, Re Inf: individuals reinfected after recovery from 
a previous infection, Nxt Inf: next (predicted) infections, U: unknown carriers, 
K: known carriers, R: recovered, D: deaths, s1: the transmission rate, s2: the 
identification rate, s3: the death rate, s4: the reinfection rate.

We consider that a region with a normal (i.e., not infected) population size 
“N,” will be in contact with an initial number of current infected individuals 
“Cur Inf” (e.g., came from another infected region) and will generate an s1*N 
number of new primary infections “First Inf” (i.e., with no COVID-19 his
tory), and s4*R reinfected individuals, where R represents the number of 
recovered individuals. Both primary infected and reinfected will be added to 
the next infected “Nxt Inf” class where they will be divided into two other 
classes, either known carriers “K” or unknown carriers “U” depending on the 
identification rate s2. The unknown carriers “U” (e.g., those that did not show 
symptoms nor have been tested) will be added to the current infections “Cur 
Inf” for the next iteration since they contribute to the number of infections 
because they are not aware of their infection. The known carriers (e.g., those 
that were tested positive and hospitalized) will either die according to the 
death rate s3 and get subtracted from the global population “N” or recover and 
get added to the global population.

In equations (5–13) and Table 1, we present a summary of all variables and 
parameters used in the developed EM. 

Cur Inf ¼ Cur Inf þ U (5) 

Figure 1. Population class model for the developed EM.
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N ¼ N � D (6) 

First Inf ¼ s1 � N (7) 

RI ¼ s4 � R (8) 

Nxt Inf ¼ First Inf þ Re Inf (9) 

K ¼ s2 � Nxt Inf (10) 

U ¼ 1 � s2ð Þ � Nxt Inf (11) 

R ¼ 1 � s3ð Þ � K (12) 

D ¼ s3 � K (13) 

Table 1. Summary of the variables and parameters of the developed EM.
Variables Description

Cur Inf Current infections in the studied region, initialized by the user at the first step, then changed 
automatically according to the dynamics of the simulation.

N The population size of the studied region, initialized by the user at the first step, then changed 
automatically according to the dynamics of the simulation.

First Inf The number of infected individuals for the first time, computed during the simulation.
Re Inf The number of infected individuals after recovery (for the second time), computed during the 

simulation.
Nxt Inf The number of next infection cases, (which is the sum of First Inf and Re Inf), computed during the 

simulation.
K The number of known carriers, (those that were tested positive and hospitalized), computed during 

the simulation.
U The number of unknown carriers, (those that neither showed symptoms nor have been tested), 

computed during the simulation.
R The number of recovered cases, computed during the simulation.
D The number of death cases, computed during the simulation.
Parameters Description
R0 The reproduction rate of the studied epidemic. Varies between 1.4 and 2.4.
Incubation The incubation period of the studied epidemic. Varies between 5.6 and 12.5 days.
Fatality The fatality rate of the studied epidemic when no healthcare treatment is taken. Varies between 

0.3% and 4.3%.
Reinfection The reinfection probability of the studied epidemic, fixed at 0.16.
Density The density of the studied region (in people/km2), defined by the user.
S1 The transmission rate, defined in equation (1).
S2 The identification rate, defined in equation (2).
S3 The death rate, defined in equation (3).
S4 The reinfection rate, defined in equation (4).
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Validation of the Developed EM

Although the developed EM is designed for policy optimization, it cannot be 
of practical use unless it demonstrates at least an acceptable efficiency in terms 
of modeling the evolution of the disease using real data. For this, we measured 
the Pearson correlation between the real epidemic evolution and the one given 
by the developed EM for 10 Moroccan cities. The needed data was as follows:

● The density and population size of the studied regions, available on the 
official website of the high planning commission of Morocco (HCP 2021).

● The real number of infected and dead individuals per day is available on 
the official website of the Ministry of Health of Morocco (Moroccan 
Minstry of Health 2020).

● The implemented public health interventions by the Moroccan govern
ment during each period. For this information, we exploited the results of 
studies such as (Masbah and Aourraz 2020; OECD 2020; PERC 2021a, 
2021b) that tracked the public health interventions in Morocco as well as 
citizens’ respect for the implemented measures. Given that the reported 
results were relatively dissimilar, we decided to generate random values 
between 0 and 1 sampled from a uniform distribution to estimate the 
numerical values of each public health intervention in the following 
methodology:
○ For periods where the government imposed highly strict measures, 

a random number between 75% and 100% is generated for this measure 
for each day of that period.

○ For periods where the government imposed moderately strict measures, 
a random number between 50% and 75% is generated for this measure 
for each day of that period.

○ For periods where the government imposed leniently strict measures, 
a random number between 20% and 50% is generated for this measure 
for each day of that period.

○ For periods where the government imposed no measure, a random 
number between 0% and 20% is generated for this measure for each day 
of that period.

In appendix A, we provide more details about this step.
We gathered all the necessary data for a period of seven months, from 

September 3rd, 2020, to March 31st, 2021. In Figure 2, we present the results of 
evaluating the developed EM in modeling the course of COVID-19 in 10 
Moroccan cities. As listed in Table 2, the mean Pearson correlation between 
the actual number of infections and the predicted ones is 0.609 CI 0.525–0.690 
and P< .001. However, concerning the prediction of the number of deaths 
per day, the mean value of the correlation was 0.272 CI 0.201–0.342 with 
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Figure 2. The actual number of infections versus the predicted number of infections per day on top 
of each subfigure. The actual number of deaths versus the predicted number of deaths per day on 
the bottom of each subfigure, in the ten Moroccan cities.
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a mean P-value of P = .073 CI 0.010–0.13, opening the door for more 
improvement in this regard. Another observation is regarding the efficiency 
of the model according to the density of the studied region, the developed EM 
was most efficient for cities with a higher density such as Casablanca and 
Marrakech than cities with a lower density such as Ouad-Eddahab and 
Laayoune. This was a rather expected result because the authorities divided 
Moroccan cities into two zones, low-risk zones and high-risk zones (PERC 
2021a), and implemented more strict measures and testing in high-risk zones. 
Given those dense regions such as Casablanca and Marrakech presented the 
biggest numbers of infections, therefore classified as high-risk zones, a high 
testing rate was conducted in those cities which strengthened the accuracy of 
the model. Whereas for regions with low testing rates, most of which have low 
density, the model showed an over-estimation of the infection rate.

