
 

 

British Journal of Mathematics & Computer Science  
5(3): 349-366, 2015, Article no.BJMCS.2015.024 

ISSN: 2231-0851 
 

SCIENCEDOMAIN international 
www.sciencedomain.org   

______________________________________________________________________________________________________________________ 

 

_____________________________________ 

*Corresponding author: oemam80@yahoo.com; 

  
 

On the Solution of a Rough Interval three-level Quadratic 

Programming Problem 

 
Omar M. Saad

1
, O. E. Emam

2*
 and Marwa M. Sleem

3
 
 

1
Department of Mathematics, Faculty of Science, Helwan University, P.O.Box 11795, Cairo, 

Egypt. 
2
Department of Information Systems, Faculty of Computers and Information, Helwan University, 

P.O.Box 11795, Egypt. 
3
Department of Basic Sciences, Higher Thebes Institute of Engineering, Maadi, Cairo, Egypt. 

 

Article Information 

 
DOI: 10.9734/BJMCS/2015/13430 

Editor(s): 

(1) Sergio Serrano, Department of Applied Mathematics, University of Zaragoza, Spain. 

Reviewers: 

(1) Salim Rezvani, Department of Mathematics, Imam Khomaini Mritime University of Nowshahr, Nowshahr, Iran. 

(2) Anonymous, The John Paul II Catholic University of Lublin, Poland. 

(3) Anonymous, University of Silesia, Sosnowiec, Poland. 

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=727&id=6&aid=6756 

 

 
 

Received: 16 August 2014 

Accepted: 16 October 2014 

Published: 04 November 2014 

_______________________________________________________________________ 
 

Abstract 

 
In this paper, a three-level quadratic programming (QP) problem is considered where some or 

all of its coefficients in the objective function are rough intervals. At the first phase of the 

solution approach and to avoid the complexity of the problem, two QP problems with interval 

coefficients will be formulated.  One of these problems is a QP where all of its coefficients are 

upper approximation of rough intervals and the other problem is a QP where all of its 

coefficients are lower approximations of rough intervals. At the second phase, a membership 

function is constructed to develop a fuzzy model for obtaining the optimal solution of the three-

level quadratic programming problem. Finally, an illustrative numerical example is given to 

demonstrate the obtained results. 

Keywords: Quadratic Programming; Three-level Programming; Rough Intervals Programming. 
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1 Introduction 

 
The rough set expressed by a boundary region of a set which is described by lower and upper 

approximation where the set is considered as a crisp set if the boundary region is empty. This is 

exactly the idea of vagueness [1,2]. The approach for solving rough interval programming 

problem is to convert the objective function from rough interval to crisp using theorem of crisp 

evaluation. 

 

Three-level optimization is a kind of multi-level optimization which is a technique developed to 

solve decentralized problems with multiple decision-makers in hierarchical organization [3]. 

Three-level programming problem is concerned with minimizing or maximizing some quantity 

represented by an objective function. 

 

Quadratic Programming (QP) is one of the most popular models used in decision-making and in 

optimization problems [4]. Quadratic Programming problem aims at minimize (maximize) a 

quadratic objective function subject to a set of linear constraints. If the coefficients in the 

objective function are exactly known crisp value, then these models can be solved by classical 

methods and algorithms.  

 

In some real-world situations, the coefficients of decision-making models are not exactly known. 

This is due to the fact that some of relevant data are non-existent, scarce, or difficult. Almost all 

concepts which are used in a natural language are vague. Perhaps some people think that they are 

subjective probability or fuzzy. 

 

In modern times, scholars are often faced with complex decision-making problems concerning 

uncertainty. Here uncertainties are stated by interval data, roughness or their hybrid with fuzziness 

and randomness [5,6,7,8,9]. 

 

Emam [10] presented a bi-level integer non-linear programming problem with linear or non-linear 

constraints, and in which the non-linear objective function at each level were maximized. It 

proposed a two planner integer model and a solution method for solving this problem. Therefore 

Emam proposed an interactive approach for solving bi-level integer multi-objective fractional 

programming problem [11]. 

