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1 Introduction

G. C. Rota [1] serves as an introduction and a guide to the growing literature of combinatorics.
It contains a detailed study of the delta operator and their basic polynomials. Octavian Agratini [2]
contains a similar study which applies binomial sequences in the construction of linear approximation
processes. Miloud Mihoubi [3] derived some relations between the sequences of Binomial type and
Bell polynomials. Several classical polynomials and their properties are discussed in Rainville, E.
D. [4]. Maheswaran, A [5] is a study of discrete special polynomials in q-monodiffric sense through
finite operator calculus.

The aim of the present paper is to propose some results tied to the basic polynomials corresponding
to the delta operator Q. This rest of the paper is organized in five sections. In the second section,
we give some known definitions and theorems from G.C.Rota [1]. In the third section, we discuss
about the sequential expression for the delta operator Q. This sequential representation of the
delta operator plays a vital role in deriving new identities for the sequence of basic polynomials.
In the fourth section, the characterization of the delta operator Q is investigated for some basic
polynomials. A theorem connecting the sequence of basic polynomials for some delta operator with
the sequence of polynomials of binomial type is developed in G. C. Rota [1]. In the fifth section,
this theorem is reconstructed independently in terms of three new identities. In the sixth section,
the reconstructed theorem is verified through some comprehensive examples.

2 Preliminaries

The operational calculus had been known as early as the beginning of the nineteenth century, but
its improvement was due to the later work of Heaviside, who applied it widely to problems in
electricity. In 1927, J. F. Steffensen introduced the theta operators. In 1956, F.B. Hildbrand called
them delta operators and this term was taken over and intensively used by G. C.Rota. Rota’s
operator approach to the finite operator calculus is a systematic study of delta operators on the
algebra of polynomials. In this section, we recall terminology, notation, some basic definitions and
results of the finite operator calculus, as it has been introduced by Rota [1].

Let F be a Field of characteristic zero, preferably the real number field. Let p(x) be a polynomial
in one variable defined over F . The set of such polynomials is denoted by P . A sequence of
polynomials is {pn(x)/n ∈ Z+ ∪ {0}}, where pn(x) is exactly of degree n.

Definition 1

i An operator Ea is said to be a shift operator if Eap(x) = p(x+ a), for all polynomials p(x)
in one variable defined over the field F and a ∈ F .

ii A linear operator T which commutes with all shift operators is called a shift invariant.
In symbols, TEa = EaT, ∀a ∈ F .

iii A delta operator usually denoted by the letter Q, is a shift-invariant operator for which Qx
is a non zero constant.

Thus every delta operator Q is a shift invariant. But a shift invariant operator need not be a delta
operator.

The forward difference operator

(∆f)(x) = f(x+ 1)− f(x)

is a delta operator.
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Any operator of the form

∞∑
k=1

ckD
k, where Dn(f) = fn is the nth derivative with c ̸= 0

is a delta operator.

Definition 2.

Let Q be a delta operator, A polynomial sequence pn(x) is called the sequence of basic polynomials
for Q if :

1. p0(x) = 1

2. pn(0) = 0, whenever n > 0

3. Qpn(x) = npn−1(x)

The basic polynomials are a large class of polynomial sequences that include the Monomials
{xn;n = 0, 1, 2, · · ·n}, the sequences of Lower factorials [x]n, Upper factorials [x]n, the Abel
polynomials and many others.

Definition 3.

A polynomial sequence pn(x) is said to be a binomial type if it satisfies the infinite sequence of
following identities

pn(x+ y) =
n∑

k=0

(
n

k

)
pk(x) pn−k(y), n = 0, 1, 2, . . .

The simplest sequence of Binomial type is {xn}. Several properties of the polynomial sequence {xn}
can be generalized to an arbitary sequence of basic polynomials. The most important sequence of
binomial type is the sequence of Abel polynomials, namely, the sequence pn(x) = x(x+ na)n−1 for
a ∈ Q. This polynomials play a leading role in the theory of sequences of binomial type. The main
result is that any sequence of binomial type can be represented as Abel polynomials.