Note that, in this experiment, we set V to 0 in equation (1) since vaccines 
were not available at this time.

Deep RL for Epidemic Control

Adapting the Developed EM to the RL Setting

Besides the actions (A1-A7) and states (S1-S4) described in the previous 
section, in RL, a reward signal is defined to measure the performance of the 
agent. In our setting, we consider defining a sequence of actions that mini
mizes the infection rate with minimum investment in the seven actions to 
preserve the economy as the optimal policy the agent should seek. For this, we 
define the reward function as: 

reward ¼ health scoreþ economic score; if health score and economic score> 0
0; otherwise

�

(14) 

Table 2. Summary of the result of the validation according to the population size and density for 
the 10 Moroccan cities.

City Population size
Density 
ppl/km2

Corr 
Inf/day

P-value 
Inf/day

Corr 
Death/day

P-value 
Death/day

Casablanca 3,535,127 11,380 0.758 1.68e-40 0.462 1.51e-12
Marrakech 1,393,206 6521 0.708 4.54e-32 0.422 1.63e-10

Ouarzazat 297,502 24 0.540 1.17e-10 0.203 0.072
Rabat 544,422 4853 0.750 2.43e-39 0.205 0.002

Tetouane 550,374 216.6 0.609 8.66e-23 0.261 0.001
O.Eddahab 126,765 1.82 0.372 6.34e-05 0.244 0.040
Fes 1,232,798 657.3 0.578 3.80e-20 0.175 0.190

Meknes 891,155 457.3 0.555 2.13e-18 0.220 0.201
Laayoune 256,482 5.3 0.559 1.08e-18 0.207 0.195

Tanger 1,188,815 7026 0.651 3.66e-14 0.324 0.033
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Where 

health score ¼ TI � New Infð Þ=TI; if New Inf <TI and D<TD
0; otherwise

�

(15) 

TI and TD are thresholds for the infections (Nxt Inf) and the deaths (D) not to 
surpass. 

economic score ¼1 �
P

wi � Ai
P

wi
(16) 

On the one hand, the health score reflects the agent’s performance with respect to 
public health: the lesser is the number of infections compared to the set threshold 
TI, the higher will be the term “ TI � NewInfð Þ=TI”. On the other hand, the 
economic score reflects obstacles (mainly budgetary) for investing too much in 
these actions for the sake of reducing the public health damage. As confirmed in 
(Jasper, Koks, and Hall 2021), measures such as long lockdown have serious 
consequences on the global economy. The weights w1-w7 applied on actions (A1- 
A7) in the economic score are used to enforce some preferred priorities in guiding 
the agent’s learning. That is, if in the studied region, the impact of a certain 
intervention is higher than other interventions, its weight should be much higher, 
this way, small changes in the action with high weight will induce greater impact. 
Furthermore, the two defined scores are inversely proportional, that is, to increase 
the economic score, the agent should not (or should rarely) apply actions, 
however, to increase the health score, the agent should apply high intensities of 
public health interventions (actions) to reduce the number of infections.

Implementing a Deep RL Agent for Policy Optimization

The environment based on the developed EM belongs to the category of 
continuous environments, meaning that, the state and action spaces are con
tinuous, as opposed to discrete. Therefore, the agent that would be trained in 
this environment should support continuous control.

In RL, Q-learning is considered one of the basic, yet classic algorithms as it 
was founded in 1989. Q-learning learns by updating a Q-table that stores the 
values of each state-action pair using the Bellman equation (Richard, Sutton, 
and Barto Andrew 2017). The main drawback of Q-learning is its inability to 
(directly) learn in environments with continuous states and actions since it 
uses a Q-table that has a finite size. In 2013, deep Q-Network (DQN) by (Mnih 
et al. 2013) came up with a solution. DQN uses a function approximator (a 
neural network (NN)) instead of the Q-table to learn the Q-values for each 
state-action pair. The use of NN enabled supporting environments with 
continuous states because each state is mapped to its Q-value given via the 
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NN which itself is a continuous function. Moreover, using NNs, the update 
rule became based on the gradient of the loss instead of the dynamic program
ming approach and the Bellman equation in Q-learning.

However, DQN is still faced with other challenges, mainly, handling 
environments with continuous actions as well (not continuous states 
only). Consequently, scientists have investigated other techniques. The 
main techniques used for continuous control nowadays are the policy 
gradient algorithms (Sutton et al. 1996). Policy gradient algorithms learn 
to directly map states to actions or a probability distribution over actions 
instead of their Q-values. Along with an architecture commonly known as 
the actor-critic (Konda and Tsitsiklis 2000) and deep neural networks as 
function approximators, where the actor (π) outputs actions and the critic 
(Q) evaluate these actions by assigning values to them, policy gradient 
emerged as a family of algorithms used in most state-of-the-art achieve
ments, such as mastering the game of Go (Silver et al. 2017) and the game of 
StarCraft II (Sun et al. 2018).

