
British Journal of Mathematics & Computer Science
5(3): 367-382, 2015, Article no.BJMCS.2015.025

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

Information Flow in Concurrent Logic Programming

Antoun Yaacoub1, Ali Awada1∗ and Habib Kobeissi1
1Lebanese University, Faculty of Sciences, Hadath, Lebanon.

Article Information
DOI: 10.9734/BJMCS/2015/14398

Editor(s):
(1) Dariusz Jacek Jakbczak, Computer Science and Management Department, Technical University

of Koszalin, Poland.
Reviewers:

(1) Gulshan Kumar, Dept. of Computer Applications, SBS State Technical Campus, Ferozepur (Pb),
India.

(2) Anonymous, Civil Aviation University of China, China.
(3) D. N. T. Kumar (Nirmal), GEA UNESP, Sorocaba, SP, Brazil.

(4) Yasser Fouad Ramadan, Mathematics Department Faculty of Science, Suez University, Egypt.
Complete Peer review History:

http://www.sciencedomain.org/review-history.php?iid=727&id=6&aid=6882

Original Research Article

Received: 29 September 2014
Accepted: 31 October 2014

Published: 11 November 2014

Abstract
This paper presents a new formalization of information flow detection in concurrent logic
programming and applies it to the problem of deadlock detection. This work is based on a recent
study of the detection of information flow in Datalog programs. Firstly, we define the concept of
information flow in concurrent logic programming. Then, we propose a set of definitions of flow
based on observation and transition systems while solving goals. Finally, we formalize a mechanism
for deadlock detection in concurrent logic programs.

Keywords: Information flow; Concurrent logic programming; Transition systems; Observation; Deadlock
detection.

*Corresponding author: E-mail: al awada@ul.edu.lb

www.sciencedomain.org

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

1 Introduction

Keeping information secret was one of the preoccupation of nearly every human being. Benjamin
Franklin noted in ”Poor Richards Almanack” published in 1734, that ”Three persons can keep secret, if
two of them are dead” [1]. In computer science as well as in current life, a program is called secure if it
is able to keep ”information” confidential. In order to illustrate the crucial idea of Franklin, consider the
following commands sequence in imperative programming tmp := x; y := tmp;. It is clear that, after
the execution of these two commands, the initial value of the x variable is revealed by the value of the
variable y or tmp. Thus, the x secret, shared with y and tmp, is known at the end of the execution of
the sequence. However, after the execution of the following sequence tmp = x; tmp = 0; the initial
value of the variable x is not revealed since the value of the tmp variable was crashed or ”dead”.

This principle led to several studies of information flow in imperative programming [2, 3, 4, 5].
Most of the work done in this field addressed the framework of program optimization and aimed to
improve the quality of programs and to detect eventual errors. Bergeretti et al. [6] deal with information
flow relations for while-programs and use it to detect errors in the static analysis of a program. Smith
et al. [7] develop a type system to ensure secure information flow in a multi-threaded language. Le
Guernic and Jensen [8] gather information flow properties of non-executed branches of a program and
partition the set of all executions in two sets: safe and unsafe. Then they alter the behavior of unsafe
executions in order to ensure the confidentiality of secret data. Nair et al. [9] design and implement
an information flow control system in which they trace implicit information flow in order to enhance
security. Sabelfeld et al. [10, 11] propose an extensional semantics-based formal specification of
secure information-flow properties in sequential programs based on representing degrees of security
by partial equivalence relations. In the domain of logic programming, Debray [12] elaborates an
algorithm to analyze sequential logic programs and extends it to handle parallel executions.

However, information flow does not exclusively deal with testing and debugging. In this work,
we use it to elaborate a mechanism for deadlock detection, an issue addressed by several studies.
Bensalem et al. [13, 14] elaborate a tool for deadlock detection in concurrent systems based on
effective invariant computation to approximate the effects of interactions among modules. They
combine the information from the invariant with model checking techniques and strategies for reducing
the memory footprint. Koskinen and Herlihy study the deadlock problem among threads using a
shared-memory multiprocessor [15]. They use per-thread or per-resource transitive closures over
portions of a waits-for graph and build a test-and-test-and-set lock which aborts when deadlock is
detected. Joshi et al. [16] present a two phases dynamic analysis technique that finds deadlocks
in multi-threaded programs. They start by observing an execution of the program to locate potential
deadlocks, and then create potential deadlocks with high probability by controlling a thread scheduler.
Naik et al. [17] propose an unsound and incomplete approach for deadlock detection that is effective
in practice, and implement a static algorithm for Java that uses four static analysis to approximate
six necessary conditions for a deadlock. Finally, Naish presents a method for detecting deadlocks in
concurrent logic programming [18]. His solution is based on reducing the search space by considering
the processes that use some resources as a subset of all processes.

The work presented in this paper is based on a recent study done by Yaacoub et al. [19, 20],
who proposed three definitions of information flows in logic programs. These definitions correspond
to what can be observed by the user when a query← G(x, y) is run on a logic program P . The first
definition considers that the user only sees whether his query succeeds or fails; thus, information
flows exists from x to y in G when there exists constants a and b such that P ∪{← G(a, y)} succeeds
whereas P ∪ {← G(b, y)} fails. The second definition is based on the sets of substitution answers
computed by the interpreter with respect to his queries. There is a flow of information from x to y in
G if there are constants a and b such that the set of substitution answers of P ∪ {← G(a, y)} and

368

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

P ∪ {← G(b, y)} are different. Lastly, the third definition considers the existence of information flow if
the SLD-refutation trees of the queries P ∪ {← G(a, y)} and P ∪ {← G(b, y)} can be distinguished
(non bisimilar).