 

Osman et al. in [12] presented rough bi-level programming problems using genetic algorithm 

(GA) by constructing the fitness function of the upper level programming problems based on the 

definition of through feasible degree. Hamzehee et al. [7] presented a linear programming (LP) 

problem which is considered where some or all of its coefficients in the objective function and /or 

constraints are rough intervals.  In order to solve this problem, two LP problems with interval 

coefficients will be constructed. One of these problems is a LP where all of its coefficients are 

upper approximations of rough intervals and the other problem is a LP where all of its coefficients 

are lower approximations of rough intervals. Using these two LPs, two newly solutions are 

defined. 

 

In Osman et al. [3] provided a solution method for solving multi-level non-linear multi-objective 

problem under fuzziness. This solution method uses the concepts of tolerance membership 

functions and multi-objective optimization at every level to develop a fuzzy max-min decision 

model till generating the optimal solution. 
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On the other hand, Sultan et al. [4] used the fuzzy approach to study a parametric bi-level 

quadratic programming problem with random rough coefficient in the objective functions. This 

approach combines the convert technique of rough coefficient and Stackelberg strategy [4]. In 

later work for Effati and Pakdaman [5], an interval valued linear fractional programming problem 

(IVLFP) has been introduced. An IVLFP is a linear fractional programming problem with interval 

coefficients in the objective function. It is proved that we can convert an IVLFP to an optimization 

problem with interval valued objective function which bounds are linear fractional functions.  

 
In Saad et al. [13] provided a comparative study on the solution of stochastic and fuzzy integer 

nonlinear programming problem. Two different approaches for treating stochastic and fuzzy 

integer nonlinear programming problems are introduced and investigated. Certain results have 

been derived in the framework of fuzziness and randomness. The methodologies are compared 

and evaluated. And Sakawa presented Fuzzy sets and interactive multi-objective optimization[14]. 

 

The purpose of the present paper is to find an optimal solution of the model of a three-level 

quadratic programming problem with rough interval coefficients. The used fuzzy approach is 

based mainly upon a systematic access to the best results.  

 

This paper is organized as follows: In Section 2, the three-level quadratic programming problem 

with rough interval coefficients is formulated. Section 3 involves the theories used to transform 

rough interval to crisp variable. The fuzzy approach using membership function to solve the 

problem under consideration is given in Section 4.Section 5 provides an algorithm of finding the 

optimal solution of the formulated model. A numerical example which illustrates the theory of the 

solution algorithm is suggested in Section 6.  Finally, the paper is concluded in Section 7 where 

some points of further research are reported. 

 

2 Problem Formulation and Solution Concept 
 
The three-level quadratic programming problem with rough interval coefficients in the objective 

functions (TLQPRIC) may be written as follows: 

 ���������	  ���� ���� = ∑ ����� , ����, ���� , �������� � + �" �#����� , ����, ���� , ������ ,  (1) 

 

where $% solves 

 

[%&' �����	 
 ���( �"�� = ∑ ����� , ����, ���� , �������� � + �" �#����� , ����, ���� , ������ ,  (2) 

 

where $) solves 

 

[)*' �����	 
 ���+ �,�� = ∑ �����, ����, ���� , �������� � + �" �#����� , ����, ����, ������ , (3) 
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Subject to 

   G = .|A ≤ d,  ≥ 05.                                                  (4) 

 

where G is the three-level convex constraint set , ��, �" and �, are the objective functions of the 

first level decision maker (FLDM), second level decision maker (SLDM), and third level decision 

maker (TLDM), respectively. Also ����� , ����, ����, ����� is rough interval coefficient of the objective 

function. Let (j=1,2,…,n),  = ��, ", … , ��#denote the vector of all decision variables. 

 

Remark 1. [7] 

 

According to rough interval properties we have: 

 �c9:, c9;� ⊆ �c9:, c9;� ⇒ c9: ≤ c9: ≤ c9; ≤ c9;. 
 

Definition 1. [7] 

 

Consider all of the corresponding TLQPRIC problem (1)-(4): 

 

(a) The interval �z∗:, z∗;	��z∗:, z∗;�� is called  the surely (possibly) optimal range of problem 

(1)-(4),  if the optimal  range of  each TLQPRIC Problem is a superset (subset) of �z∗:, z∗;	��z∗:, z∗;��. 
 