The proofs of following results are skipped. But they are easily read from the reference G.C.Rota
[1].

Theorem 1.

i) If Q is a delta operator, then Qa = 0 for every constant ′a′.

ii) If p(x) is a polynomial of degree n, then Qp(x) is a polynomial of degree n− 1.

The delta operators possesses many of the properties of the usual derivative D. The above theorems
are good examples.

Theorem 2.

Every delta operator has a unique sequence of basic polynomials.

Theorem 3.

(a) If pn(x) is a basic sequence for some delta operator Q, then it is a sequence of polynomials of
Binomial type.

3



Maheswaran and Elango; BJMCS, 16(3), 1-11, 2016; Article no.BJMCS.24896

(b) If pn(x) is a sequence of polynomials of Binomial type, then it is a basic sequence for some delta
operator.

Thus we have pn(x) is a basic polynomials sequence for some delta operator Q if and only if it is a
sequence of polynomials of Binomial type.

According to G.C.Rota[1], Delta operator Q possesses many of the properties of usual derivative
operator D. Generally usual derivative D is a delta operator. But the operator defined by Q(xn) =
xn−1, n ∈ Z+ ∪ {0}, will not be a delta operator , since it is not shift invariant.

Taking Q(xn) = an xn−1 where an is a real constant , for n ∈ Z+ and assuming Q to be a delta
operator, EaQ(xn) = QEa(xn) implies an

(
n−1
r

)
=
(
n
r

)
an−r and hence an = na1. In this case, the

delta operator becomes a constant multiple of the usual derivative operator D. This leads to the
theorem :

Theorem 4.

”If Q is a delta operator and Q(xn) = an xn−1 , where an is a real constant , n ∈ Z+ , then
Q = kD where k is a real constant and D is the usual derivative.”

3 Sequential Representation of Delta Operator Q

Using the expressions for Q(x2), Q(x3) · · ·Q(xn), we attempt to formulate the delta operator in
terms of a sequence of real numbers. By Theorem 1 and definition of the basic polynomials, we
obtain the following Theorem.

Theorem 5. For the monomials {xn : n ∈ Z+ ∪ {0}}, and for each αr an arbitary real value,

Q(xn) =

n∑
r=1

(
n

r

)
αr xn−r. (3.1)

Proof .

Taking Q(x) = α1 ̸= 0 and construct Q(x2) = c0 x + c1. Since Q is shift invariant, we have
EaQ(x2) = QEa(x2). Solving we get c0 = 2α1 and c1 is a new independent constant which may be
taken as α2. Hence Q(x2) = 2α1x+ α2. Thus the theorem is true for n = 1 and 2.

Let us assume that the result is true for all n = k.

Therefore ,

Q(xk) =
k∑

r=1

(
k

r

)
αr xk−r =

(
k

1

)
α1 xk−1 +

(
k

2

)
α2 xk−2 + · · ·+

(
k

r

)
αr xk−r + · · ·+αk (3.2)

Since {xn} is a basic polynomial sequence, it satisfies Qpn(x) = npn−1(x) and hence we have,

Q(xk) = k xk−1 (3.3)

From (3.3), we see that the delta operator Q is a usual derivative D.

From (3.2) and (3.3) ,(
k

1

)
α1 xk−1 +

(
k

2

)
α2 xk−2 + · · ·+

(
k

r

)
αr xk−r + · · ·+ αk = k xk−1 (3.4)
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By comparing the corresponding terms, we have α1 = 1 and αj = 0, j = 2, 3, · · · k

Therefore, the result is true for n = k means that

α1 = 1 and αj = 0 (j = 2, 3, · · · k) (3.5)

Now we have to show that this result is true for n = k + 1

Q(xk+1) = Q(xk x) = Q(xk) x+Q(x) xk = (k + 1) xk

Thus we have
Q(xk+1) = (k + 1) xk (3.6)

On other hand, using the property that Qpn(x) = n pn−1(x) , we have

Q(xk+1) = (k + 1) pk(x) = (k + 1) xk (3.7)

From the Equations (3.6) and (3.7), we conclude that the result is true for all n = k + 1

Thus we proved the Theorem 5.