Since most of the programs in the real world are interactive in the sense that they send and
receive permanently data by interacting with their environment (web server, GUI applications ...),
it is tempting to address the question of information flow detection in such programs. In fact, the
information flow detection conditions proposed in imperative and first order logic programming are
unable to capture the same notion of information flow in concurrent programming. This is due to the
fact that data dependency is based on variable matching and not on assignation as in imperative
programming nor on substitutions as in first order logic programming. Due to the prevalence of
interactive programs, it is important to see what could be an information flow in concurrent logic
programming.

In this paper, we propose several definitions of information flow in concurrent logic programming.
These definitions correspond to what can be ”observed” by the user when a query← G(x, y) is run
on a concurrent logic program P . An observation is made on the set of succeeded goals, failed
goals, blocking states and infinite states. We propose definitions based on the set of transitions in
concurrent logic programming to finally elaborate a final set of definitions based on the number of
transitions while resolving a goal.

In section 2 of this paper, we present some basic notions about logic and concurrent logic
programming. Then, several definitions of information flow in concurrent logic programming are
proposed relatively to a logic program P and a goal ← G(x, y) of arity 2, (which stipulates the
existence of a flow from the x variable to the y variable in the goal ← G(x, y)). The implications
between these definitions are then studied. Finally, we show the utility of these definitions by studying
the deadlock detection problem in concurrent logic programming.

2 Framework

2.1 Syntax and Semantics

The language L considered here is essentially that of first order predicate logic [21]. It has
countable sets of variables and predicate symbols, these sets being mutually disjoint. A term is a
variable or a constant. A term is ground if no variable occurs in it. The Herbrand universe of L,
denoted UL, is the set of all ground terms that can be formed with the constants in L. An atom is
of the form p(t1, · · · , tn), where p is an n-ary predicate symbol and the ti are terms, 1 ≤ i ≤ n. An
atom is ground if all ti are ground. A clause is an expression of the form A ← B1, · · · , Bn where
A,B1, · · · , Bn are atoms. A is called the head of the clause and B1, · · · , Bn is called its body. A goal
is an expression of the form← B1, · · · , Bn. A clause r of the form A← (i.e., whose body is empty) is
called a fact, and if A is a ground atom, then r is called a ground fact. The empty goal is denoted
�. A predicate definition is assumed to consist of a finite set (possibly ordered) of clauses defining
the same predicate. A logic program consists of a finite set of predicate definitions. With each logic
program P , we associate the language L(P) that consists of the predicates, functions, and constants
occurring in P . If no constant occurs in P , we add some constant to L(P) to have a nonempty
domain. A substitution is an idempotent mapping from a finite set of variables to terms. The identity
substitution will be denoted ε. A substitution σ1 is said to be more general than a substitution σ2 if
there is a substitution θ such that σ2 = θσ1. Two terms t1 and t2 are said to be unifiable if there exists
a substitution σ such that σ(t1) = σ(t2), in this case σ is said to be a unifier for the terms. If two terms
t1 and t2 have a unifier, then they have a most general unifier mgu(t1, t2) that is unique up to variable

369

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

renaming.

The operational behavior of logic programs can be described by means of SLD-derivations. An
SLD-derivation for a goal G =← A1, · · · , An with respect to a program P is a sequence of goals
G0, · · · , Gi, Gi+1, · · · , such that G0 = G, and if Gi = B1,· · · ,Bm, then Gi+1 = θB1,· · · ,θBi−1, θB

′
1,

· · · , θB
′
k, θBi+1, · · · ,θBm such that 1 ≤ i ≤ m, and B ← B

′
1,· · · ,B

′
k is a variant of a clause in P that

has no variable in common with any of the goals G0, · · · , Gi, and θ = mgu(Bi, B). The goal Gi+1

is said to be obtained from Gi by means of resolution step, and Bi is said to be the resolved atom.
Let G0, · · · , Gn be an SLD-derivation for a goal G with respect to a program P , and let θi be the
unifier obtained when resolving the goal Gi−1 to obtain Gi, 1 ≤ i ≤ n. If this derivation is finite and
maximal, i.e., one in which it is not possible to resolve the goal Gn with any of the clauses in P , then
it corresponds to a terminating computation for G: in this case, if Gn is the empty goal then we say
that P ∪ {G} succeeds and the computation is said to succeed with answer substitution θ, where θ is
the substitution obtained by restricting the substitution θn · · · θ1 to the variables occurring in G. if Gn

is not the empty goal, then the computation is said to fail. We say that P ∪{G} fails if all computations
from G in P fail. If the derivation is infinite, the computation does not terminate.

2.2 Transition systems for First order Logic Programming
Definition 2.1. (Transition Systems for logic programs) We associate for each logic program P a
transition system composed of:

• A set of states: A state is a couple of the form < G; θ >, where G is the goal (possibly a failure
goal), and θ is a substitution. The initial state is denoted by < G; ε > where G is the initial goal
and ε denotes the absence of subtitutions.

