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Abstract 
 

Maximum likelihood estimation (MLE) is a popular technique of statistical parameter estimation. When 
random variable conforms beta distribution, the research focuses on applying MLE into beta density 
function. This method is called beta likelihood estimation, which results out useful estimation equations. 
It is easy to calculate statistical estimates based on these equations in case that parameters of beta 
distribution are positive integer numbers. Essentially, the method takes advantages of interesting features 
of functions gamma, digamma, and trigamma. An application of beta likelihood estimation is to specify 
prior probabilities in Bayesian network. 
 

 
Keywords: Maximum likelihood estimation; beta distribution; beta likelihood estimation; gamma function. 
 

1 Introduction 
 

1.1 Introduction to maximum likelihood estimation 
 
Let Θ and X be the hypothesis and observation variable, respectively. Suppose x1, x2,…, xn are instances of 
variable X in training data and they are observed independently. According multiplication rule in probability 
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theory, the likelihood function L(Θ) is the joint probability which is the product of condition probabilities of 
instances xi, given hypothesis variable Θ (Lynch, 2007, p. 36). Equation 1 expresses the likelihood function 
L(Θ) with regard to variable Θ. 
 

��Θ� = ��� | Θ� = 	 ��
� | Θ��
��  (1) 

 
Where ��
�|Θ� is the conditional probability of instance xi given the hypothesis Θ. Suppose Θ = {θ1, θ2,…, 
θk} is the vector of parameters specifying arbitrary distribution of X, it is required to estimate the parameter 
vector and its standard deviation so that the likelihood function takes maximum value. Thus, this method is 
called maximum likelihood estimation (MLE). The parameter vector that maximizes likelihood function is 
called parameter vector estimate denoted Θ� , as shown in equation 2. 
 

Θ� = argmax
Θ

��Θ� = argmax
Θ

�	 ��
�  | Θ��
�� � (2) 

 
The natural logarithm of L(Θ) is called log-likelihood denoted LnL(Θ), as shown in equation 3 [1, p. 38]. 
 

����Θ� = �� �	 ��
� | Θ��
�� � = � �����
� | Θ���

��  

Θ� = argmax
Θ

����Θ� = argmax
Θ

�� �����
�  | Θ���
�� � 

(3) 

 
Where ln(.) denotes natural logarithm function. 
 
The essence of maximizing the likelihood function is to find the peak of the curve of LnL(Θ) [1, p. 38].  This 
can be done by setting the first-order partial derivative of LnL(Θ) with respect to each parameter θi to 0 and 
solving this equation to find out parameter θi. The number of equations corresponds with the number of 
parameters. If all parameters are found, in other words, the parameter vector estimate Θ�  = ����, �� , … , ��"# is 
defined then the distribution of X is known clearly. Each ��� is also called a parameter estimate. 
 
The accuracy of parameter estimator is measured by its standard error [2, p. 225] and thus; another important 
issue is how to determine the standard error when we have already computed all parameters and standard 
error is standard deviation of parameter estimator. It is very fortunate when the second-order derivative of 

the log-likelihood function denoted 
$%&�&$Θ$Θ' can be computed and it is used to determine the variances of 

parameters. If there is only one parameter, the second-order derivative 
$%&�&$Θ$Θ' is scalar, otherwise it is a 

matrix so-called Hessian matrix. The negative expectation of Hessian matrix is called the information matrix 
which in turn is inverted so as to construct co-variance matrix denoted Var(Θ) [1, p. 40]. Equation 4 
specifies the co-variance matrix of parameter vector Θ. 
 

()*�Θ� = �−, - . ���.Θ.Θ/0�1�
 (4) 

 
Elements on co-variance matrix diagonal are variances of the parameters and the square root of each 

variance is a standard error. Note that -−, 2 $%&�&$Θ$Θ'301�
 is exactly so-called Cramer-Rao lower bound of co-
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variance matrix but we can consider approximately -−, 2 $%&�&$Θ$Θ'301�
 as co-variance matrix when Θ�  is 

derived from likelihood function and Θ�  is unbiased estimator [3, p. 11]. Please read [1, pp. 35-43] and [3] for 
more details about MLE. 
 
In case that variable X conforms beta distribution, MLE is called beta likelihood estimation. Next section 
focuses on how to apply MLE into beta distribution, which is the main purpose of this research. 
 

2 Beta Likelihood Estimation 
 
Before mentioning how to apply MLE into beta distribution, it is important to research aspects of beta 
distribution. Suppose variable X conforms beta distribution. Equation 5 specifies the beta density function of 
X as follows: 
 4��; ), 6� = 7��; ), 6� = 689)��; ), 6� = Γ�) : 6�

Γ�)�Γ�6� �;1��1 − ��=1� (5) 

 
Where Γ(.) denotes gamma function which is expressed as follows: 
 

Γ�
� = > 9?1�81@d9B∞
C  

 
Note that e(.) and exp(.) denote exponent function and e D 2.71828 is Euler’s number. 
 