(b) Let �z∗:, z∗;	��z∗:, z∗;�� be surely optimal (possibly) optimal range of the problem (1)-(4). 

Then the rough interval �z∗:, z∗;	��z∗:, z∗;��is called the rough optimal range of problem 

(1)-(4). 

 

(c) The optimal solution of each corresponding TLQPRIC problem (1)-(4) which its optimal 

value belongs to �z∗:, z∗;	��z∗:, z∗;�� is called a complete (rather) satisfactory solution of 

problem (1)-(4). 

 

3 The Transformation of Random Rough Interval Coefficient 

 
To convert the three-level quadratic programming  problem with random rough interval 

coefficient in the objective functions into upper and lower approximations for random rough 

interval coefficient to crisp equivalent, this process is usually a hard work for many cases in the 

following manner. 

 

(LI): Lower interval in the objective functions. 

 

[��� �����	 
���� @��� = ∑ ���� , ����� + �" �#���� , ������� � ,    (5) 

 

where $% solves 
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[%&' �����	 
 ���( @"�� = ∑ ���� , ����� + �" �#���� , ������� � ,    �6� 

 

where $) solves 

 

[)*' �����	 
 ���+ @,�� = ∑ ���� , ����� + �" �#���� , ������� � , �7�    �7� 

 

Subject to 

     G = .|A ≤ d,  ≥ 05.                    (8) 

 

(UI): Upper interval in the objective functions. 

 

[��� �����	 
 ���� @��� = ∑ ���� , ����� + �" �#���� , ������� � ,   (9) 

 

where $% solves 

  

[%&' �����	 
 ���( @"�� = ∑ ����, ����� + �" �#���� , ������� � ,  (10) 

 

where $) solves 

 

[)*' �����	 
 ���+ @,�� = ∑ ���� , ����� + �" �#���� , ������� � ,   �11� 

 

Subject to   

     G = .|A ≤ d,  ≥ 05.                         �12� 
 

After the division of random rough interval coefficient in the objective functions into upper and 

lower interval to build a crisp equivalent model, the following theorems are necessary and useful. 

 

Theorem1. [7] 
 

Suppose that the optimal range of LPIC problem (L) exists. Then, it is equal to the surely optimal 

range of problem (1)-(4). The optimal range of LPIC Problem (L) can be obtained by solving two 

classical LPs as follows: 
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E�: G� ≔ �� I ����,
�

� �  
subject to 

I �J�� � ≤ KJ� , L = 1,2, … , M,�
� �  

� ≥ 0, N = 1,2, … , O, 

E": G� ≔ �� I ����,
�

� �  

subject to 

I �J�� � ≤ KJ�, L = 1,2, … , M,�
� �  

� ≥ 0, N = 1,2, … , O. 
 

Theorem 2. [7] 

 

Suppose that the optimal range of LPIC Problem (U) exists. Then, it is equal to the surely optimal 

range of Problem (1)-(4).The optimal range of LPIC Problem (U) can be obtained by solving two 

classical LPs as follows: 

 

E,: G� ≔ �� I ����,
�

� �  

subject to 

I �J�� � ≤ KJ� , L = 1,2, … , M,�
� �  

� ≥ 0, N = 1,2, … , O. 

EW: G� ≔ �� I ���� ,    �
� �  

subject to 

I �J�� � ≤ KJ�, L = 1,2, … , M,�
� �  

� ≥ 0, N = 1,2, … , O. 
 

Now, the lower interval LI and the upper interval UI of problems given before by (5)-(12) are the 

reformulated more explicitly as: 

 

a. Lower Interval: 

 

a.1 Lower Interval coefficient (LIC) 

 

[��� �����	 
 ���� @���� = ∑ ���� + �" �#������ � ,     �13� 

 

where $% solves 

 

[%&' �����	 
 ���( @"��� = ∑ ���� + �" �#����,�� � �14�     (14) 

 

where $) solves 

 

[)*' �����	 
 ���+ @,��� = ∑ ���� + �" �#����,         �� �      (15) 
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Subject to   

      Z = .[|\[ ≤ ', [ ≥ ]5.                                             (16) 

 

a.2 Upper Interval coefficient (UIC) 

 