• A set of transitions: A transition is a function from a state to a set of states. For the states S
and S′, and the transition t, we denote the possibility to pass from state S to state S′ using the
transition t by S t−→ S′

There is two types of transitions:

1. Reduce : < A1, · · · , Ai−1, Ai, Ai+1, · · · , An; θ >
Reduce−−−−−→< (A1, · · · , Ai−1, B1, · · · , Bk, Ai+1, · · · ,

An)θ
′; θ ◦ θ′ > if mgu(Ai, A) = θ′ for some renamed clauses A← B1, · · · , Bk of P .

2. Fail : < A1, · · · , Ai−1, Ai, Ai+1, · · · , An; θ >
Fail−−−→< fail; θ > for some renamed clauses

A← B1, · · · , Bk of P and mgu(Ai, A) = fail.

Example 2.1. Let P be the following program :
ListenToMusic(X)← ListenToMusic(laura).
ListenToMusic(laura).
and let G(X) be the following goal : ← ListenToMusic(X).
Then the transition system of G(X) is :
< G(X); ε >

Reduce−−−−−→< G(laura); {X 7→ laura} > Reduce−−−−−→< 2; {X 7→ laura} >

Definition 2.2. (Activated state, terminal state, success state, and failure state)

• a transition t is activated on a state S if t(S) is not empty.

• A state on which no transition is activated is call terminal state. < true; θ > , < fail; θ >
are called respectively success and failure states.

Definition 2.3. The calculus of a a program P on a goal G is a (finite or infinite) set of states C =
{S1, S2, · · · } that satisfies:

370

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

• Initiation: S1 =< G; ε >, where ε is the empty substitution.

• Consecution : for each k, Sk+1 ∈ t(Sk) for some transition.

• Termination C is finite of length k iff Sk is terminal.

2.3 Concurrent Logic Programming
Advanced research in recent years and the increasing availability of computers led to a new style

of programming called concurrent programming that allows multiple calculations to occur simultaneously
and in cooperation with each other. Most people distinguish between two categories of concurrent
programming: distributed programming which refers to calculations that do not share a common
memory, and parallel programming which refers to calculations that share a common memory. We are
interested in the concurrent logic programming, which is characterized by a very different calculation
process from that of the classical first order logic programming. Several studies addressed languages
of concurrent logic programming such as FCP(|) [22], FCP(:,?) [23], Parlog [24], · · ·

2.3.1 Syntax

In concurrent logic programming [25], each atom p(T1, · · · , Tn) is seen as a process and the goal
(set of atoms) as a network of processes that communicate by instantiating shared logical variables.
The possible behaviors of a process are specified by the ”Guarded Horn Clauses” [26] that have the
following form: Head← Guard|Body
The Head and the Guard specify the conditions under which the transition Reduce could use the
clause. The Body specifies the state of the process after taking the transition. A process may stop,
change its state or became multiple processes as shown in the following table:

Operation Syntax
Stop A← G|true

Change its state A← G|B
Became k concurrent processes A← G|B1, · · · , Bk

2.3.2 Semantics

Among the differences between the semantics of classical first-order logic and concurrent logic,
we mention the following [27]:

Non-determinism There are two types of non-determinism:

1. Don’t Know non-determinism: If someone asks a class of students to write all their names
on a piece of paper, it means that he knows that he want all the names but he does not have
to know the order in which they are written. Having said that all the alternatives are as good
and lead to the same result.

2. Don’t Care Non-determinism: If someone asks a class of students the following question:
”One of you must clear the board before the course starts” so this person wants only that one
of the students to do it but he does not care about the identity of the student. That said we do
not know what is the right choice to take among the offered alternatives. All possible choices
should be exploited by exploring the different alternatives using search tree.

Don’t Know non-determinism is used in logic programming and particularly in Prolog, while Don’t
Care non-determinism is used by the ”Committed choice logic language” as Parlog or FCP(|).
Committed choice is related to the idea of ”guard” and the ”commit” operator (that is the equivalent
of the ”cut” in Prolog - once selected, there is no backtracking). In concurrent systems, a process

371

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

cannot ”undo” a choice, even if it turns out to be wrong. The reason is that the choices and actions
carried out subsequently, have already influenced the environment.

In concurrent logic programming, it is question about matching and not about unification between
atoms as in the first order logic programming. In fact, the matching of an atom A of a goal with
the head of the clause A′ ← G|B succeeds if A is an instance of A′. In this case, the matching
returns the most general unifier θ such that A = A′θ. The matching fails if A and A′ are not unifiable.
Otherwise, the matching is suspended:

match(A,A′) =


θ if θ is a mgu such that A = A′θ
fail if mgu(A,A′) = fail

suspend else

Example 2.2. : Examples of matching a goal with the head of the clause.

Goal Head of the clause Result
← P (a) P (X) {X 7→ a}
← P (X) P (a) Suspend
← P (a) P (b) Fail

Transition systems The single difference between transition systems of first order logic progra-
mming and that of concurrent logic programming is that, in the latter, transitions employ matching and
guards verification instead of unification [28]. The process of matching and guards verification is
captured by the ”try” function.
The mgu function unifies the goal with the head of the clause and returns a substitution or a failure.
The try function pairs the goal with the head of the clause. In the event that it is successful, we say
that it satisfies the guard. The function can also return suspension if the matching or checking guards
are suspended.
try is defined as follows :
try(T1 = T2, X = X) = mgu(T1, T2).

try(A, (A′ ← G|B)) =


θ if (match(A,A′) = θ∧ verify Gθ succeed)
fail if (mgu(A,A′) = θ∧ verify Gθ fails) ∨ (mgu(A,A′) = fail)

suspend else
Thus, transitions fail and reduce use the try function instead of mgu:

• Reduce: : < A1, · · · , Ai−1, Ai, Ai+1, · · · , An; θ >
Reduce−−−−−→< (A1, · · · , Ai−1, B1, · · · , Bk, Ai+1, · · · ,

An)θ
′; θ ◦ θ′ > if try(Ai, C) = θ′ for some renamed clauses A← G|B1, · · · , Bk of P .