Among the state-of-the-art models that use this approach is the deep 
deterministic policy gradient (DDPG) (Lillicrap et al. 2016). DDPG was 
designed to operate on potentially large continuous state and action spaces 
with a deterministic policy, meaning that the policy function (π) directly 
outputs an action as opposed to a stochastic policy, where the output is 
a probability distribution over actions. However, it is often reported that 
DDPG suffers from instability in the form of sensitivity to hyper- 
parameters and propensity to converge to very poor solutions or even 
diverge (Matheron, Perrin, and Sigaud 2019). For this, many algorithms 
were proposed as a solution for the problems faced by DDPG such as the 
twin delayed deep deterministic (TD3) policy gradient (Fujimoto, Van 
Hoof, and Meger 2018). TD3 solves the instability issue by (i) minimizing 
the overestimation bias through maintaining a pair of critics Q1 and Q2 
(hence the name “twin”) along with a single actor. For each time step, TD3 
uses the smaller of the two Q-values, and (ii) updates the policy less 
frequently than the critic networks. Another category of the policy gradient 
algorithms uses a stochastic policy, instead of a deterministic one. This 
makes the exploration phase automatically executed, in contrast to deter
ministic policy, where the exploration is handled manually. One of the 
main state-of-the-art models that uses this approach is the proximal policy 
optimization (PPO) (Schulman et al. 2017) algorithm. PPO involves col
lecting a mini batch of experiences while interacting with the environment 
and using it to update its policy. Once the policy is updated, a newer batch 
is collected with the newly updated policy, thus, it is an on-policy algo
rithm, as opposed to off-policy algorithms, where the function used to 
collect experiences is different from the one updated for learning. The 
key contribution of PPO is ensuring that a new update of the policy does 
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not change it too much from the previous policy. This leads to less variance 
and smoother training and makes sure the agent does not go down an 
unrecoverable path.

Given the above introductory clarifications, in the following subsections, we 
run several experiments to validate the usefulness of deep RL in the context of 
epidemic control.

Experiment 1: DDPG, TD3, and PPO Performance
In this experiment, we tested and compared the performance of the three deep 
RL models discussed previously (DDPG, TD3, and PPO) to solve the environ
ment given health score thresholds of different degrees of difficulty (TI and TD 
in equation (15)). We go from high thresholds (i.e., easy constraint) to low 
thresholds (i.e., difficult constraints). For the implementation phase, we used 
the DDPG described in the original paper (Lillicrap et al. 2016) but with the 
gaussian action noise instead of the Ornstein Uhlenbeck noise as it showed 
better performance (please see appendix B). The implemented TD3 is exactly 
the one described in the original paper (Fujimoto, Van Hoof, and Meger 
2018). Finally, for PPO, we chose the clipped version instead of the 
Kullback–Leibler penalty implementation (Schulman et al. 2017). All three 
models have two hidden layers with 64 units each.

For the other hyperparameters, after testing and tuning, we used the ones 
yielding the best performance for each model, (please see Appendix B for more 
details on this step). As illustrated in Figure 3, the DDPG model suffered from 
a high variance for the first two easiest threshold sets, while yielding zero 
rewards for harder ones. TD3 on the other hand showed a better performance 
both in terms of the variance and the episodic reward. This was rather 
expected since TD3 came as a successor to DDPG, thus, solving its main 
theoretical issues. However, the best-performing model was PPO which 
showed excellent consistency even in the most difficult threshold set ([2, 1]) 
where TD3 failed. Moreover, PPO’s variance was around 4.8 which is close to 
TD3ʹs of around 3.6, but much better than DDPG’s of around 22.1. For PPO, 
the more the task is difficult, the more timesteps it needs to start converging to 
an optimal policy and yielding similar episodic reward as easier tasks, thus 

Figure 3. Episodic reward and variance monitoring for the three models for different health score 
thresholds.
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sacrificing only the training time, while DDPG and TD3 abdicate the episodic 
reward as well. Furthermore, it is worth mentioning that even so, PPO was still 
the fastest among the three in terms of the training speed with an important 
difference. Indeed, DDPG and TD3 lasted about 57 minutes for the 
180,000steps of training, while PPO needed only a 6 min for the same number 
of steps on a CPU, i7, 10 generation, with IRIS plus accelerator. Given these 
comparison results, we excluded DDPG and TD3 for the remainder of the 
experiments and use PPO only.

Experiment 2: PPO Performance against Different Economic Thresholds
In this part, we change in equation (14) of the reward function to test more 
constrained versions of the task at hand, particularly, it will be changed to the 
following: 

reward ¼ health scoreþ economic score; if health score> 0 and economic score>Te
0; otherwise

�

(17) 

where Te is a threshold for the economic score. This means that the agent will 
not receive a positive reward unless the health score is positive (as previously) 
and the economic score is greater than the defined Te. This new reward 
function can be considered as a generalized version, wherein the previous 
reward function Te was always set to 0.

In Figure 4, we tested the capacity of the PPO model against different values 
for the economic score threshold Te and recorded its performance. The health 
score thresholds were set to 25 and 2 for TI and TD respectively. We can see 
that the higher is Te, the more steps are needed for the PPO model to start 
converging to a good policy. We kept increasing Te until a value of around 0.5, 
where the agent stopped getting any reward.

Figure 4. PPO performance against different economic thresholds (Te).
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Experiment 3: PPO Policy Analysis regarding Custom Priorities
In experiment 1, we tested the deep RL models against different health score 
thresholds. In experiment 2, we constrained the reward function more by 
adding a threshold criterion on the economic score as well. In this experiment, 
the goal is to visualize the effect of having different priorities in guiding the 
agent’s policy: as explained earlier in equation (16) of the economic score, the 
weights w1-w7 applied on actions (A1-A7) in the economic score are used to 
enforce some preferred priorities in guiding the agent’s learning. For instance, 
if the studied region relies heavily on the tourism sector, applying measures 
such as travel restriction and lockdown will have an important cost on the 
global economy of the region. Thus, the policymakers should define a control 
policy in an optimized way, investing more in low-cost measures within the 
context of that region without sacrificing the public health goals.

In Figure 5, we show the episodic reward (in the left subfigures) and the 
policy given by the agent for 12 months (in the right subfigures). We tested the 
effect of the weights used in the economic score on the performance of the 
agent using two sets of weights, one set has the same values and another set 
biased toward a preferred priority. In both experiments, the health score 
thresholds used are 25 for TI and 2 for TD, while Te is set to 0.