Fig. 1 [4] shows beta density function with various parameters (a=2, b=2), (a=4, b=2), and (a=2, b=4). 

 

  
 

Fig. 1. Beta density functions with various parameters a and b 
 
Beta density function is based on gamma function and there is another so-called digamma function is also 
defined via gamma function. Equation 6 is definition of digamma function ψ(x). We will know later that beta 
density function is also relevant to digamma function. 
 E�
� = d 2���Γ�
��3 = Γ′�
�

Γ�
�  (6) 
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Note that ln(.) denotes natural logarithm function. According to equation 6, digamma function is the 
derivative of natural logarithm of gamma function. 
 
The integral form of digamma function is specified by equation 7 [5, p. 114]: 
 

E�
� = Γ′�
�
Γ�
� = > -81@9 − 81?@1 − 81@0 d9B∞

C  (7) 

 
Suppose variable x is non-zero, we have: 

 

E�
 : 1� = > -81@9 − 81�?B��@1 − 81@ 0 d9B∞
C = > -81@9 − 81?@1 − 81@ : 81?@0 d9B∞

C  

= > -81@9 − 81?@1 − 81@0 d9B∞
C : > 81?@d9B∞

C = E�
� − 1
  81?@ F:∞0 H 
= E�
� : 1
 

 
Briefly, the recurrence equation of digamma function is specified by equation 8 [6]. 
 E�
 : 1� = E�
� : 1
 (8) 

  
Equation 8 shows recurrence relation [6] of digamma function, which implicates that it is very easy to 
compute ψ(x) if variable x is positive integer. Thus, it is necessary to calculate ψ(1) which is the evaluation 
of digamma function at starting positive point 1, we have: 
 

E�1� = > -81@9 − 81@1 − 81@0 d9B∞
C = > 81@9 I9B∞

C − > 81@1 − 81@ d9B∞
C  

= > 81@d���9�B∞
C − > d����1 − 81@��B∞

C  

= 81@��9 F:∞0 H : > 81@��9d9B∞
C − ���1 − 81@� F:∞0 H 

= lim@→B∞�81@��9� − lim@→C�81@��9� − M − lim@→B∞ ���1 − 81@� : lim@→C ���1 − 81@� 

                              (due to Euler-Mascheroni constant M = − N 81@��9d9B∞C ) = −M : lim@→B∞�81@��9� − lim@→C�81@��9� : lim@→C ���1 − 81@� 

=  −M : lim@→B∞ ��98@ : lim@→C����1 − 81@� − 81@��9� 
= −M : lim@→B∞ ��98@ : lim@→C �� 8O���1PQR�8PQRO�@  

                                              (due to transformation with regard to indeterminate form [7]) 
 = −M : lim@→B∞ ��98@ : lim@→C �� 1 − 81@9PQR  

= −M : lim@→B∞ ��98@ : �� -lim@→C 1 − 81@9PQR 0 
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= −M : lim@→B∞ d���9�d�8@� : �� -lim@→C 1 − 81@9PQR 0 

                         (using L’Hôpital’s rule by taking derivatives of both numerator and denominator [7]) 
 = −M : lim@→B∞ 198@ : �� -lim@→C 1 − 81@9PQR 0 

= −M : �� -lim@→C 1 − 81@9PQR 0 

= −M : �� -lim@→C 81@S′�9�0  where S�9� = 9PQR
 

 
Note that M D 0.577215  is Euler-Mascheroni constant, please read [8] for more detailed about Euler-
Mascheroni constant. 
 

M = − > 81?��
d
B∞
C = lim�→B∞[� 1\

�
"� − �����] D 0.577215 

 
We have: 
 

���S�9�� = 81@��9 ⟹ S′�9�S�9� = 81@�1 − 9��9�9 ⟹ S′�9� = 9PQR81@�1 − 9��9�9  

 
It implies that: 
 E�1� = −M : �� -lim@→C 81@99PQR81@�1 − 9��9�0 = −M : �� -lim@→C 19PQR1��1 − 9��9�0 

= −M : �� � 1lim@→C�9PQR1�� lim@→C�1 − 9��9�� 

 
We also have: 
 lim@→C�9PQR1�� = lim@→C 8
_ -81@ − 11 ��9⁄ 0 = 8
_ -lim@→C 81@ − 11 ��9⁄ 0 

 
                                        (due to transformation with regard to indeterminate form [7]) 

 

= 8
_ -lim@→C d�81@ − 1�d�1 ��9⁄ � 0 = 8
_ [lim@→C −81@− �@�O�@�%] 