• Fail : < A1, · · · , Ai−1, Ai, Ai+1, · · · , An; θ >
Fail−−−→< fail; θ > for some renamed clauses

(other than C) of P and try(Ai, C) = fail.

Note that the result of the suspension is not used in both transitions. Its effect is to prevent an atom
in the goal to be reduced to a failure clause.
The notation (∗−→) is used to denote the transitive closure of→, and 6→ to indicate the absence of any
other transition.

Observations Having a program P , we define by :

• Oss(P) = {< G; ε >
∗−→< 2; θ >}, the set of goals G that succeed.

• Off (P) = {< G; ε >
∗−→< G′; θ > 6→6= 2}, the set of goals G that fail.

• Odd(P) = {< G; ε >
∗−→< Gn; θ >}, Gn 6= 2, the set of goals G that lead to a blocking state.

• Oii(P) = {< G; ε >→< G1; θ1 >→ · · · < Gn; θn >→ · · · }, the set of goals G that lead to an
infinite state.

372

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

Example 2.3. :
Let P be the following program:
C1 : p(b)← q.
C2 : p(a).
C3 : q(X)← q(b).
C4 : r(X)← r(X).
Let G1, G2, G3, and G4 be the following goals respectively: ← p(a),← p(b),← q(X), and← r(X).

Thus,

Oss(P) = {< G1; ε >→< 2; θ >}.
Off (P) = {< G2; ε >→< q; ε >6→}.
Odd(P) = {< G3; ε >→< q(b); θ >}.
Oii(P) = {< G4; ε >→< G4; θ >→< G4; θ >→ · · · }.

3 Formulation of information flow

As we mentioned earlier, we proposed three definitions of information flow in logic programs.
We complete these definitions by introducing new ones adapted to concurrent logic programming.
Recall that there is an information flow from x to y in program P and a goal G(x, y) when there exists
constants a and b such that the outputs of P ∪ {← G(a, y)} and P ∪ {← G(b, y)} computations are
distinguishable by the user without seeing what concerns a and b.

3.1 Observation-based information flow

Having a program P , and a goal G(x, y), there is a flow of information from x to y in G(x, y)
(denoted by x→P

G y) iff ∃a, b ∈ UL such that:

Definition 3.1. G(a, y) ∈ Off (P) and G(b, y) /∈ Off (P).

Example 3.1. Let P1 be the following program:
C1 : eat(bob, y)←
and G1(x, y) the following goal← eat(x, y)

Since P1 ∪ {G1(tim, y)} ∈ Off (P1)
and P1 ∪ {G1(bob, y)} /∈ Off (P1),
then x→P1

G1
y.

In other words, if we hide tim and bob from the goals and since the first goal fails and the second
one does not fail, we can distinguish by looking at the facts that the first constant is not bob while the
second one is bob, consequently the flow occurs.

Definition 3.2. G(a, y) ∈ Oss(P) and G(b, y) /∈ Oss(P).

Example 3.2. Let P2 be the following program:
C2 : love(bob, y)←
and G2(x, y) the following goal← love(x, y)

Since P2 ∪ {G2(bob, y)} ∈ Oss(P2)
and P2 ∪ {G2(tim, y)} /∈ Oss(P2),
then x→P2

G2
y.

If we hide bob and tim from the goals and since the first goal succeeds and the second one fails, we
can distinguish by looking at the facts that the first constant is bob while the second one is not bob,
consequently the flow occurs.

Definition 3.3. G(a, y) ∈ Odd(P) and G(b, y)(P) /∈ Odd.

373

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

Example 3.3. Let P3 be the following program:
C3 : p(a, a)←
and G3(x, y) the following goal← p(x, y)

Since P3 ∪ {G3(a, y)} ∈ Odd(P3)
and P3 ∪ {G3(b, y)} /∈ Odd(P3),
then x→P3

G3
y.

Informally, if we hide constants a and b from the goals and since the first goal is suspended and the
second one fails, we can distinguish by looking at the facts that the first constant is a while the second
one is a, consequently the flow occurs.

Definition 3.4. G(a, y) ∈ Oii(P) and G(b, y) /∈ Oii(P).

Example 3.4. Let P4 be the following program:
C4 : p(a, y)← p(a, y)
and G4(x, y) the following goal← p(x, y)

Since P4 ∪ {G4(a, y)} ∈ Oii(P4)
and P4 ∪ {G4(b, y)} /∈ Oii(P4),
then x→P4

G4
y.

Obviously the first goal loops indefinitely while the second one fails, thus, we can distinguish by
looking at the facts that the first constant is a while the second one is not a, consequently the flow
occurs.

Definition 3.5. G(a, y) ∈ Off (P) and G(a, y) /∈ Oss(P) and
G(b, y) ∈ Oss(P) and G(b, y) /∈ Off (P) .