In the top two subfigures, the weights have the same values. The PPO model 
showed a good performance with a high episodic reward. Nevertheless, because 
the number of predicted infections “Nxt Inf” is related to the normal population 
(N) through the transmission rate (s1), where s1 includes only A1, A2, A3, and 
A4 (see equation (1)), the agent learned to reduce the infections by maximizing 

Figure 5. The effect of the economic score weights on the performance and policy.
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these four actions while keeping the other ones as low as possible. However, in 
the below subfigure, the weights are biased in such a way that investing in A1 
and A2 will reduce the economic score greatly, thus reducing the reward. This 
way, the agent learned a more complex policy balancing the intensities of the 
applied actions. The agent learned that increasing the healthcare capacity 
reduces the number of deaths plus a relatively high vaccination rate compared 
to previous policy to reduce the reinfection rate that contributes to the infec
tions as well. However, the performance (episodic reward) of the agent dropped 
from 500s to 350s, this again demonstrates the difficulty of the epidemic control 
problem, especially for hand designing optimal policies.

Note: the policy given by the agent is interpreted following the same guide 
used during the validation of the EM described in appendix A. That is because 
actions in our case are continuous, each one is quantized into four divisions: 
0.75 to 1 for highly strict measures, 0.5 to 0.75 for moderately strict measures, 
0.2 to 0.5 for leniently strict measures, and 0 to 0.2 for no measure. As an 
example, the first action, which is travel restriction, is interpreted as follows:

● 0.75–1: no travel is allowed between countries and cities.
● 0.5–0.75: only some types of travel (air travel, sea travel, within-country 

/within the city, etc.) are allowed with the condition to have permission 
papers, such as negative test for COVID-19.

● 0.2–0.5: most types of travel are allowed with the condition to have 
permission papers, such as negative test for COVID-19.

● 0–0.2: all travels are allowed.

For the interpretation of other actions, please refer to appendix A.

Experiment 4: Adding Stochasticity to the Environment
In the present experiment, we alter the equation of the transmission rate (s1) 
by adding a stochasticity parameter (St) that reduces the impact of actions 
(A1-A4) in a randomized way. The parameter St is randomly sampled from 
a uniform distribution between a defined range of {0, max St}, where max St is 
the maximum of this range. The new equation of s1 becomes: 

s1 ¼
1 � A1þA2þA3þA4� St

4

� �
� Density � R0þ CurInf

N

� �h i
� A7 � 0:61ð Þ; ifV ¼ 1

1 � A1þA2þA3þA4� St
4

� �
� Density � R0 � CurInf

N

h i
; ifV ¼ 0

8
<

:

(18) 

This is useful because, in real scenarios, the same implemented measures by 
policymakers might have a different impact on the evolution of the disease 
because of the unpredictable rate of respect of these measures by citizens in 
each period or region.
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In Figure 6, we show the result of training the PPO model when St is 
sampled from ranges of different sizes. We can see that when St varies in 
a bigger range, that is, the higher is the stochasticity of the environment, the 
more difficult it becomes for the agent to find an optimal policy, with higher 
variance displayed each time the size of the range is increased. This experiment 
demonstrates another aspect of the difficulties facing policymakers. The suc
cess of the implemented policies is proportional to the rate of respect for these 
policies by citizens. For instance, when St is sampled from the range {0, 0.2}, 
the agent learns a policy for a transmission rate that does not vary a lot, and the 
impact of its actions are not reduced significantly, meaning that only 
a minority of citizens did not respect the implemented measures. However, 
when St is sampled from a bigger range as {0, 2}, the agent’s actions will have 
a different impact each time. On some occasions, the sampled St is a relatively 
low (close to 0), meaning that the impact of the agent’s actions is not (or 
negligibly) reduced, while on other occasions, the sampled St is high (close 
to 2), meaning that the impact of the agent’s actions is significantly reduced, 
representing, a non-respect of the applied measures by a significant portion of 
citizens. Thus, encountering a successful state-action pair will have an uncer
tain degree of usefulness.

Discussion

Main Contributions

Optimal epidemic control is a complex task for humans, and as demonstrated 
in the previous section, it can be difficult for state-of-the-art machine learning 
algorithms as well. The degree of difficulty is increased when more constraints 
must be fulfilled, and realistic aspects of the simulation dynamics are added. 
For this, having an EM that balances between efficiency and computational 
complexity is necessary.

Figure 6. The effect of stochasticity on the performance of the PPO model.
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In this paper, we introduced a novel EM that demonstrated a decent 
performance in modeling the course of COVID-19 to ensure the practicality 
of the results and conclusions deduced. The EM demonstrated a mean Pearson 
correlation of 0.609 CI 0.525–0.690 and P< .001. Despite being relatively 
simple, the developed EM was able to adapt to each region’s characteristics 
because it accounts for the impact of the implemented public health measures 
in those regions in addition to some demographic and epidemic character
istics. Once the EM was validated, we adapted it to the RL setting allowing it to 
be used not only for forecasting the evolution of the disease but also, training 
learning-based agents for policy optimization as well. Then, we ran several 
experiments where each one permitted us to deepen our insights into the 
problem at hand.

In experiment 1, we trained three state-of-the-art deep RL models (DDPG, 
TD3, and PPO) in the developed EM-based environment with eight different 
threshold sets of the health score (TI and TD) described in equation (15). Each 
threshold set increases the difficulty compared to the previous one. the PPO 
model showed a relatively good and consistent performance throughout all 
threshold sets, whereas DDPG, and besides its high variance, failed as soon as 
the third threshold set (100,10). TD3 on the other hand was better than 
DDPG, and its performance did not drop to zero until the last threshold set 
(2,1). Nevertheless, PPO outperformed TD3 in terms of the episodic reward in 
all threshold sets. For this, we excluded DDPG and TD3 and continued the rest 
of our experiments with PPO only. This experiment shows that stochastic 
policy-based models, such as PPO can be advantageous over deterministic 
policy-based models in this context.