 
                           (using L’Hôpital’s rule by taking derivatives of both numerator and denominator [7]) 
 = 8
_ 2lim@→C 81@9���9� 3 = 8
_ 2lim@→C 9���9� 3 = 8
_ -lim@→C ���9� 1 9⁄ 0 

= 8
_ -lim@→C d����9� �d�1 9⁄ � 0 = 8
_ -lim@→C 2��9 9⁄−1 9 ⁄ 0 

 
                          (using L’Hôpital’s rule by taking derivatives of both numerator and denominator [7]) 
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= 8
_ 2− lim@→C 29��93 = 8
_ a− lim@→C 2��91 9⁄ b 

= 8
_ -− lim@→C d�2��9�d�1 9⁄ � 0 = 8
_ -lim@→C 2 9⁄1 9 ⁄ 0 

 
                         (using L’Hôpital’s rule by taking derivatives of both numerator and denominator [7]) 
 = 8
_ 2lim@→C 293 = 8
_�0� = 1 

 
We also have: 
 lim@→C�1 − 9��9� = 1 − lim@→C�9��9� = 1 − lim@→C ��91 9⁄  

= 1 − lim@→C d���9�d�1 9⁄ � = 1 : lim@→C 1 9⁄1 9 ⁄  

 
                        (using L’Hôpital’s rule by taking derivatives of both numerator and denominator [7]) 
 = 1 : lim@→C 9 = 1 : 0 = 1 
 
Therefore, it implies that: 
 E�1� = −M : �� � 1lim@→C�9PQR1�� lim@→C�1 − 9��9�� = −M : �� a 11 ∗ 1b = −M 

 
Briefly, the value ψ(1) is always equal to –γ [6]. Given x is positive integer, equation 7 is replaced by 
equation 9 for calculating digamma function in case of positive integer number. 
 E�1� = −M 

E�
� = −M : � 1\
?1�
"�  

�
 positive integer and 
 ≥ 2� 
(9) 

 
Proof, 
 ∀
 ≥ 2, E�
� = E�
 − 1� : 1
 − 1 = E�
 − 2� : 1
 − 2 : 1
 − 1 

                 (by applying equation 8) = E�
 − 3� − 1
 : 3 − 1
 : 2 − 1
 : 1 

= ⋯ = E�
 − �
 − 1�� : 1
 − �
 − 1� : 1
 − �
 − 2� : ⋯ : 1
 − 1noooooooooooopooooooooooooq?1�
 

= E�
 − �
 − 1�� : 11 : 12 : ⋯ : 1
 − 1nooooopoooooq?1�
 

= E�1� : � 1\
?1�
"� = −M : � 1\

?1�
"�  
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Let ψ1(x) be the first-order of digamma function, we have: 
 

E��
� = E′�
� = d 2N 2PQR@ − PQrR�1PQR3 d9B∞C 3d
 = > d 2PQR@ − PQrR�1PQR3d
 d9B∞
C  

(because function 
PQR@ − PQrR�1PQR is continuous and differentiable in open interval (0, +∞)  with regard to 

variable x) 

= > d 2− PQrR�1PQR3d
 d9B∞
C = > 981?@1 − 81@ d9B∞

C  

 
We also have: 

E��
 : s� = dE�
 : s�d
 = dE�
 : s�ds = > d 2− PQ�rtu�R�1PQR 3d
 d9B∞
C = > d 2− PQ�rtu�R�1PQR 3ds d9B∞

C = > 981�?Bv�@1 − 81@ d9B∞
C  

 
Function ψ1(x) is also called trigamma function; please refer to documents [9], [10] and [11] for more details 
about trigamma function. Briefly, equation 10 expresses trigamma function [10]. 
 

E��
� = > 981?@1 − 81@ d9B∞
C  

E��
 : s� = > 981�?Bv�@1 − 81@ d9B∞
C  

(10) 

 
Suppose variable x is non-zero, we have: 
 

E��
 : 1� = > 981�?B��@1 − 81@ d9B∞
C = > - 981?@1 − 81@ − 981?@0 d9B∞

C  

= > 981?@1 − 81@ d9B∞
C − > 981?@d9B∞

C = E��
� : 1
 > 9I�81?@�d9B∞
C  

= E��
� : 1
  981?@ F:∞0 H − 1
 > 81?@d9B∞
C  

= E��
� : 1
  981?@ F:∞0 H : 1
 81?@ F:∞0 H 
= E��
� : 1
 lim@→B∞�981?@� − 1
 lim@→C�981?@� : 1
 lim@→B∞ 81?@ − 1
 lim@→C 81?@ 
= E��
� : 1
 lim@→B∞�981?@� − 1
 = E��
� − 1
 : 1
 lim@→B∞ 98?@ = E��
� − 1
 : 1
 lim@→B∞ d�9�d�8?@� = E��
� − 1
 : 1
 lim@→B∞ 1
8?@ 