[��� �����	 
 ���� @���� = ∑ ���� + �" �#���� ,�� �     (17) 

 

where $% solves 

 

[%&' �����	 
 ���( @"��� = ∑ ���� + �" �#���� ,�� �     (18) 

 

where $) solves 

 

[)*' �����	 
 ���+ @,��� = ∑ ���� + �" �#���� ,�� �     (19) 

 

Subject to 

 Z = .$|\$ ≤ ', $ ≥ ]5.          (20) 

 

b. Upper Interval 

 

b.1 Lower Interval coefficient (LIC) 

 

[��� �����	 ���� @���� = ∑ ���� + �" �#���� ,�� �      (21) 

 

where $% solves 

  

[%&' �����	 
 ���( @"��� = ∑ ���� + �" �#���� ,�� �      (22) 

 

where $) solves 

 

 

[)*' �����	 
 ���( @"��� = ∑ ���� + �" �#���� ,�� �      (23) 
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Subject to   

 Z = .$|\$ ≤ ', $ ≥ ]5.                                     (24) 

 

b.2 Upper Interval coefficient (UIC) 

 

[��� �����	 
 ���� @���� = ∑ ���� + �" �#����,�� �     (25) 

 

where $% solves 

 

[%&' �����	 
 ���( @"��� = ∑ ���� + �" �#����,�� �    (26) 

 

where $) solves 

 

[)*' �����	 
 ���( @"��� = ∑ ���� + �" �#����,�� �     (27) 

 

Subject to 

 Z = .$|\$ ≤ ', $ ≥ ]5.                                       (28) 

 

4 Fuzzy Approach of Three-level Quadratic Programming 

problem [3] 

 
In this section, the three-level quadratic programming problem with rough interval coefficients in 

the objective functions is solved by using fuzzy approach as described  in [3]. At the beginning, 

we start by stating the first level decision maker problem in the following: 

 

4.1 First Level Decision Maker Problem 
 

The FLDM problem may be formulated as follows: 

 ���� ���� = ∑ �����, ����, ����, �������� � + �" �#����� , ����, ����, ������ ,                     �29�
  

Subject to 
  ∈ `.       (30) 

 

Find individual optimal solution of problem FLDM by obtaining the best and the worst solutions 

of his problem after transformation (29) problem into the classical problem by theorem (1,2). 
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���� ���� :

abb
bbb
bc
bbb
bbb
d

�efg�: @�:
abb
c
bbd ���� @���� = I ���� + 12 �#���� ⇒ hi@��j∗ = ���kl @��,i@��jm = �LO�kl @��.n

�
� �

���� @���� = I ���� + 12 �#���� ⇒ hi@��j∗ = ���kl @��,i@��jm = �LO�kl @��. n
�

� �
n

�ofg�: @�:
abb
c
bbd ���� @���� = I ���� + 12 �#���� ⇒ hi@��j∗ = ���kl @��,

i@��jm = �LO�kl @��. n
�

� �
���� @���� = I ���� + 12 �#���� ⇒ hi@��j∗ = ���kl @�� ,

i@��jm = �LO�kl @��.n
�

� �

n
n              �31�  

 

This data can then be formulated as the following membership function: 

�efg�: p q@���r =

ab
bbb
bc
bb
bb
bd p q@����r =

abb
cb
bd 1                        L@@��� > i@��j∗ ,@��� − i@��jm

i@��j∗ − i@��jm L@ i@��jm ≤ @��� ≤ i@��j∗ ,
 0                       L@ i@��jm ≥ @���.

n

p q@����r =
abb
cb
bd      1                      L@@��� > i@��j∗ ,@��� − i@��jm

i@��j∗ − i@��jm L@ i@��jm ≤ @��� ≤ i@��j∗ ,
  0                       L@ i@��jm ≥ @���.

n
n    �32� 

 

�ofg�: p�@���� =

abb
bbb
bc
bbb
bbb
d

p q@����r =
abb
c
bbd 1                        L@@��� > i@��j∗ ,@��� − i@��jm

i@��j∗ − i@��jm L@ i@��jm ≤ @��� ≤ i@��j∗ ,
 0                       L@ i@��jm ≥ @���.