In experiment 2, we modified the reward function to set custom thresholds 
on the economic score as well, named Te, adding more constraints to the 
agent’s policy. After fixing the health score thresholds to 25 and 2 for TI and 
TD, respectively, we kept changing Te from easy to more difficult allowing us 
to test the limits of our PPO model. In addition to experiment 1, this experi
ment as well demonstrates the difficulty facing policymakers in defining an 
optimal control policy, that is, the sequence of public health measures, each 
with a certain intensity, capable of optimizing the public health state while 
causing minimum harm to the economy while possessing limited budget 
represented here by Te. As a benchmarking result, our PPO model was 
successful in all tested thresholds until Te of 0.5 where it failed, and the 
performance dropped to zero.

Besides, this experiment emphasizes the importance of reward engineering. 
The reward functions described in equation (14) or equation (17) do not tell 
the agent much information. This was done on purpose to benefit from the 
model-free RL creativity because trivial reward functions often yield trivial 
policies, which in most cases are not helpful. In the following, we illustrate this 
statement by changing the reward function to a much easier one: 
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reward ¼ health scoreþ economic score; ifs1<Ts1
0; otherwise

�

(19) 

Where Ts1 is a threshold for s1 (the transmission rate).
Here, the reward function is computed from the state s1, which is a direct 

input of the agent, thus, the exploration needed is reduced since the agent will 
learn to invest in measures that directly affect the state s1 only. Figure 7 shows 
that the needed number of training steps for the same deep RL models used 
previously is significantly reduced, and the performance is improved for 
DDPG and TD3 especially. However, having such a trivial reward function 
will yield a policy that is not flexible and may not be interesting or helpful for 
policymakers. Moreover, this way, even if s1 is set at a low value, it does not 
guarantee that the number of infections is minimized, this will depend on the 
population size: low value for s1 multiplied by a huge population size might 
still yield high values for the number of infections. Whereas in the previous 
reward functions, (i) the agent will encounter multiple choices that affect the 
reward function positively in different ways that may not be directly related to 
s1 yielding a flexible policy function and always guaranteeing that (ii) the 
number of infections is reduced.

In experiment 3, we examined the output policy regarding another 
component in the reward function: the action weights in the economic 
score. This experiment justifies the use of the action weights in equation 
(16) and especially demonstrates that the difficulty of defining optimal 
control policy is increased when some actions present higher costs than 
others.

Finally, in experiment 4, we presented another aspect of the difficulties 
facing policymakers, that is, the unpredictable rate of respect of measures 
by citizens that may reduce the impact of these implemented measures in 
variant degrees. This experiment opens the door for future improvements 
in the algorithm behind the agent to handle such realistic constraints.

Figure 7. The performance of the DDPG, TD3, and PPO on the easier reward function.
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Limitations and Future Directions

The actual chronology of disease outbreaks indicates that the frequency of 
occurrence is rising, especially in today’s world of rapid globalization, and 
that we are more liable to undergo many such pandemics in the near term 
(World Health Organization 2015). Consequently, reinforcing the collabora
tive efforts between epidemiologists, computer scientists, economists, etc. to 
help mitigate their damages is a necessity. In the present work, we introduce 
an aspect of reinforcing this collaboration by introducing a novel RL-based 
tool for epidemic modeling and control. The presented tool has shown the 
potential of usefulness in modeling the evolution of the number of COVID- 
19 infections per day, and in suggesting optimal control policies using 
a trained RL agent. However, further improvements from all epidemiology 
and optimization-related disciplines are still needed. In the following, we list 
the main limitations and future directions of the current version of the 
presented tool:

Although the developed EM showed a significant correlation in the tested 
10 cities for predicting the number of infections per day, predicting the 
number of deaths per day was not as accurate. This is caused by the fact that 
the death rate is related to the number of vulnerable individuals among 
hospitalized patients (e.g., patients with chronic diseases, such as diabetes, 
aged patients, etc.) as described in (Corona et al. 2021; Woolcott and Castilla- 
Bancayán 2021), which has not been taken into consideration in the imple
mented equation of the death rate (s3) given the lack of such information in 
the collected dataset for validation. Similarly, the identification rate (s2) can be 
enhanced as well. Indeed, studies such as (Quesada et al. 2021) showed that the 
incubation period correlates with both age and sex of infected individuals, 
however, for the current version of the model, we did not include them 
because of the lack of any official data in this regard. Therefore, future work 
should surely investigate these issues.

As described in appendix A, the EM’s parameters (reproduction rate, 
incubation period, fatality rate, and reinfection rate), used during the valida
tion were taken from the literature of epidemiology. However, better perfor
mance can be achieved if they underwent an optimization process as well. Our 
focus in this paper was mainly on the optimization of public health measures 
instead. For this reason, this issue as well must be included in the main future 
directions.

The main constraint that might limit the efficiency of such work is the 
inherently uncertain nature of the data used as input for the EM. We draw the 
attention of the reader that our EM is not meant to be used for accurate 
predictions of the number of infections per day. However, as the validation 
results suggest, it can be used for approximative modeling and simulation of 
the overall course of the disease (COVID-19). Moreover, for this approach, the 
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validation process consists of giving as input numerical estimations of public 
health interventions implemented, which we recognize to be relatively difficult 
to accurately estimate, given the unknown rate of respect of these measures by 
citizens. For this reason, we aim to summarize and exploit the results of studies 
such as (Daoust et al. 2020) in quest of defining a better methodology for 
numerically quantifying public health interventions implemented with con
sideration for the respect of these interventions by citizens. Similarly, for 
a more realistic economic score that reflects the actual impact of each action 
on the economy, exploiting the results of studies such as (Askitas, Tatsiramos, 
and Verheyden 2021; CHO 2020; Cotton et al. 2020; Haddad et al. 2020; IMF 
2020; PHO 2021; World Bank Group 2020) can be beneficial.