Here, Q(xn) has n independent parameters, αi, (i = 1, 2, 3 . . . n). These parameters are unique.
Allowing n being large, we get an infinite sequence of real numbers. Hence to represent a delta
operator, we need to consider only the corresponding infinite sequence of real numbers . We conclude
that any delta operator may be fixed uniquely by Equation (3.1). To study the delta operator, we
need analyse only this sequential representation in Equation (3.1).

Below we list values of Q(xn) for n ≥ 1

1α1

2 α1 x+ 1α2

3 α1 x2 + 3 α2 x+ 1α3

4 α1 x3 + 6 α2 x2 + 4 α3 x+ 1α4

5 α1 x4 + 10 α2 x3 + 10 α3 x2 + 5 α4 x+ 1α5

6 α1 x5 + 15 α2 x4 + 20 α3 x3 + 15 α4 x2 + 6 α5 x+ 1α6

7 α1 x6 + 21 α2 x5 + 35 α3 x4 + 35 α4 x3 + 21 α5 x2 + 7 α6 x5 + 1α7

The coefficient of Q(xn) are arranged by a triangular array, say delta triangle is given below

1
2 1

3 3 1
4 6 4 1

5 10 10 5 1
6 15 20 15 6 1
. . .

Similar to Pascal triangle, it is also a triangular arrangements of rows. The tip of the triangle is
number 1 which makes up the first row. In Pascal triangle, each row, except first, begins and ends
with a ”1”. But in delta triangle, the consecutive rows begins with numbers 1,2,3,... respectively
but ending with 1s. From the second row, the ”Pascal Triangle sum” result holds good.

Equation (3.1) in Theorem 5 is important in deriving many results in the further sections. The
characterization of the delta operator is determined by the values of α′

is (i = 1, 2, 3 · · ·n). In the
next section, we study more about the delta operator in particular, the characterization of a delta
operator which corresponds to a given sequence of basic polynomials.

5



Maheswaran and Elango; BJMCS, 16(3), 1-11, 2016; Article no.BJMCS.24896

4 Finding Delta Operator for Given Basic Polynomial
Sequence

For each delta operator assigned, there exists a unique sequence of basic polynomials. This basic
sequence is obtained by using Theorem (5). This is done in [6]. The converse is interesting. A
sequence of basic polynomials is given. Correspondingly can we get a unique delta operator ?. This
is answered in this section.

Taking a set of polynomials pn(x) satisfying p0(x) = 1 and pn(0) = 0, whenever n > 0.
This polynomials set may be considered to be a basic set. For this purpose, this set has to satisfy
Qpn(x) = npn−1(x) ; here Q is unknown. This unknown is detected from solving Qpn(x) =
npn−1(x) for all n > 1. Our aim is to check whether this polynomials set is a basic set and if so,
find the corresponding the delta operator.

By the sequential representation of Q in Equation(3.1) in Theorem (5) and definition of sequence
of basic polynomials, we obtain the following propositions.

Proposition 1. For a basic polynomials sequence pn(x) = {xn/n ∈ Z+∪{0}}, the characterization
of the delta operator being α1 = 1, and αr = 0 for all r ≥ 2.

Proof. Let pn(x) = xn, n ∈ Z+ ∪ {0}.
It satisfies p0(x) = 1 and pn(0) = 0, whenever n > 0. Hence it is a basic set .
Using Qpn = npn−1 for n = 1, Qp1 = 1p0 ⇒ Q(x) = 1
But Q(x) = α1 from (3.1) ⇒ α1 = 1
Using Qpn = npn−1 for n = 2, Qp2 = 2p1 ⇒ Q(x2) = 2x
But Q(x2) = 2α1x+ α2 from (3.1) ⇒ α1 = 1 and α2 = 0
Using Qpn = npn−1 for n = 3, Qp3 = 3p2 ⇒ Q(x3) = 3x2

But Q(x3) = 3α1x
2 + 3α2x+ α3 from (3.1) ⇒ α1 = 1, α2 = 0 and α3 = 0

By similar procedure, we get α4 = 0, α5 = 0 · · · αn = 0
Hence the characterization of the delta operator for pn(x) = {xn/n ∈ Z+ ∪{0}} being α1 = 1, and
αr = 0 for all r ≥ 2.