                            (using L’Hôpital’s rule by taking derivatives of both numerator and denominator [7]) 
 = E��
� − 1
  

 
Briefly, the recurrence equation of trigamma function is specified by equation 11 [12]. 
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E��
 : 1� = E��
� − 1
  (11) 

 
Equation 11 shows recurrence relation [12] of trigamma function, which implicates that it is very easy to 
compute ψ1(x) if variable x is positive integer. Thus, it is necessary to calculate ψ1(1) which is the evaluation 
of trigamma function at starting positive point 1, we have: 
 E��
� = E′�
� = II
 -Γ′�
�

Γ�
�0 

= Γ′′�
�Γ�
� − Γ′�
�Γ′�
�
Γ�
�Γ�
� = Γ

′′�
�
Γ�
� − -Γ′�
�

Γ�
�0 
 

= Γ′′�
�
Γ�
� − �E�
�� 

 

⟹ E��
� = Γ′′�1�
Γ�1� − �E�1�� = Γ

′′�1�
Γ�1� − M  

 
We have: 
 

Γ�1� = > 81@d9B∞
C = −81@ F:∞0 H = lim@→B∞�−81@� : 1 = 0 : 1 = 1 

 

Γ
′�
� = d�N 9?1�81@d9B∞C �d
 = > 9?1�81@��9d9B∞

C  

⟹ Γ
′′�
� = d 2Γ′�
�3d
 = d�N 9?1�81@��9d9B∞C �d
 = > 9?1�81@���9� d9B∞

C  

⟹ Γ
′′�1� = > 81@���9� d9B∞

C = M : w 6  

 

Where M D 0.577215 is Euler-Mascheroni constant [8]. The evaluation N 81@���9� I9B∞C = M : y%z  is found 

out in [8]. 
 
It implies that 

E��1� = Γ
′′�1�
Γ�1� − M = M : y%z1 − M = w 6  

 

Briefly, the value ψ1(1) is always equal to 
y%z  [12]. Given x is positive integer, equation 10 is replaced by 

equation 12 for calculating trigamma function in case of positive integer number, as follows: 
 E��1� = w 6  

E��
� = w 6 − � 1\ 
?1�
"�  

�
 positive integer and 
 ≥ 2� 

(12) 
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Proof, 
 ∀
 ≥ 2, E��
� = E��
 − 1� − 1�
 − 1� = E��
 − 2� − a 1�
 − 2� : 1�
 − 1� b 

(by applying equation 11) = E��
 − 3� − a 1�
 − 3� : 1�
 − 2� : 1�
 − 1� b = ⋯ 

= E��
 − �
 − 1�� − [ 1�
 − �
 − 1�� : 1�
 − �
 − 2�� : ⋯ : 1�
 − 1� nooooooooooooooopoooooooooooooooq]
?1�

 

== E��
 − �
 − 1�� − � 11 : 12 : ⋯ : 1�
 − 1� noooooopooooooq�
?1�

 

= E��1� − � 1\ 
?1�
"� = w 6 − � 1\ 

?1�
"�  

 
In general, I discover two equations 9 and 12 in order to calculate digamma function and trigamma function 
with regard to positive variable. 
 
The beta function [13] denoted B(x, y) is a special function defined as below: 
 {�
, s� = Γ�
�Γ�s�

Γ�
 : s�  (13) 

 
Please distinguish beta density function β(X; a, b) specified in equation 5 known as probability density 
function (PDF) from beta function B(x, y) specified by equation 13. 
 
The first-order partial derivative of B(x, y) is determined as follows: 

 .{�
, s�.
 = Γ�s� �Γ′�
�Γ�
 : s� − Γ�
�Γ′�
 : s��Γ�
 : s�� � = Γ�
�Γ�s�
Γ�
 : s� Γ′�
�Γ�
 : s� − Γ�
�Γ′�
 : s�

Γ�
�Γ�
 : s�
= {�
, s� Γ′�
�Γ�
 : s� − Γ�
�Γ′�
 : s�

Γ�
�Γ�
 : s� = {�
, s� -Γ′�
�
Γ�
� − Γ′�
 : s�

Γ�
 : s�0 

 

Due to digamma function E�
� = Γ
′�?�
Γ�?�, we have: 

 .{�
, s�.
 = {�
, s��E�
� − E�
 : s�� (14) 

 
The digamma function is always determined by equations 7 and 9. Substituting beta function B(x, y) 
specified equation 13 into equation 5, the beta density function is re-written: 
 4��; ), 6� = 7��; ), 6� = 1{�), 6� �;1��1 − ��=1� (15) 
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Now we specify the likelihood function of beta distribution by applying equation 15 as below: 
 