Regarding the optimal control problem, the developed RL-based EM allows 
the use in a network of regions, that is, each region would be modeled by its 
configuration of the EM and its own RL agent. Consequently, an extension of 
this work is the use of Multi-agent RL (Busoniu, Babuska, and De Schutter 
2010) to explore its related challenges and validate its potential usefulness as 
well. Analogously, considering the case where we might have heterogeneous 
infection parameters, an example of this is the multiple variants of COVID-19 
(alpha, beta, etc.). Being able to model a region (or network of regions) whose 
population is infected with different virus strains and generate optimal policies 
for it is a calling future work.

Conclusion

Reinforcement learning was efficiently used for the problem of epidemic 
forecasting in (Khalilpourazari and Hashemi Doulabi 2021a), and in this 
paper, we demonstrated that it can be efficient at solving epidemic control 
problems as well. The results showed the usefulness of such a learning-based 
approach given the difficulties facing policymakers in defining optimal 
control policies with different constraints. Finally, we defined a list of 
further improvements that are needed from all epidemiology and optimiza
tion-related disciplines for a more realistic and practical decision support 
tool.
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Appendix A. Validation of the developed EM

Validation of the developed EM using real data

For the validation phase, the first step was to manually collect data of the number of COVID-19 
infections and deaths per day from September 3rd, 2020, to March 31st, 2021 (i.e., seven 
months) of 10 Moroccan cities. This was the only available data on the official website of the 
Moroccan ministry of health (Moroccan Minstry of Health 2020) at the time of writing this 
paper. We then configured the EM using epidemic data of COVID-19, (i.e., the reproduction 
rate R0, the incubation period, the fatality rate, and the reinfection probability) and demo
graphic data (i.e., density and population size). The values of the epidemic parameters were 
extracted from the literature of epidemiology and then tuned in the permitted range for better 
performance. For instance, R0 was initially estimated by the world Health Organization to 
a value between 1.4 and 2.4. The incubation period varies between 5.6 and 12.5 days. The 
fatality rate varies between 0.3% and 4.3%. Finally, the reinfection probability was set to a fixed 
value of 0.16 (Achaiah, Subbarajasetty, and Shetty 2020; Bergwerk et al. 2021; Hall et al. 2021; 
Okhuese 2020; Quesada et al. 2021; Rajgor et al. 2020). Whereas demographic data of each 
studied region among the 10 cities were obtained from the official website of the high planning 
commission of Morocco (HCP 2021). Consequently, we obtained a customized version of the 
EM.

For an end-to-end approach, we used a rescaling function to input the epidemic and 
demographic data in their real scale, then convert their values to the EM’s compatible scale 
(i.e., between 0 and 1), the function used is as follows: 

new value ¼ old value � old minð Þ � new scaleð Þ=old scaleð Þ þ new min (10) 

where: 

old scale ¼ old max � old min
new scale ¼ new max � new min

�

For the density, the old scale is the difference between the maximum density among the 10 
cities (i.e., 11,380 of Casablanca) and the smallest density (i.e., 5.3, of Laayoune). Whereas the 
new scale is between 0 as the minimum value and 1 as the maximum. Similarly, for the 
incubation period, the old scale is the difference between the maximum period of 12.5 days 
and the smallest one of 5.6. Whereas the new scale is between 0 and 1.

The second step is to give as input to the EM, at each iteration (iteration = 1 day), the 
numerical intensities of each of the seven public health interventions and record the output of 
the EM. The timeline of interventions implemented in Morocco during the studied period is 
listed below in Table 3. Most of the presented information in Table 3 is given by a study 
conducted in Morocco by the Partnership for Evidence-based Response to COVID-19 (PERC 
2021a).

To estimate numerical values of public health interventions, we defined the following guide:

● For “(A1) travel restriction”:
○ 75–100%, if no travel is allowed between countries and cities.
○ 50–75%, if only some types of travel (air travel, sea travel, within-country/within the city, 

etc.) are allowed with the condition to have permission papers, such as negative test for 
COVID-19.

○ 20–50%, if most types of travels are allowed with the condition to have permission papers, 
such as negative test for COVID-19.

○ 0–20%, if all travels are allowed.
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● For “(A2) lockdown”:
○ 75–100%, if no public institution is open (stadiums, mosques, etc.), and exits are not 

permitted, except for one person in the family.
○ 50–75%, if only some public institutions are open.
○ 20–50%, if most public institutions are open, and citizens are allowed to get out for 

a defined time interval of the day.
○ 0–20%, if all public institutions are open, and a curfew is implemented.

● For “(A3) distance work and study”:
○ 75–100%, if only obligatory jobs are allowed in presence mode (e.g., doctors and nurses), 

and all educational levels (primary, high school, university, etc.) are held at distance.
○ 50–75%, if some jobs and educational levels are allowed in presence mode.
○ 20–50%, if most jobs and educational levels are allowed in presence mode.
○ 0–20%, if all jobs and educational levels are allowed in presence mode.

Table 3. Timeline of the interventions and relaxation implemented in Morocco.

Intervention History of the related measures implemented

A1: travel restriction In September 2020, international and national travel restriction were imposed. in October 
and November, international borders were opened with condition (i.e., after having 
permission papers such as negative COVID-19 test) and some local transportations 
were allowed in low-risk zones only. 
In December, because of last year’s holidays, internal travel restrictions and 
conditioned permission of international travel (i.e., after having permission papers 
such as negative COVID-19 test). This policy has been repeatedly extended in January, 
February, and March 2021.

A2: Lockdown In September 2020, Curfew from 6pm to 5am was imposed, only some mosques were 
allowed to open (i.e., the biggest mosques in districts). In December, national curfew 
was implemented, and restaurants and cafes were closed. This policy has been 
repeatedly extended in January, February, and March 2021.