Remark 1. Here, Q(xn) = nxn−1 and the delta operator Q is usual derivative D.

By above Proposition (1), we obtain the following corollary.

Corollary 1. For any real constant k and a sequence of basic polynomials pn(x) = {xn

kn /n ∈
Z+ ∪ {0}}, the characterization of the delta operator being α1 = k, and αr = 0 for all r ≥ 2.

Remark 2. Here, Q(xn) = k n xn−1 and the delta operator Q is a constant multiple of the usual
derivative D.

G. C. Rota [1] define the Difference polynomials (also called as Falling factorial polynomials) as
follows :

pn(x) = [x]n = x(x− 1)(x− 2) · · · (x− n+ 1)

Again by our main result in Equation (3.1), we obtain the following Proposition.

Proposition 2. For the Difference polynomials pn(x) = [x]n = x(x− 1)(x− 2) · · · (x− n+1), the
characterization of the delta operator being αn = 1 for all n ≥ 1.

proof . Let pn(x) = [x]n
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It satisfies p0(x) = 1 and pn(0) = 0, whenever n > 0 . Hence it is a basic set.

The first few polynomials are :

p1(x) = x
p2(x) = x(x− 1)
p3(x) = x(x− 1)(x− 2)
p4(x) = x(x− 1)(x− 2)(x− 3) and so on.
For n = 1, Qpn = npn−1 becomes Qp1 = 1p0
From(3.1), Qp1 = α1 and 1p0 = 1 ⇒ α1 = 1
For n = 2, Qpn = npn−1 becomes Qp2 = 2p1
By (3.1), Qp2 = 2α1x+ α2 − α1 and Qp2 = 2p1 ⇒ α1 = 1 and α2 = 1
For n = 3, Qpn = npn−1 becomes Qp3 = 3p2
By (3.1), Qp3 = 3α1x

2 + 3α2x− 6α1x+ α3 − 3α2 + 2α1 and 3p2 = 3x2 − 3x
Equating the corresponding terms, we get α1 = 1, α2 = 1 and α3 = 1
Similarly proceeding as above we get, αn = 1, for all n ≥ 1
Hence the sequential characterization of the delta operator being αn = 1, for all n ≥ 1

Remark 3. Here, Q(xn) =
n∑

r=1

(
n
r

)
xn−r. The same polynomials pn(x) = [x]n are discussed in [3].

A Proposition which gives some relations between Bell polynomials and the sequences of binomial
type is derived by Miloud Mihoubi [3] and this Proposition is verified through the polynomials
pn(x) = [x]n.

The Abel polynomials are defined by

pn(x) = x (x− na)n−1

The sequence of Abel polynomials is most important sequence of binomial type and associated to
the operator DeaD, refer [7]. The operator DeaD satisfies Definition (2) for Abel polynomials and
eaD is equivalent with Ea. But the characterization of the delta operator Q for the Abel polynomials
is interesting and it is obtain in the following Proposition.
For a = 1, the Abel polynomials are

pn(x) = x (x− n)n−1

Proposition 3. For the Abel polynomials of first kind pn(x) = x (x−n)n−1, the characterization
of delta operator being αn = n for all n ≥ 1.

proof . Let pn(x) = x (x− n)n−1.

It satisfies p0(x) = 1 and pn(0) = 0, whenever n > 0. Hence it is a basic set.

The first few polynomials are :

p1(x) = x, p2(x) = x(x− 2), p3(x) = x(x− 3)2, p4(x) = x(x− 4)3, and so on.