n

p q@����r =
abb
c
bbd      1                      L@@��� > i@��j∗ ,@��� − i@��jm

i@��j∗ − i@��jm L@ i@��jm ≤ @��� ≤ i@��j∗ ,
  0                       L@ i@��jm ≥ @���.

n
n     �33� 

 

Now, the solution of the FLDM problem can be obtained by solving the following Tchebycheff 

problem: 
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�efg�:

abb
bbb
c
bbb
bbd

�� u,vwKNx�y yz ∈ `,p q@����r ≥ u,u ∈ �0,1	.
�� u,vwKNx�y yz ∈ `,p q@����r ≥ u,u ∈ �0,1	.

n    (34) 

 

�ofg�:

abb
bbb
c
bbb
bbd

�� u,vwKNx�y yz ∈ `,p q@����r ≥ u,u ∈ �0,1	.
�� u,vwKNx�y yz ∈ `,p q@����r ≥ u,u ∈ �0,1	.

n    (35) 

 

Whose solution are assumed to be ���, "�, ,��{ , ���, "�, ,��{ , ���, "�, ,��{ , ���, "�, ,��{ , u{ , and iq@�� , @��r , q@�� , @��rj{
, (satisfactory level). 

 

4.2 Second level Decision Maker Problem 

The SLDM does the same action like the FLDM till he/she obtains his/her solution ��� , "� , ,��|, ���, "�, ,��|, ���, "� , ,��|, ���, "�, ,��|, }| , and iq@"� , @"�r , q@"� , @"�rj|
, 

(satisfactory level). 

 

4.3 Third Level Decision Maker Problem 

 
The TLDM does the same action like the SLDM till he/she obtains his/her 

solution��� , "�, ,��#, ���, "�, ,��# , ���, "�, ,��#, ���, "�, ,��# , ~# , and iq@,� , @,�r , q@,� , @,�rj#
. 

 

Now, the solution of the FLDM, SLDM, and TLDM are disclosed. However, three solutions are 

usually different because of the nature between three levels objective functions. 
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The FLDM knows that using the optimal decisions �{: .����{ , ����{ , ����{ , ����{5, as control 

factors for the SLDM, are not practical. And also the SLDM knows that using the optimal 

decisions  "|: .�"��|, �"��| , �"��| , �"��|} as  control factors for the TLDM is not practical. It is 

morereasonable to have some tolerance that gives the SLDM andTLDM an extent feasible region 

to search for the optimal solution, and also reduce searching time or interactions. 

 

In this way, the range of decision variable �: ���, ��, �� , ���, ": �"� , "�, "�, " �� should 

bearound �{: .����{ , ����{ , ����{ , ����{5 , "|: .�"��| , �"��| , �"��|, �"��| } with maximum 

tolerance �y��{ , �y"�| and the following membership 

functionspecify.����{ , ����{ , ����{ , ����{5,.�"��| , �"��| , �"��|, �"��|}as follows: 

 

p��� =

ab
bbb
bbb
bbb
c
bbb
bbb
bbb
bd

p��� =

abb
bbc
bbb
bd p���� =

abc
bd � − i����{ − �y��{j�y��{ L@����{ − �y��{ ≤ � ≤ ����{

−� + i����{ + �y��{j�y��{ L@����{ ≤ � ≤ ����{ − �y��{
n

p���� =
abc
bd � − i����{ − �y��{j�y��{ L@����{ − �y��{ ≤ � ≤ ����{

−� + i����{ + �y��{j�y��{ L@����{ ≤ � ≤ ����{ − �y��{
n
n

p��� =

abb
bbc
bbb
bd p���� =

abc
bd � − i����{ − �y��{j�y��{ L@����{ − �y��{ ≤ � ≤ ����{

−� + i����{ + �y��{j�y��{ L@����{ ≤ � ≤ ����{ − �y��{
n

p���� =
abc
bd � − i����{ − �y��{j�y��{ L@����{ − �y��{ ≤ � ≤ ����{

−� + i����{ + �y��{j�y��{ L@����{ ≤ � ≤ ����{ − �y��{
n
n

n   �36� 

 

Thep�"� does the same action like thep���. 