A3: Distance work & 
education

In September 2020, schools opened for registration in low-risk zones and in high-risk 
zones in the second half of October. Most businesses worked at distance. Restaurant 
were working only via delivery and a lot of other public businesses were closed such as 
Hammams, clubs, etc. In October and November, schools and universities worked 
presently in low-risk zones and distantly in high-risk zones. This policy has been 
repeatedly extended in January, February, and March 2021.

A4: Mask imposing In September 2020, a lawsuit of 300MAD was imposed for non-wearing masks. A survey 
by (PERC 2021b) has reported that 94% of participants wore their masks in public. 
However, in October and November, restrictions related to this measure were 
weakened and the adherence of citizens started decreasing. As the wave got to its 
peak in December, strict campaigns by the government were taking place and the 
lawsuit was strictly applied. This policy has been repeatedly extended in January, 
February, and March 2021.

A5: Test rate In September 2020, the number of tests per day was relatively sufficient compared to the 
number of infections which was relatively low. However, as the wave started to peak in 
November, the number of tests per day was not sufficient yielding more and more 
infections as more unknown carriers were not isolated. This motivated the government 
to buy more test kits. Morocco had sufficient test kits that allowed it to conduct more 
than 200,000 tests per day from late December to March.

A6: Healthcare capacity In September 2020, the death rate was relatively low and hospital beds were sufficient. As 
the wave started to peak in November, the death rate increased proportionally. The 
government invested in the healthcare capacity in several ways: buying/providing 
more intensive care unit beds, buying more respiratory equipment, transforming other 
public places to public hospitals dedicated for COVID patients only. This policy has 
been extended to January, February, and March 2021.

A7: Vaccination No vaccination was implemented in this period.
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● For “(A4) imposing mask-wearing”:
○ Random values between 0 and 1 were generated as it has been various compliance rates 

reported in the survey-based studies (Masbah and Aourraz 2020; PERC 2021a) exploited 
in our estimation.

● For “(A5) conduct large scale testing”:
○ 75–100%, if the officially declared number of tests per day in the studied region is greater 

than 1.6 * the current number of infections

Note: 1.6 is the mean value of the reproduction numbers R0 of COVID-19 in Morocco  
calculated using the collected dataset).
● 50–75%, if the officially declared number of tests per day in the studied region is between 

<1.6 * the current number of infections and 1.3 * the current number of infections.
● 20–50%, if the officially declared number of tests per day in the studied region is between 

<1.3 * the current number of infections and 1 * the current number of infections.
● 0–20%, if the officially declared number of tests per day in the studied region is less than 

1 * the current number of infections.
The number of tests per day is available on the same website (PDF reports) of the Moroccan 

health ministry (Moroccan Health Ministry 2021a).

● For “(A6) invest in the health care capacity”:
○ 75–100%, if the occupation rate of clinical beds dedicated for COVID-19 patients is less 

than 20%.
○ 50–75%, if the occupation rate of clinical beds dedicated for COVID-19 patients is 

between 20% and 50%.
○ 20–50%, if the occupation rate of clinical beds dedicated for COVID-19 patients is 

between 50% and 75%.
○ 0–20%, if the occupation rate of clinical beds dedicated for COVID-19 patients is greater 

than 75%.

The occupation rate of the clinical beds dedicated for COVID-19 patients is available on the 
same website (PDF reports) of the Moroccan health ministry (Moroccan Health Ministry 2021a).

● For “(A7) vaccination”:

It was set to zero during the validation since no vaccination was implemented during the 
period that corresponds to the dataset used for validation, additionally, during this period, no 
reinfection was reported, thus, the “Re Inf” class in the EM (Figure 1) was also set to zero. 
However, if for another period the vaccination was used, it would be directly interpreted as the 
portion of the population vaccinated, for instance, 75% would directly correspond to 75% of 
the population who underwent vaccination.

We recorded the number of next infections (Nxt Inf) and deaths (D) until finishing the length 
of the existing actual dataset (from September 3rd, 2020, to March 31st, that is 210 days) for the 
10 Moroccan cities and plotted the visual results of the 10 cities in Figure 2 and measured the 
Pearson correlation and P-value for each city.
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Appendix B: Hyperparameters tuning for the three deep RL models

We tested the performance of the three deep RL models (DDPG, TD3, and PPO) against the 
environment using multiple sets of values for each hyperparameter described in Table 4 along 
with the learning rate, the batch size, and the number of epochs. The actor critic architecture 
was similarly designed for all three models with a multi-layer perceptron (MLP) of 2 layers, 64 
units in each layer, and ADAM optimizer. The non-linearity in DDP and TD3 is the ReLU 
function, while PPO uses the hyperbolic tangent Tanh as described in their original papers, 
respectively. The configuration of the environment used for this experiment is as follows:

● Health score thresholds TI and TD were set to 250 and 25, respectively.
● The economic score Te was set to 0.
● The action weights of the economic score were all set to 1.

We recorded the performance for multiple runs and random seeds and plotted the results in 
Figure 8. The best performant hyperparameters for each model were chosen for the experi
ments presented in section 3 (Deep RL for epidemic control).