Example 3.5. Let P5 be the following program:
C5 : kill(b, y)←
and G5(x, y) the following goal← kill(x, y)

Since P5 ∪ {G5(a, y)} ∈ Off (P5) and P5 ∪ {G5(a, y)} /∈ Oss(P5)
and P5 ∪ {G5(b, y)} ∈ Oss(P5) and P5 ∪ {G5(b, y)} /∈ Off (P5),
then x→P5

G5
y.

In fact, the first goal G5(a, y) fails and thus does not succeed too, while the second goal G5(b, y)
succeeds and thus does not fail. Thus, according to the definition, we can distinguish by looking at
the facts that the first constant is not b while the second one is b, consequently the flow occurs.

Definition 3.6. G(a, y) ∈ Off (P) and G(a, y) /∈ Oss(P) and
G(b, y) ∈ Oss(P).

Example 3.6. Let P6 be the following program:
C1 : kill(b, y)←
C2 : kill(b, y)← q
and G6(x, y) the following goal← kill(x, y)

Since P6 ∪ {G6(a, y)} ∈ Off (P6) and P6 ∪ {G6(a, y)} /∈ Oss(P6),
and P6 ∪ {G6(b, y)} ∈ Oss(P6),
then x→P6

G6
y.

Obviously the first goal fails and does not succeeds while the second one succeeds and fails, thus
it succeeds. Consequently, we can distinguish by looking at the facts that the first constant is not b
while the second one is b, therefore the flow occurs.

3.2 Information flow based on transition system
Having a program P , and a goal G(x, y), there is a flow of information from x to y in G(x, y)

related to a transition system (noted x→P
G y) iff ∃a, b ∈ UL such that:

374

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

∃a < G(a, y); ε >
∗−→< Gn; θn >

∀b < G(b, y); ε >
∗−→< Gm; θm >

Definition 3.7. Gn, Gm ∈ Oss(P) and θn 6= θm.

Example 3.7. Let P7 be the following program:
C1 : eat(bob, y)← y = apple
C2 : eat(tim, y)← y = banana
and G7(x, y) the following goal← eat(x, y)

Since < G7(bob, y); ε >→< y = apple; ε >→< �; y = apple >
and < G7(tim, y); ε >→< y = banana; ε >→< �; y = banana >,
then x→P7

G7
y.

In other words, if we hide bob and tim from the goals and since both succeed with different substitution
answers, respectively {y = apple} and {y = banana}, we can distinguish by looking at the facts that
the first constant is bob while the second one is tim, consequently the flow occurs.

Definition 3.8. Gn, Gm ∈ Off (P) and θn 6= θm.

Example 3.8. Let P8 be the following program:
C1 : eat(bob, y)← y = apple, q
C2 : eat(tim, y)← y = banana, q
and G8(x, y) the following goal← eat(x, y)

Since < G8(bob, y); ε >→< y = apple, q; ε >→< q; y = apple > 6→
and < G8(tim, y); ε >→< y = banana, q; ε >→< q; y = banana > 6→,
then x→P8

G8
y.

Here both goals fail with different substitution answers, respectively {y = apple} and {y = banana},
we can distinguish by looking at the facts that the first constant is bob while the second one is tim,
consequently the flow occurs.

Definition 3.9. Gn, Gm ∈ Odd(P) and θn 6= θm.

Example 3.9. Let P9 be the following program:
C1 : eat(bob, y)← y = apple, eat(x, y)
C2 : eat(tim, y)← y = banana, eat(x, y)
and G9(x, y) the following goal← eat(x, y)

Since < G9(bob, y); ε >→< y = apple, eat(x, y); ε >→< eat(x, apple); y = apple > 6→
and < G9(tim, y); ε >→< y = banana, eat(x, y); ε >→< eat(x, banana); y = banana > 6→,
then x→P9

G9
y.

In this example, both goals are suspended due to the matching process. The outputs of both goals
in terms of substitution answers are respectively {y = apple} and {y = banana}. Thus, the user
can distinguish by looking at the facts that the first constant is bob while the second one is tim, and
consequently the flow occurs.

Definition 3.10. Gn, Gm ∈ Oii(P) and θn 6= θm.

Example 3.10. Let P10 be the following program:
C1 : eat(bob, y)← y = apple, eat(bob, z)
C2 : eat(tim, y)← y = banana, eat(tim, z)
and G10(x, y) the following goal← eat(x, y)

Since < G10(bob, y); ε >→< y = apple, eat(bob, z); ε >→< eat(x, apple); y = apple >→
< G10(bob, z); y = apple >→ · · ·

and < G10(tim, y); ε >→< y = banana, eat(tim, z); ε >→< eat(x, banana); y = banana >→
< G10(tim, z); y = banana >→ · · · ,

375

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

then x→P10
G10

y.
Here, both goals loop indefinitely. However, the outputs of both goals in terms of substitution answers
are respectively {y = apple} and {y = banana}. Thus, as in the previous example, the user can
distinguish by looking at the facts that the first constant is bob while the second one is tim, and
consequently the flow occurs.

Definition 3.11. Gn ∈ Oss(P), and Gm /∈ Oss(P).

Example 3.11. Let P11 be the following program:
C1 : eat(bob, y)←
C2 : eat(tim, y)← q
and G11(x, y) the following goal← eat(x, y)

Since < G11(bob, y); ε >→< �; ε >
and < G11(tim, y); ε >→< q; ε >,
then x→P11

G11
y.

In this example, the first goal succeeds while the second one does not. The user can distinguish by
looking at the facts that the first constant is bob while the second one is tim, and consequently the
flow occurs.