For n = 1, Qpn = npn−1 ⇒ Qp1 = 1p0
From(3.1), Qp1 = α1 and 1p0 = 1
Comparing the corresponding terms, we get α1 = 1
For n = 2, Qpn = npn−1 ⇒ Qp2 = 2p1
From (3.1), Qp2 = 2α1x+ α2 − 2α1 and 2p1 = 2x
Comparing the corresponding terms, we get α1 = 1 and α2 = 2
For n = 3, Qpn = npn−1 ⇒ Qp3 = 3p2
Qp3 = (3α1)x

2 + (3α2 − 12α1)x+ 9α1 − 6α2 + α3 and 3p2 = 3x2 − 6x

7
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Comparing the corresponding terms, we get α1 = 1, α2 = 2 and α3 = 3
By Similar procedure as above, we get α4 = 4, α5 = 5, · · · αn = n,
Hence the sequential characterization of the delta operator being αn = n, for all n ≥ 1

Remark 4. For the above Abel polynomials, Q(xn) =
n∑

r=1

n
(
n
r

)
xn−r.

By above Proposition 3, we obtain the following Corollary.

Corollary 2. For the Abel polynomials of second kind pn(x) = x (x+n)n−1, the characterization
of delta operator being αn = n if n is add and αn = −n if n is even , where n ≥ 1.

From the above discussion, we get a way opened to study the basic polynomials by a new approach of
finding definite delta operator numerically. All the above results are shown vividly in the following
Table.

Table 1. Delta operators for different basic polynomials

Polynomials Characterization of Delta Operator

Monomial {xn} α1 = 1 and αr = 0, for all r ≥ 2.

pn(x) = {xn

kn } α1 = k and αr = 0, for all r ≥ 2.

Falling Factorial α1 = 1, for all r ≥ 1.

Abel-First kind αr = r for all r ≥ 1.

Abel-Second kind αr = r if r is add and αr = −r if r is even , where r ≥ 1.

5 New Identities for Basic Polynomials Sequences

A new form of Newton binomial is discussed in [8]. By this method, The Equation (3.1) can be
written as :

Q(xn) =

n∑
r=1

1

r!
αr Dr xn. (5.1)

Therefore,

Q ≡
n∑

r=1

1

r!
αr Dr. (5.2)

Putting pn(x) = pn and Drpn(x) = p
(r)
n , we have,

Q(pn) =

n∑
r=1

1

r!
αr p(r)n . (5.3)

By (3) in definition (2), the above Equation (5.3) becomes,

Q(pn) =

n∑
r=1

1

r!
αr p(r)n = npn−1. (5.4)

Our main result in Equation (3.1) is used to derive some new identities for basic polynomial
sequence.

Let p1(x) = c1,1 x.
Rota[1] proved the Theorem 3, by omitting the constant term.
For n = 1, Qpn = npn−1 becomes Qp1(x) = 1p0(x) ⇒ c1,1Q(x) = 1
Since Q(x) = α1 from eqn(3.1), we get

c1,1 α1 = 1. (5.5)

8
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If pn(x) =
n∑

r=1

cn,rx
r, then

p(r)n = Dr
n∑

i=1

cn,ix
i =

n∑
i=r

cn,i
i!

(i− r)!
xi−r (5.6)

Therefore, Equation (5.4) becomes

Qpn =

n∑
r=1

1

r!
αr(cn,rr! + cn,r+1

(r + 1)!

1!
x+ cn,r+2

(r + 2)!

2!
x2 + · · ·+ cn,n

n!

(n− r)!
xn−r) (5.7)

And
npn−1 = n{cn−1,1 x+ cn−1,2 x2 + cn−1,3 x3 + · · ·+ cn−1,n−1 xn−1} (5.8)

By equating the constant terms from Equations (5.7) and (5.8), we get

n∑
i=1

cn,i αi = 0, whenever n > 1

By equating the coefficients of xi, (i = 1, 2, 3...), from Equations (5.7) and (5.8), we get

n∑
r=1

αr cn,r+1
(r + 1)

1!
= n cn−1,1

n∑
r=1

αr cn,r+2
(r + 1)(r + 2)

2!
= n cn−1,2

n∑
r=1

αr cn,r+3
(r + 1)(r + 2)(r + 3)

3!
= n cn−1,3

and so on.

By consolidating the above equations, we get

n∑
r=1

(
r + i

i

)
αr cn,r+i = n cn−1,i (i = 1, 2, · · ·n).

Therefore, we obtain the following Theorem.