��), 6� = 	 7�
�; ), 6��
�� = 	 1{�), 6� 
�;1��1 − 
��=1��

�� = 1{��), 6� �	 
�;1��
�� � �	�1 − 
��=1��

�� � 

 
Taking the logarithm of L(a, b), we have the log-likelihood function for beta distribution as follows: 
 

����), 6� = ��� a 1{�), 6�b : ���) − 1����
����
�� : ���6 − 1����1 − 
����

��= −����{�), 6�� : �) − 1� � ���
���
�� : �6 − 1� � ���1 − 
���

��  

(16) 

 
Fig. 2 [15] shows the graph of log-likelihood function specified by equation 16 with regard to variables a 
and b given x1=0.1 and x2=0.2. 

 

 
 

Fig. 2. Log-likelihood function with regard to variables a and b 
 

Fig. 3 [15] shows the contour of log-likelihood function specified by equation 16 with regard to variables a 
and b given x1=0.1 and x2=0.2. 
 
Please pay attention to equation 16 because equation 16 is specific case of equation 3 mentioned in previous 
section 2; thus, MLE is applied into beta distribution. 
 
Note that LnL(a, b) = −∞ if any instance xi is equal to 1 or 0. In practice, we should assign a very large 
number to LnL(a, b) in this case, instead of keeping the infinity. 
 
Two parameters a and b must be determined so that they maximize the log-likelihood function. Thus, by 
taking two first-order partial derivatives of log-likelihood function specified in equation 16 corresponding to 
two parameters and by applying equation 14, we have: 
 .����), 6�.) = −� 1{�), 6� .{�), 6�.) : � ���
���

�� = −��E�)� − E�) : 6�� : � ���
���
��  (17) 
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.����), 6�.6 = −� 1{�), 6� .{�), 6�.6 : � ���1 − 
���
��= −��E�6� − E�) : 6�� : � ���1 − 
���

��  

(18) 

 

Where E�
� = Γ
′�?�
Γ�?� is digamma function specified by equations 7 and 9. Note that notation 

$|$? denotes first-

order partial derivative of multi-variable function  f  with regard to variable x. 
 

  
 

Fig. 3. Contour of log-likelihood function with regard to variables a and b 
 
Please pay attention to equations 17 and 18 for determining two first-order partial derivatives of log-
likelihood function of beta distribution. Setting such two partial derivatives equal 0 so as to find out two 
parameters a and b, we have a set of equations whose two solutions are the values of a and b [14, p. 288]: 
 

}.����), 6�.) = 0.����), 6�.6 = 0H ⇔
���
��E�)� − E�) : 6� = 1� � ���
���

��        
E�6� − E�) : 6� = 1� � ���1 − 
���

��
H (19) 

 

 
Equation 19 shows the set of differential equations for estimating parameters a and b. Author [14] proposes 
an algorithm to find out the approximate solutions. Such algorithm will be mentioned in next section. 
 
According to equation 9, given a and b are positive integers, the digamma function ψ(x) is: 
 

E�
� = −M : � 1\
?1�
"�  
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We have: 
 

���
��E�)� − E�) : 6� = 1� � ���
���

��
E�6� − E�) : 6� = 1� � ���1 − 
���

��
H ⟺

���
����E�)� − E�) : 6�� = � ���
���

��
��E�6� − E�) : 6�� = � ���1 − 
���

��
H

⟺
���
��� �−M : � 1\

;1�
"� : M − � 1\

;B=1�
"� � = � ���
���

��
� �−M : � 1\

=1�
"� : M − � 1\

;B=1�
"� � = � ���1 − 
���

��
H 

 

                                           ⟺
���
��−� � 1\

;B=1�
"; = � ���
���

��
−� � 1\

;B=1�
"= = � ���1 − 
���

��
H ⟹

���
��8
_ �−� � 1\

;B=1�
"; � = 	 
�

�
��

8
_ �−� � 1\
;B=1�

"= � = 	�1 − 
���
��

H 
 (By taking exponent function of both sides of these equations) 

 
Briefly, the parameter estimators )� and 6� are solutions of two following equations specified by equation 20 
in case that a and b are positive integer numbers. 
 