For DDPG on the left subfigure of Figure 8, we can see that only three hyperparameter sets 
yielded a relatively good performance, while the other five dropped the performance of the 
model to zero rewards. These three good sets of hyperparameters correspond to experiment 1, 
3, and 8 in blue, green, and gray, respectively. In these three experiments, the hyperparameters 
of the DDPG model (see Table 4) were set as follows

● Learning rate = 0.001, batch size = 100, tau = 0.005, gamma = 0.99, action noise = Ornstein
● Learning rate = 0.001, batch size = 16, tau = 0.005, gamma = 0.99, action noise = Ornstein
● Learning rate = 0.001, batch size = 100, tau = 0.005, gamma = 0.99, action noise = gaussian

In experiments 1 and 3, we can see that the episodic reward value was rather similar, with the 
same high variance as well, despite changing the batch size. The high variance is caused by the 
Ornstein Uhlenbeck noise. In experiment 8, we kept the same hyperparameters and changed 
only the action noise to gaussian, and the variance was significantly reduced. In all the other five 
experiments (2, 4, 5, 6, 7), the episodic reward dropped to zero (or near zero). In experiment 2, 
we kept the same hyperparameters used in experiment 1, and increased the learning rate, after 
surpassing a value of 0.05, the performance dropped to near zero. In experiments 4, 5, 6, and 7, 
the failure was due to the increase of the value of the “tau” parameter, the moderate or brutal 
decrease in the value of the gamma parameters, and the decrease in the value of the standard 
deviation of the action noise resulting in less exploration, respectively.

Figure 8. Optimal hyperparameter sets for the three models used (DDPG, TD3, and PPO from left to 
right respectively).
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TD3 (on the middle subfigure) showed a more stable performance than DDPG. TD3 was 
able to achieve rather similarly good performance for six different hyperparameter sets 
(experiments 1, 3, 4, 5, 7, 8). While achieving similar performance as previously but with 
a high variance in experiment 6, and the performance dropped to zero in experiment 2. The 
hyperparameter sets used in all successful six experiments are:

● Learning rate = 0.001, batch size = 100, tau = 0.005, gamma = 0.99, action noise = gaussian, 
policy delay = 2

● Learning rate = 0.001, batch size = 16, tau = 0.005, gamma = 0.99, action noise = gaussian, 
policy delay = 2

● Learning rate = 0.001, batch size = 100, tau = 0.1, gamma = 0.99, action noise = gaussian, 
policy delay = 2

● Learning rate = 0.001, batch size = 100, tau = 0.005, gamma = 0.5, action noise = gaussian, 
policy delay = 2

● Learning rate = 0.001, batch size = 100, tau = 0.005, gamma = 0.99, action noise = gaussian, 
policy delay = 8

● Learning rate = 0.001, batch size = 100, tau = 0.005, gamma = 0.99, action noise = gaussian, 
policy delay = 1

While the set used for experiment 6 is:

● Learning rate = 0.001, batch size = 100, tau = 0.005, gamma = 0.99, action noise = Ornstein, 
policy delay = 2

And the set used for experiment 2 is:

● Learning rate = 0.01, batch size = 100, tau = 0.005, gamma = 0.99, action noise = gaussian, 
policy delay = 2

Table 4. Hyperparameters tested for each deep RL model.
Algorithm Hyperparameter Description

DDPG Gamma Specifies the discount factor for computing the return in the Bellman equation 
(Richard, Sutton, and Barto Andrew 2017)

Tau Specifies the soft update coefficient, between 0 and 1 (Lillicrap et al. 2016)
Sigma Specifies the standard deviation of the action noise used, that is, the Ornstein 

Uhlenbeck distribution noise. High values for sigma mean more exploration 
(Lillicrap et al. 2016)

TD3 Gamma Specifies the discount factor for computing the return in the Bellman equation 
(Richard, Sutton, and Barto Andrew 2017)

Tau Specifies the soft update coefficient for the Polyak update, between 0 and 1 
(Lillicrap et al. 2016)

Sigma Specifies the standard deviation of the action noise used, that is, the Gaussian 
distribution noise. High values for sigma mean more exploration (Fujimoto, Van 
Hoof, and Meger 2018)

Policy delay Specifies the frequency of updating the policy network compared to the update of 
the value network (Fujimoto, Van Hoof, and Meger 2018)

PPO Gamma Specifies the discount factor for computing the return in the Bellman equation 
(Richard, Sutton, and Barto Andrew 2017)

GAE lambda Specifies the trade-off of bias versus variance for the Generalized Advantage 
Estimator (Schulman et al. 2017)

Clip range Specifies how far can the new policy go after the update from the old policy. It is 
used to prevent large updates, thus it is usually a small number between 0.1 and 
0.3 (Schulman et al. 2017)

APPLIED ARTIFICIAL INTELLIGENCE e2031821-1907



Therefore, the most crucial hyperparameter of TD3 for good episodic reward is the learning 
rate, which should be as low as possible. While the cause of the high variance in the 
performance of TD3 is the action noise, which as previously in DDPG, using the Ornstein 
noise results in more variance than using Gaussian noise.

Finally, PPO (on the right subfigure), showed the best performance among the three models 
both in terms of the episodic reward as well as the low variance. Nevertheless, setting the right 
hyperparameters’ values is important. As we can see in the correspondent subfigure, PPO’s 
performance can be divided into four parts: experiments 2, 3, and 7, where the episodic reward 
is at zero. Experiment 5, where the episodic reward was better than previously. Experiments 1 
and 4, where the episodic reward increased compared to previously. Finally, experiments 6 and 
8, where the episodic reward was the best. All experiments showed rather similar values of the 
relatively low variance.

The hyperparameters used in experiments 6 and 8 (the best ones) are as follows:

● Learning rate = 0.0003, batch size = 64, number of epochs = 10, GAE lambda = 0.5, clip 
range = 0.2

● Learning rate = 0.0003, batch size = 64, number of epochs = 10, GAE lambda = 0.95, clip 
range = 0.5

The performance dropped in experiments 1 and 4 because of the high increase of the 
learning rate, and the decrease in the batch size, respectively, while keeping the other hyper
parameters the same as in experiment 8. Additionally, increasing the number of epochs above 
64 may cause a drop in the performance as observed in experiment 5. While the most crucial 
hyperparameter tuning was the increase in the learning rate above 0.005, the decrease in the 
batch size to values less than 16 or reducing the clip range to values less than 0.1 as observed in 
experiments 2, 3, and 7, respectively.
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