Definition 3.12. Gn ∈ Odd(P), and Gm /∈ Odd(P).

Example 3.12. Let P12 be the following program:
C1 : eat(bob, apple)←
C2 : eat(tim, y)← q
and G12(x, y) the following goal← eat(x, y)

Since < G12(bob, y); ε >
and < G12(tim, y); ε >→< q; ε > 6→,
then x→P12

G12
y.

In this example, the first goal succeeds while the second one got suspended due to the matching
process. The user can distinguish by looking at the facts that the first constant is bob while the second
one is tim, and consequently the flow occurs.

Definition 3.13. Gn ∈ Oii(P), and Gm /∈ Oii(P).

Example 3.13. Let P13 be the following program:
C1 : eat(bob, y)← eat(bob, z)
C2 : eat(tim, y)← q
and G13(x, y) the following goal← eat(x, y)

Since < G12(bob, y); ε >→< G13(bob, z); y → z >→ ...
and < G13(tim, y); ε >→< q; ε > /→,
then x→P13

G13
y

Here, the first goal loops indefinitely while the second one got suspended due to the matching
process. The user can distinguish by looking at the facts that the first constant is bob while the
second one is tim, and thus the flow occurs.

Definition 3.14. Gn ∈ Off (P), and Gm /∈ Off (P).

Example 3.14. Let P14 be the following program:
C1 : eat(bob, apple)←
C2 : eat(tim, y)← q
and G14(x, y) the following goal← eat(x, y)

Since < G14(bob, y); ε >
and < G12(tim, y); ε >→< q; ε > 6→,

376

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

then x→P14
G14

y.
Here, the first goal fails while the second one got suspended due to the matching process. The user
can thus distinguish by looking at the facts that the first constant is bob while the second one is tim.
The flow thus occurs.

3.3 Information flow based on number of transitions
Definition 3.15. Having a program P , and a goal G(x, y), there is a flow of information from x to y in
G(x, y) related to the number of transitions (noted x→P

G y) iff ∃a, b ∈ UL such that:

∃a < G(a, y); ε >
∗−→< Gn; θn >

∀b < G(b, y); ε >
∗−→< Gm; θm > such that n 6= m

Example 3.15. Let P15 be the following program:
C1 : eat(bob, y)← eat(bob, apple)
C2 : eat(bob, apple)←
C3 : eat(tim, y)←
and G15(x, y) the following goal← eat(x, y)

Since < G15(bob, y); ε >→< G15(bob, apple); y → apple >→< �; y → apple >
and < G15(tim, y); ε >→< �; ε >,
then x→P15

G15
y.

In this example, both goals succeed, however, the length of the computation varies for each goal.
The user can distinguish by looking at the facts and the program that the first constant is bob while
the second one is tim. Consequently, the flow occurs.

3.4 Relationships among the Definitions
The following graph shows the relationships among the different proposed definitions. An edge

from node i to node j represents the property if x →P
G y according to definition 3.i, then x →P

G y
according to definition 3.j.

6 5 1 15 7

2 11 14 8 9

3

12

4

13

10

To motivate the existence and/or the absence of edges in the graph, consider the following:
The existence of a flow with respect to definition 3.1 does not entail the existence of a flow with
respect to definition 3.5. To show this, let us consider the following example:

Example 3.16. Let P16 be the following program:
C1 : q(a)←
C3 : p(b, y)← q(y)
and G16(x, y) the following goal← p(x, y)
Recall that for a program P , and a goal G(x, y), there is a flow of information from x to y in G(x, y)
iff ∃a, b ∈ UL such that according to definition 3.1 G(a, y) ∈ Off (P) and G(b, y) /∈ Off (P) and
according to definition 3.5 G(a, y) ∈ Off (P) and G(a, y) /∈ Oss(P) and G(b, y) ∈ Oss(P) and
G(b, y) /∈ Off (P).
Obviously there is a flow according to definition 3.1 (the goal G16(b, y) /∈ Off (P) while G16(a, y) ∈
Off (P)) but there is no flow according to definition 3.5 since one of the conditions is violated (i.e.;
G16(b, y) /∈ Oss(P)).

377

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

However, one can establish the following result.

Lemma 3.17. Let P a concurrent logic program and G(x, y) be a two-variable goal. If x →P
G y

according to definition 3.5, then x→P
G y according to definition 3.1.

Proof. Suppose that x →P
G y according to definition 3.5, then G(a, y) ∈ Off (P) and G(a, y) /∈

Oss(P) and G(b, y) ∈ Oss(P) and G(b, y) /∈ Off (P) and in particulary G(a, y) ∈ Off (P) and
G(b, y) /∈ Off (P). Consequently, x→P

G y according to definition 3.1.

4 Application to Deadlock Detection
In order to show the usefulness of the proposed definitions, we illustrate in this section a method

to identify the presence of deadlock in concurrent logic programs. For this, we start by defining the
notions of process, resource and deadlock.

4.1 Processes, Resources, and Deadlocks
The execution of a process requires a set of resources (disk, files, etc.) assigned by the operating

system. The use of a resource involves the following steps:

• Requesting for the resource: If is is impossible to fulfill the request, the requesting process
must wait. The request shall be put into a table containing the processes waiting for resources.

• Acquiring the resource: The process can use the resource. Note that a process cannot use a
resource without first requesting it.