���
�� 8
_ �−� � 1\

;B=1�
"; � = 	 
�

�
��         

8
_ �−� � 1\
;B=1�

"= � = 	�1 − 
���
��

H ⇔ ����), 6� = ��� �), 6� = � H (20) 

Where, 
 0 ≤ 
 ≤ 1 

���), 6� = 8
_ �−� � 1\
;B=1�

"; �  and � �), 6� = 8
_ �−� � 1\
;B=1�

"= � 

�� = 	 
�
�

��  and � = 	�1 − 
���
��  

 
Next section will illustrates how to solve equation 20. Now it is necessary to research the co-variance matrix 
Var(a, b) of parameters of beta density function mentioned in previous section. Let H(a, b) be the second-
order partial derivative matrix called Hessian matrix, we have: 
 

��), 6� = �
�. ���.) . ���.).6. ���.6.) . ���.6 �

� 

 
Note, the bracket (.) denotes matrix. 
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Basing on equations 17 and 18, we can determine four second-order partial derivatives of log-likelihood 
function as follows: 
 . ���.) = .E�) : 6�.) − � .E�)�.) = E��) : 6� − �E��)� 

 . ���.).6 = .E�) : 6�.6 = E��) : 6� 

 . ���.6.) = .E�) : 6�.) = E��) : 6� 

 . ���.6 = .E�) : 6�.6 − � .E�6�.6 = E��) : 6� − �E��6� 

 
Where ψ1(.) denotes trigamma function specified by equations 10 and 12. According to equation 4, the co-
variance matrix Var(a, b) is the inversion of negative expectation of Hessian matrix. Please read the book 
“Linear Algebra” by author [16, p. 134] and the book “Linear Algebra and Its Applications” by author [17, 
pp. 102-109] for more details of how to take inversion of a given matrix. We have: 
 ()*�), 6� = 2−,���), 6��31�

 

= -−, aE��) : 6� − �E��)� E��) : 6�E��) : 6� E��) : 6� − �E��6�b01�
 

= -− aE��) : 6� − �E��)� E��) : 6�E��) : 6� E��) : 6� − �E��6�b01�
 

 
(Because trigamma functions ψ1(a), ψ1(b), and ψ1(a+b) are only dependent on parameters a and b, the 
expectation of H(a, b) is merely H(a, b)) 

 

= a�E��)� − E��) : 6� −E��) : 6�−E��) : 6� �E��6� − E��) : 6�b1�
 

= 1� E��)�E��6� − �E��) : 6��E��)� : E��6�� ∗ a�E��6� − E��) : 6� E��) : 6�E��) : 6� �E��)� − E��) : 6�b 

 
Briefly, equation 21 specifies the co-variance matrix of parameters of beta density function as follows: 
 ()*�), 6� = � a�E��6� − E��) : 6� E��) : 6�E��) : 6� �E��)� − E��) : 6�b (21) 

 
Where ψ1(.) denotes trigamma function and, 
 � = 1� E��)�E��6� − �E��) : 6��E��)� : E��6�� 

 
Equation 21 is concrete case of equation 4 when probability distribution is beta distribution. If parameters a 
and b are positive integers, the trigamma function ψ1(.) is calculated simply according to equation 12; this is 
the ultimate purpose of this section. 
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The roots of diagonal elements are the standard deviations (standard errors) of parameter estimates. Let ��)�� 
and ��6�� be the standard errors of optimal parameters )�  and 6�  where )�  and 6�  are solutions of equations 
specified by equation 20, we have: 
 ��)�� = �� 2�E��6�� − E��)� : 6��3 

��6�� = �� 2�E��)�� − E��)� : 6��3 

 

(22) 

Where ψ1(.) denotes the trigamma function and, 
 � = 1� E��)�E��6� − �E��) : 6��E��)� : E��6�� 

 
Equation 22 specifying standard errors of parameter estimates ends up this section mentioning applying 
MLE technique into beta distribution. Now the next section is an example of beta likelihood estimation. 

 

3 An Application of Beta Likelihood Estimation to Specify Prior 
Probabilities in Bayesian Network 

 
Recall that the parameter estimators )� and 6�  are solutions of two equations, according to equation 20 as 
follows: 
 

���
�� 8
_ �−� � 1\

;B=1�
"; � = 	 
�

�
��         

8
_ �−� � 1\
;B=1�

"= � = 	�1 − 
���
��

H ⇔ ����), 6� = ��� �), 6� = � H 
 
Where, 
 

���), 6� = 8
_ �−� � 1\
;B=1�

"; �  and � �), 6� = 8
_ �−� � 1\
;B=1�

"= � 

�� = 	 
�
�

��  and � = 	�1 − 
���
��  

 
Author [14] proposes the iterative algorithm that each pair values (ai, bi) which are values of variables a and 
b are fed to G1, G2 at each iteration. Two biases ∆1=G1(ai, bi)–L1 and ∆2=G2(ai, bi)–L2 are computed. The 
normal bias is the root of sum of the second power ∆1 and the second power of ∆2 and so we have 

∆=�∆� : ∆  . The pair ()�, 6�) whose normal bias ∆ is minimum are chosen as the parameter estimators. The 

algorithm is described in Table 1 as below [14, p. 291]: 
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Table 1. Iterative algorithm to estimate parameters a and b 
 

min∆ = +∞ )� = 6� = 1  (uniform distribution ) 
For a=1 to n do 

For b=1 to n do 
∆1=G1(a, b)–L1 
∆2=G2(a, b)–L2 

∆=�∆� : ∆   

If  ∆ < min∆ then 
min∆=∆ )�=a 6�=b 

  End If 
End For a 

End For b 
()� and 6� are optimal parameters) 

 
Where min ∆ denotes minimum bias. 
 