Theorem 6.

pn(x) =
n∑

r=1

cn,r xr , where n > 1 is a basic polynomials sequence for some delta operator Q if and

only if the coefficients of pn(x) satisfy the following identities.

1) c1,1 α1 = 1 ;

2)
n∑

i=1

cn,i αi = 0, whenever n > 1 ;

3)
n∑

r=1

(
r+i
i

)
αr cn,r+i = n cn−1,i (i = 1, 2, · · ·n)

Hence we have reintroduced the theorem stated as above, in terms of three new identities instead
of binomial type characterization. According to G.C.Rota [1], the Theorem (3) gives a necessary
and sufficient conditions for the basic polynomials in terms of binomial characterization. The same
necessary and sufficient conditions for the basic polynomials corresponding to some delta operator Q
is reconstructed in terms of the sequential characterization in the Theorem (6). Practical difficulty
to fix some sequence of basic polynomials is reduced due to this Theorem (6).

9
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6 Examples and Applications

In previous section 3, we successfully developed a method to chart out the sequence of basic
polynomials and to find the corresponding delta operator. This method is based on Theorem
(5) in section 2. Now we discuss the same theme through the Theorem(6). This theorem also
gives a method to chart out the sequence of basic polynomials and to find the corresponding delta
operator. We take the same special polynomials to discuss this method.

Example 1.

Taking pn(x) = xn.
Clearly p0(x) = 1 and p1(x) = x ⇒ c1,1 = 1

From Equation (1) in Theorem (6),
c1,1α1 = 1 ⇒ α1 = 1

By Equation (2) in Theorem (6) and cn,r = δn,r, we have

n∑
r=1

αr cn,r =
n∑

r=1

αr δn,r ⇒ αn = 0, n > 1

Thus we can easily verified that the characterization of the delta operator for the Monomials
{xn, n = 0, 1, 2, · · ·n} being α1 = 1 and αr = 0, (r = 2, 3, 4, · · ·n).

Example 2. Taking pn(x) = [x]n = {x(x− 1)(x− 2) · · · (x− n+ 1)}
p1(x) = x ⇒ c1,1 = 1

From Equation (1) in Theorem (6),
c1,1α1 = 1 ⇒ α1 = 1

Since pn(1) = 0, and Equation (2) in Theorem (6), we have
n∑

r=1

cn,r = pn(1) = 0 =
n∑

r=1

αr cn,r

Equating the corresponding terms , we get αr = 1, r > 1.

Thus we can verified that the set of polynomials [x]n is a sequence of basic polynomials and the
characterization of the delta operator Q being αn = 1, for all n > 1.

Example 3.

Taking pn(x) = x(x− n)n−1

p1(x) = x ⇒ c1,1 = 1

From Equation (1) in Theorem (6),

c1,1 α1 = 1 ⇒ α1 = 1

From Equation (2) in Theorem (6),

n∑
r=1

αr cn,r = 0, whenever r ≥ 2 (6.1)

Since p
′
n(1) = 0, we have,

n∑
r=1

r cn,r = p
′
n(1) = 0 (6.2)

10
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Equating the corresponding terms from Equations (6.1) and (6.2), we get αr = r, whenever r ≥ 2
Hence we can easily verified that the set of polynomials pn(x) = x(x−n)n−1 is a basic polynomials
and the characterization of the delta operator Q being αn = n, for all n > 1.

Thus the Theorem (6) enriches the theory to decide whether a set of polynomials is a set of basic
polynomials with respect to a definite delta operator numerically. But the earlier Theorem (3) does
not have this characterization facility.

7 Status and Further Directions

Special polynomials play an important role in applicable analysis. Many of the models in Applied
Mathematics are expressed and analyzed in terms of special polynomials. There are classically three
approaches to define the special polynomials. They are generating functions, recursion relations and
differential equations. It is envisaged that the finite operator calculus may be developed to fourth
equivalent approach to define and analyze the special polynomials through the characterization of
the delta operator. A.Maheswaran [5] discussed some properties of q delta operators and their q
basic polynomials. This is a good starting point for further investigation of the characterization of
the q delta operator for the q basic polynomials.
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