• Releasing the resource: The process releases the allocated resource and becomes again
available.

When a process requires exclusive access to a resource already allocated to another process, the
operating system decides to put it on hold until the required resource becomes available.
Problems can arise when the processes get exclusive access to resources. For example, a process
P1 holds a resource R1 and is waiting for another resource R2 that is used by another process P2;
and if the process P2 holds resource R2 and waits for resource R1: a deadlock situation. In fact, P1

waits for P2 and P2 waits for P1. Both processes will wait indefinitely.
In general, an set of processes is deadlocked if each process waits for the releasing of a resource
that is allocated to another process in the set. As all processes are waiting, none will run and thus
freeing resources requested by others is impossible.

4.2 Information-Flow-based Deadlock Detection
Let P be a concurrent logic program, Pr = {Pr1, · · · , P rn} a set of process , and R =

{R1, · · · , Rm} a set of resources. As in common, we require that all studied processes must request
at least one resource. This led us to the following characterization of deadlock detection:

Definition 4.1. Let P be a concurrent logic program and let Pr = {Pr1, · · · , P rn}, and R =
{R1, · · · , Rm}, we say that there is a deadlock in P iff:
∀i ∈ {1, · · · , n},
• there is a flow of information from Pr to R restricted to Ri relatively to the goal acquire(Pr,Ri)

according to the flow definition based on definition 3.1 or 3.2 (success/failure),
and

Resricted in the sense that we consider only the set of facts that matches R = Ri.

378

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

• there is no flow of information from Pr toR restricted toRi relatively to the goal request(Pr,Ri)
according to the flow definition based on definition 3.1 or 3.2 (success/failure).

Formally, ∀i ∈ {1, · · · , n}, P r →P
acquire(Pr,Ri)

R|Ri ∧ Pr 6→P
request(Pr,Ri)

R|Ri

Example 4.1. Let P be the following concurrent logic program, Pr = {P1, P2, P3} and R = {R1, R2}.
C1 : start← P1, P2, P3

C2 : P1 ← assert(request(Pr1, R1)), assert(acquire(Pr1, R1)), assert(request(Pr1, R2)),
· · · , assert(acquire(Pr1, R2)), assert(release(Pr1, R1)), assert(release(Pr1, R2))

C3 : P2 ← assert(request(Pr2, R2)), assert(acquire(Pr2, R2)), assert(request(Pr2, R1)),
· · · , assert(acquire(Pr2, R1)), assert(release(Pr2, R2)), assert(release(Pr2, R1))

C4 : P3 ← assert(request(Pr3, R2)), assert(acquire(Pr3, R2)), · · · , assert(release(Pr3, R2))

When running the program P by calling the goal ← start, and in the case where process
P1 acquires the resource R1 while then second process P2 acquires the second resource R2, the
following facts are asserted:

From P1 From P2 From P3

request(Pr1, R1) request(Pr2, R2) request(Pr3, R2)
acquire(Pr1, R1) acquire(Pr2, R2)
request(Pr1, R2) request(Pr2, R1)

For resource R1, Pr →P
acquire(Pr,R1)

R1, only acquire(Pr1, R1) succeeds.
Moreover, Pr 6→P

request(Pr,R1)
R1 since request(Pr1, R1) and request(Pr2, R1) succeed.

As for resource R2, Pr →P
acquire(Pr,R2)

R2, only acquire(Pr2, R2) succeeds.
Moreover, Pr 6→P

request(Pr,R2)
R2 since request(Pr1, R2), request(Pr2, R2) and request(Pr3, R2)

succeed.

Thus, Pr →P
acquire(Pr,R1)

R|R1 ∧ Pr 6→P
request(Pr,R1)

R|R1 and Pr →P
acquire(Pr,R2)

R|R2 ∧
Pr 6→P

request(Pr,R2)
R|R2 , we can prove the existence of the deadlock.

5 Conclusion
In this paper, we proposed several definitions of information flow in concurrent logic programming.

a In section (2), we presented the syntax and semantics of first order logic programming. Since
most of our definitions of flow are based on transition systems, we introduced this concept
for logic programming and then we adapted it to concurrent logic programming. Furthermore,
we introduced the notion of observation on which we relied to develop other definitions of
information flow.

b In section (3), Fifteen definitions based on transition systems and observation in concurrent logic
programming were given. The implications among these definitions were then studied.

c Finally, in section (4), we represented deadlock in a concurrent logic program in terms of information
flow. We used one of our definitions (based on success/failure) to accomplish this task.

However, it seems interesting to represent deadlocks using the other definitions we proposed, and
therefore to study the equivalence among the associated detection mechanisms.

379

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

In a future work, it will be interesting to draw a comparison between the different detection
mechanisms proposed in the litterature. A quantitative analysis could be carried out in order to
emphasize the usefulness of the proposed method.

Meanwhile, we are still formally investigating the decidability and the complexity of the existence
of flow relatively to the definitions proposed in concurrent logic programming.

Moreover, our study focused on the use of FCP(|) as concurrent logic language. A future study
using other languages such as Parlog or FCP(:) seems to be a good way to complete this work.

Competing Interests
The authors declare that no competing interests exist.

References
[1] Franklin B. Poor Richard’s Almanack. Barnes & Noble Books; 2004.

[2] Bell D, LaPadula L. Secure computer systems: Mathematical foundations and model. The
MITRE Corporation Bedford MA Technical Report M74244 1, M74-244. 1973;42.