The main application of beta likelihood estimation is to specify prior probabilities of Bayesian network. 
Bayesian network (BN) is a directed acyclic graph constituted of a set of nodes representing random 
variables and a set of arcs representing relationships among nodes. In general, BN consists of qualitative 
model quantitative model. The qualitative model is its structure and the quantitative model is its parameters, 
namely conditional probability tables (CPT) whose entries are probabilities quantifying relationships among 
variables. For example, there is a BN having two binary variables X1, X2 and one arc which links them 
together in which X2 is conditional dependent on X1. Each variable Xi owns a CPT. Fig. 4 is an example of 
BN with two nodes X1 and X2 whose CPT (s) are not specified yet. 
 

 
 

Fig. 4. Bayesian network in which CPT (s) are not specified yet 
 

CPT (s) are parameters of BN. The quality of CPT depends on the initialized values of its entries. Such 
initial values are prior probabilities. If prior probabilities are already specified, the expectation maximization 
(EM) algorithm can be used to improve them even in case of missing data [18, pp. 359-363]. However, this 
research focuses on applying beta likelihood estimation aforementioned in previous section into specifying 
the prior probabilities. Your attention please, both EM algorithm and beta likelihood estimation are 
parameter learning methods. Beta distribution is often used to represent CPT. Let β1(a1,b1), β2(a2,b2), 
β3(a3,b3) be beta distributions of conditional probabilities P(X1=1), P(X2=1|X1=1) and P(X2=1|X1=0). These 
probabilities are expectations of beta distribution [18, p. 302]. 
 ���� = 1� = ,�7��)�, 6��� = )�)� : 6� 

��� = 1 | �� = 1� = ,�7 �) , 6 �� = ) ) : 6  
��� = 1 | �� = 0� = ,�7 �)�, 6��� = )�)� : 6� 

 

X1 P(X1=1)    P(X1=0) 
 

      ?               ? 

X2 

 X1    P(X2=1)  
 
1         ? 

  0         ? 
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It is necessary to determine three parameter pairs (a1, b1), (a2, b2) and (a3, b3) of three beta distributions β1, β2 
and β3, respectively in order to specify prior probabilities P(X1=1), P(X2=1|X1=1) and P(X2=1|X1=0). 
Suppose we perform 5 trials of a random process, the outcome of i th trial denoted D(i)

 is considered as an 
evidence in which X1 and X2 obtain value 0 or 1. So we have the vector of 5 evidences � = (D(1), D(2), D(2), 
D(3), D(4), D(5)). Table 2 shows these evidences. 

 
Table 2. The evidences corresponding to 5 trials 

 
 X1 X2 

D(1) X1
 = 1 X2 = 1 

D(2) X1
 = 1 X2 = 1 

D(3) X1
 = 1 X2 = 1 

D(4) X1
 = 1 X2 = 0 

D(5) X1
 = 0 X2 = 0 

 
According to the algorithm described in Table 1, let Lij, Gij , ∆ij, ∆i be the values of Lj, Gj, ∆j, ∆ with respect 
to βi where � = 1,3���� and � = 1,2����. We have: 
 

• L11=∏ 
����  and L12=∏ �1 − 
�����  where xi is the instance of X1. 
• L21=∏ 
����  and L22=∏ �1 − 
�����  where xi is the instance of X2 given X1=1. 
• L31=∏ 
����  and L32=∏ �1 − 
�����  where xi is the instance of X2 given X1=0. 

• G11(a1, b1)=8
_ 2−� ∑ �";�B=�1�";� 3 and G12(a1, b1)=8
_ 2−� ∑ �";�B=�1�"=� 3 

• G21(a2, b2)=8
_ 2−� ∑ �";%B=%1�";% 3 and G22(a2, b2)=8
_ 2−� ∑ �";%B=%1�"=% 3 

• G31(a3, b3)=8
_ 2−� ∑ �";�B=�1�";� 3 and G32(a3, b3)=8
_ 2−� ∑ �";�B=�1�"=� 3 

• ∆11=G11 – L11, ∆12=G12 – L12 and ∆1= �∆�� : ∆�   

• ∆21=G21 – L21, ∆22=G22 – L22 and ∆2= �∆ � : ∆    

• ∆31=G31 – L31, ∆32=G32 – L32 and ∆3= �∆�� : ∆�   

 
Let D1, D2, and D3 be the set of xi (s) that are instances of X1, X2 given X1=1, and X2 given X1=0, respectively. 
From evidences expressed in Table 2, we have: 
 �� = �
� = 1, 
 = 1, 
� = 1, 
� = 1, 
� = 0� � = �
� = 1, 
 = 1, 
� = 1, 
� = 0� �� = �
� = 0� 

 
Each instance xi will be modified so that products ∏ 
����  and ∏ �1 − 
�����  avoid getting zero frequently. 
 