 

The FLDM goals may reasonably consider �� i@�� , @�� , @�̅� , @�̅�j ≥ ��{��@���{ , �@���{ , �@���{ , �@���{� is absolutely acceptable and  �� ≤��{��|, "|, ,|�: i�����|, ����|, ����|, ����|� , ��"��|, �"��|, �"��|, �"��|� , ��,��|, �,��|, �,��|, �,��|�j, 
is absolutely unacceptable, and that the preference with ��,�  is linearly increasing. This is due to the 

fact that the SLDM obtained the optimum at��|, "|, ,|�, which in turn provides the FLDM the 

objective function values ��� , makes any �� ≥ ��� = ����|, "|, ,|� unattractive in practice. 

 

The following membership functions of the FLDM can be stated as: 
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p̀�����	 = � 1                  L@���� > ��{ ,{����m{��{��m{�� L@��� ≤ ���� ≤ ��{ ,0                 L@��� ≥ ����. n   (37) 

 

 

Second, The SLDM and TLDM do the same action like the FLDM. 

 

Finally, in order to generate the satisfactory solution, which is also a Pareto optimal solution with 

overall satisfaction for all decision-makers; the following Tchebycheff problem will be solved: 

 �� �,                                                                                                                        �38� 

 

Subject to p̀�����	 ≥ �, p̀��"��	 ≥ �, p̀��,��	 ≥ �, �� − ��{ − y��	y� ≥ �, −� + ��{ + y��y� ≥ �, �" − �"| − y"�	y" ≥ �, −" + �"| + y"�y" ≥ �,  ∈ `, yJ > 0 , � ∈ �0,1	. 
 

5 An Algorithm for Solving Problem (TLQPRIC) 
 

A solution algorithm to solve (TLQPRIC) problems (1)-(4)is described in a series of stepsas 

follows: 

 

Step1 : Determine the surly random rough interval coefficient rang (lower (L) interval problem) 

in FLDM, SLDM, and TLDM problem, respectively. 

Step2 : Determine the possible random rough interval coefficient rang (upper (U) interval 

problem) in FLDM, SLDM, and TLDM problem, go to step3. 

Step3 : Formulate the corresponding equivalent problem (TLQPI). 

Step4 : Convert the lower and upper random interval coefficient in FLDM problem into 

equivalent crisp models can be solved by classical methods. 

Step5 : Convert the lower and upper random interval coefficient SLDM, and TLDM problem in 

to equivalent crisp models, go to step 6. 

Step6 : Using the fuzzy approach as described in [3] to solve the resulting multi-level decision-

making problems in Step 5. 

Step7 : Build membership functions of the FLDM, SLDM, and TLDM after determine the best 

and the worst solution of all (LIC) and (UIC) problems. 
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Step8 : Solve a Tchebycheff problem for all decision makers level problem. 

Step9 : Control assumed the FLDM his/her decision by tolerance y�. 

Step10 : Control assumed the SLDM his/her decision by tolerance y". 

Step11 : If } < 0, increase y�, y" then goto step7, otherwise go to step 12. 

Step12 : The FLDM, SLDM, and TLDM calculating membership function µ̀. 

Step13 : Compute tolerance functions for �, " using y�, y". 

Step14 : Solve the Tchebycheff problem defined by (38), then go to step 15. 

Step15 : If the FLDM not satisfied with solution then go to step 9 with 

modifying, ����, ��, �� , ���. 

Step16 : Stop. 

 

6 Numerical Example 

 
To demonstrate the solution method for three-level interval quadratic programming problem under 

random rough coefficient in objective functions, we consider the following problem: 

 

[��� �����	 
 

 ���� ���� = 2��2,3	, �1,5	� � + 3��0,3	, �0,4	�" + 8,", 
 

where $% solves 

 �%&' ������ 
 

 ���( �"�� = 6� + 4��2,3	, �0,4	�"" + 2��3,4	, �1,5	�,, 
 

where $) solves 

 

[)*' �����	 
 

 ���+ �,�� = 2�" + 12" + 4��1,2	, �0,3	�"" + 5��1,3	, �0,4	�,", 
 

Subject to 

 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20,5" + 6, ≤ 16,J ≥ 0, L = 1,2,3. 