[3] Bell DE, LaPadula LJ. Secure computer system: Unified exposition and multics interpretation.
Proc 10 1, MTR-2997. 1976;118-121.

[4] Biba K J. Integrity considerations for secure computer systems. Proceedings of the 4th annual
symposium on Computer architecture. 1977;5(7):135-140.

[5] Biskup J. Security in Computing Systems: Challenges, Approaches and Solutions, 1st ed.
Springer Publishing Company, Incorporated; 2008.

[6] Bergeretti JF, Carré B A. Information-flow and data-flow analysis of while-programs. ACM
Transactions on Programming Languages and Systems (TOPLAS). 1985;7(1):37-61.

[7] Smith G, Volpano D. Secure information flow in a multi-threaded imperative language. In
Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM. 1998;355-364.

[8] Le Guernic G, Jensen T. Monitoring information flow. In Workshop on Foundations of Computer
Security-FCS’05. 2005;19-30.

[9] Nair SK, Simpson PN, Crispo B, Tanenbaum AS. A virtual machine based information
flow control system for policy enforcement. Electronic Notes in Theoretical Computer
Science.2008;197(1):3-16.

[10] Sabelfeld A, Myers AC. Language-based information-flow security. IEEE Journal on Selected
Areas in Communications. 2003;21(1):5-19.

[11] Sabelfeld A, Sands D. A per model of secure information flow in sequential programs. Higher-
order and symbolic computation. 2001;14(1):59-91.

380

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

[12] Debray S. Efficient dataflow analysis of logic programs. Journal of the ACM (JACM).
1992;39(4):949-984.

[13] Bensalem S, Griesmayer A, Legay A, Nguyen TH, Peled D. Efficient deadlock detection for
concurrent systems. In Formal Methods and Models for Codesign (MEMOCODE), 2011 9th
IEEE/ACM International Conference on.IEEE. 2011;119-129.

[14] Bensalem S, Griesmayer A, Legay A, Nguyen TH, xSifakis J, Yan R. D-finder 2: Towards efficient
correctness of incremental design. In NASA Formal Methods. Springer. 2011;453-458.

[15] Koskinen E, Herlihy M. Dreadlocks: efficient deadlock detection. In Proceedings of the twentieth
annual symposium on Parallelism in algorithms and architectures. ACM. 2008;297-303.

[16] Joshi P, Park CS, Sen K, Naik M. A randomized dynamic program analysis technique for
detecting real deadlocks. ACM Sigplan Notices. 2009;44(6):110-120.

[17] Naik M, Park CS, Sen K, Gay D. Effective static deadlock detection. In Proceedings of the 31st
International Conference on Software Engineering (2009), IEEE Computer Society, pp. 386–
396.

[18] Naish L. Resource-oriented deadlock analysis. In Logic Programming. Springer. 2007;302-316.

[19] Balbiani P, Yaacoub A. Deciding the bisimilarity relation between Datalog goals (regular paper).
In European Conference on Logics in Artificial Intelligence (JELIA), Toulouse, 26/09/2012-
28/09/2012 (http://www.springerlink.com, septembre 2012), L. Fariñas del Cerro, A. Herzig, and
J. Mengin, Eds., Springer. 2012;67-79.

[20] Yaacoub A. Towards an information flow in logic programming. International Journal of
Computer Science Issues (IJCSI). 2012;9(2).

[21] Lloyd JW. Foundations of Logic Programming, 2nd Edition. Springer; 1987.

[22] Shapiro E. The family of concurrent logic programming languages. ACM Computing Surveys
(CSUR). 1989;21(3):413-510.

[23] Yardeni E, Kliger S, Shapiro E. The languages fcp (:) and fcp (:,?). New Generation Computing
. 1990;7(2-3):89-107.

[24] Clark K, Gregory S. Parlog: Parallel programming in logic. ACM Transactions on Programming
Languages and Systems (TOPLAS). 1986;8(1):1-49.

[25] Gallagher J, Codish M, Shapiro E. Specialisation of prolog and fcp programs using abstract
interpretation. New Generation Computing. 1988;6(2-3):159-186.

[26] Ueda K. Guarded horn clauses: A parallel logic programming language with the concept of a
guard. In Programming of Future Generation Computers. 1987;441-456.

[27] Maher MJ. Logic semantics for a class of committed-choice programs. In Logic Programming,
Proceedings of the Fourth International Conference, Melbourne, Victoria, Australia. 1987;2:858-
876. .

381

Yaacoub et al.; BJMCS, 5(3), 367-382, 2015; Article no.BJMCS.2015.025

[28] Pnueli A. Applications of temporal logic to the specification and verification of reactive systems:
A survey of current trends. In Current Trends in Concurrency, J. de Bakker, W.-P. de Roever,
and G. Rozenberg, Eds., vol. 224 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 1986;510-584.

———-
c©2015 Yaacoub et al.; This is an Open Access article distributed under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=727&id=6&aid=6882

382

http://creativecommons.org/licenses/by/4.0

	Introduction
	Framework
	Syntax and Semantics
	Transition systems for First order Logic Programming
	Concurrent Logic Programming
	Syntax
	Semantics

	Formulation of information flow
	Observation-based information flow
	Information flow based on transition system
	Information flow based on number of transitions
	Relationships among the Definitions

	Application to Deadlock Detection
	Processes, Resources, and Deadlocks
	Information-Flow-based Deadlock Detection

	Conclusion