 
 

Now by using Theorem (1,2), the equivalent crisp problems which are equivalent to three-level 

interval quadratic programming problem under rough parameters in objective functions can be 

written as: 
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��� Level 

Lower

 

Upper

 

QP1:@�� ≔ �� 4� + 8," ,
 

Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

QP3:@�� ≔ �� 2� + 8,",
 

Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 
QP2:@�� ≔ �� 6� + 9" + 8,",

 
Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

QP4: @�� ≔ �� 10� + 12" + 8,",
 

Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

Table (1.a). %�� Level 

Lower 

 

Upper

 

QP1:@"� ≔ �� 6� + 8"" + 6, ,
 

Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

QP3:@"� ≔ �� 6� + 2, ,
 

Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 
QP2:@"� ≔ �� 6� + 12"" + 8, , 
Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

QP4: @"� ≔ �� 6� + 16"" + 10,,
 

Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 
Table (2.b).  )�� Level 

Lower

 
Upper

 

QP1:@,� ≔ �� 2�" + 12" + 4"" + 5," ,
 

Subject to
 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

QP3:@,� ≔ �� 2�" + 12" ,
 

Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 
QP2:@,� ≔ �� 2�" + 12" + 8"" + 15,"

 
Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

QP4: @,� ≔ �� 2�" + 12" + 12"" + 20," 
Subject to 3� + 5" + , ≤ 35, 2� − " + 12, ≤ 20, 5" + 6, ≤ 16, J ≥ 0, L = 1,2,3. 

Table (3.c).  
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By using (32, 33), the FLDM builds the membership functions p�@�� , @��, @�̅� , @�̅���� and from 

table (1.a) then one solves problem as follows: 

 

QP1: �� u , 
subject to  4� + 8," ≤ 41.53846u,  ∈ ` , u ∈ �0,1	. 
Whose solution is ���, "� , ,��{= �1.234568, 1.234568, 1.234568�, �@���{ = 17.13153717 u{ = 0.9. 

QP3: �� u , 
subject to  2� + 8," ≤ 24.71258u,  ∈ ` , u ∈ �0,1	. 
Whose solution is  ��� , "�, ,��{ = �1.234568, 1.234568, 1.234568�, �@�̅��{ = 14.66240117, u{ = 0.9 . 

QP2: Max  λ , 
subject to  6� + 9" + 8," ≤ 69.53746u,  ∈ ` , u ∈ �0,1	. 
Whose solution is ��� , "� , ,��{= �1.234568, 1.234568, 1.234568�, �@���� = 30.71178517 u{ = 0.9 . 

QP4: �� λ , 
subject to  10� + 12" + 8," ≤ 113.0769 u,  ∈ ` , 
λ ∈ �0,1	. 
Whose solution is ���, "�, "��{= �1.234568, 1.234568, 1.234568�, �@�̅��{ = 39.35376117. 
λ

� = 0.9 . 
Table (1.2.a).  

 
Secondly, the SLDM defines his/her problem in view of the FLDM as follows: 

 

QP1:���, "�, ,��| = �1.234568, 1.234568, 1.234568�,QP2:���, "�, ,��| =�1.234568, 1.234568, 1.234568�. 
 

QP3:���, "�, ,��| = �0, 3.2000 , 0�, 

QP4:���, "�, ,��| = �1.234568, 1.234568, 1.234568�. 
 

Third, the TLDM defines his/her problem in view of the SLDM as follows: 

 

QP1: ���, "� , ,��# = �1.234568, 1.234568, 1.234568�, 
QP2:���, "�, ,��# = �1.234568, 1.234568, 1.234568�. 
 

QP3:���, "�, ,��# = �1.234568, 1.234568, 0�, 

QP4:���, "�, ,��# = �1.234568, 1.234568, 1.234568�. 
 
Finally, in order to generate the satisfactory solution, which is also a Pareto optimal solution with 

overall satisfaction for all decision-makers, by (38), calculating the tolerance function also. 
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1- We assume the FLDM’S control decision$��with the tolerance 1, and assume the SLDM’S 

control decision $%� with the tolerance 1.2. 

2- By using (36)–(37) calculating membership functions �̀, then solves the Tchebycheff 

problem as follows : 

 

 

Overall satisfaction for both decisions-makers are: 

 iq@�� , @��r , q@�� , @��rj = ��17.13153317,31.05509549	, �5.438167648,41.25428265	�. iq@"� , @"�r , q@"� , @"�rj = ��27.00807517,36.08886976	,�12.1069386,66.09873942	�. iq@,� , @,�r , q@,� , @,�rj =(�38.68741647,52.91876725	, �31.58055067,69.67137876	�. 

 

7 Summary and Concluding Remarks 

 
A three-level quadratic programming (QP) problem was considered where some or all of its 

coefficients in the objective function are rough intervals. At the first phase of the solution 

approach and to avoid the complexity of the problem, two QP problems with interval coefficients 

will be constructed.  One of these problems was a QP where all of its coefficients are upper 

�� ��, 
4� + 8," − 17.13153717 ≥ 0, 6� + 8"" + 6, − 27.00808117 ≥ 0, 2�" + 12" + 4"" + 5," − 31.58055561 ≥ 0, � − 0.234568 ≥ ��, −� + 2.234568 ≥ ��, " − 0.234568 ≥ 1.2��, 
 ∈ `, yJ > 0, �L = 1,2� , �� ∈ �0,1	. 

     Subject to 

-" + 2.234568 ≥ 1.2�� 

(��, "�, ,�� = �1.234567,1.234568,1.234568�. 

����, 
2� + 8," ≥ 14.66240117��, 6� + 2, − 7.47408 ≥ −7.47408��, 2�" + 12" − 38.4 ≥ −20.5368677��, � − 0.234568 ≥ ��

 −� + 2.234568 ≥ ��, " − 2.20000 ≥ 1.2��, −" + 4.2000 ≥ 1.2��,  ∈ `, yJ > 0, �L = 1,2� , �� ∈ �0,1	. 

      Subject to 

(��, "� , ,�� = �1.863676,2.645070,0.4624413�. ����, 
6� + 9" + 8," − 30.71178517 ≥ 0, 
2�" + 12" + 8"" + 15," − 52.91876966 ≥ 0, � − 0.234568 ≥ ��, −� + 2.234568 ≥ ��, " − 0.234568 ≥ 1.2��, −" + 2.234568 ≥ 1.2��,  ∈ `, yJ > 0, �L = 1,2� , 

     Subject to 

6� + 12"" + 8, − 35.57384976 ≥ 0, 

�� ∈ �0,1	, 
(��, "�, ,�� = �1.340082,1.234568,1.219810�. 

����, 
10� + 12" + 8," − 39.35376117 ≥ 0, 6� + 16"" + 10, − 44.13961835 ≥ 0, 2�" + 12" + 12"" + 20," − 66.63619299 ≥ 0, � − 0.234568 ≥ ��, 
" − 0.234568 ≥ 1.2��, −" + 2.234568 ≥ 1.2��,  ∈ `, yJ > 0, �L = 1,2�, �� ∈ �0,1	, 

       Subject to 

−� + 2.234568 ≥ ��
, 

(�� , "�, ,�� = �1.860786,1.786029,0.3895630�. 
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approximation of and the other problem was a QP where all of its coefficients are lower 

approximations of rough intervals. At the second phase, a membership function was constructed to 

develop a fuzzy model for obtaining the optimal solution of the three-level quadratic programming 

problem. In addition, the author put forward the satisfactoriness concept as the first-level decision-

maker preference. 

 

However, there are many open points for discussion in future, which should be explored and 

studied in the area of multi- level rough interval optimization such as: 

 

1.  Interactive algorithm is required for treating multi- level integer quadratic multi-objective 

decision-making problems with rough parameters in the objective functions; in the constraints 

and in both. 

2.  Interactive algorithm is needed for dealing with multi- level mixed integer quadratic multi-

objective decision-making problems with rough parameters in the objective functions; in the 

constraints and in both. 

3.  Interactive algorithm is necessary for solving multi- level integer fractional multi-objective 

decision-making problems with rough parameters in the objective functions; in the constraints 

and in both. 

4.  Interactive algorithm must be investigated for treating multi- level mixed integer fractional 

multi-objective decision-making problems with rough parameters in the objective functions; 

in the constraints and in both. 
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