- If xi equals 1, it is subtracted by a very small number ε, for example, given ε=0.1, xi = xi–0.1 = 1–
0.1 = 0.9.  

- If xi equals 0, it is added by a very small number ε, for example, ε=0.1, xi = xi+0.1 = 0+0.1 = 0.1. 
 
Thus, we have: 
 �� = �
� = 0.9, 
 = 0.9, 
� = 0.9, 
� = 0.9, 
� = 0.1� � = �
� = 0.9, 
 = 0.9, 
� = 0.9, 
� = 0.1� �� = �
� = 0.1� 

 
Suppose the range of all parameters is from 1 to 4. By applying the algorithm described in Table 1, it is easy 
to compute the normal biases. For example, given a1 = 1 and b1 = 1, we have: 
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����)� = 1, 6� = 1� = 	 
�?�∈¡�
= 0.9 ∗ 0.9 ∗ 0.9 ∗ 0.9 ∗ 0.1 D 0.0656 

�� �)� = 1, 6� = 1� = 	 �1 − 
��?�∈¡�
= �1 − 0.9� ∗ �1 − 0.9� ∗ �1 − 0.9� ∗ �1 − 0.9� 

∗ �1 − 0.1� D 0.0001 

����)� = 1, 6� = 1� = 8
_ �−5 � 1\
�B�1�

"� � = 8
_ a−5 ∗ 11b D 0.0067 

�� �)� = 1, 6� = 1� = 8
_ �−5 � 1\
�B�1�

"� � = 8
_ a−5 ∗ 11b D 0.0067 

∆��= ��� − ��� = 0.0067 − 0.0656 D −0.0589 ∆� = �� − �� = 0.0067 − 0.0001 D 0.0066 ∆�= �∆�� : ∆�  = ¤�−0.0589� : �0.0066� D 0.0592 

 
Table 3 shows normal biases of all possible values of (a1, b1). 

 
The normal biases of all possible values of (a2, b2) with respect to β2 are shown in Table 4. 

 
The normal biases of all possible values of (a3, b3) with respect to β3 are shown in Table 5. 

 
Table 3. The normal biases of (a1, b1) with respect to β1 

 

a1 b1 L11 L12 G11 G12 ∆11 ∆12 ∆1 

1 1 0.0656 0.0001 0.0067 0.0067 –0.0589 0.0066 0.0592 
1 2 0.0656 0.0001 0.0006 0.0821 –0.0651 0.0820 0.1047 
1 3 0.0656 0.0001 0.0001 0.1889 –0.0655 0.1888 0.1998 
1 4 0.0656 0.0001 0.0000 0.2865 –0.0656 0.2864 0.2938 
2 1 0.0656 0.0001 0.0821 0.0006 0.0165 0.0005 0.0165 
2 2 0.0656 0.0001 0.0155 0.0155 –0.0501 0.0154 0.0524 
2 3 0.0656 0.0001 0.0044 0.0541 –0.0612 0.0540 0.0816 
2 4 0.0656 0.0001 0.0016 0.1054 –0.0640 0.1053 0.1232 
3 1 0.0656 0.0001 0.1889 0.0001 0.1233 0.0000 0.1233 
3 2 0.0656 0.0001 0.0541 0.0044 –0.0115 0.0044 0.0123 
3 3 0.0656 0.0001 0.0199 0.0199 –0.0457 0.0198 0.0498 
3 4 0.0656 0.0001 0.0087 0.0458 –0.0570 0.0457 0.0730 
4 1 0.0656 0.0001 0.2865 0.0000 0.2209 –0.0001 0.2209 
4 2 0.0656 0.0001 0.1054 0.0016 0.0398 0.0015 0.0398 
4 3 0.0656 0.0001 0.0458 0.0087 –0.0198 0.0086 0.0216 
4 4 0.0656 0.0001 0.0224 0.0224 –0.0432 0.0223 0.0486 

 
From Tables 3, 4, and 5, we recognize that when (a1,b1)=(3,2), (a2,b2)=(4,3), and (a3,b3)=(1,4), the normal 
biases of distributions β1, β2, and β3, respectively become minimum. So the parameter estimators �)��, 6���, �)� , 6� �, and �)��, 6��� corresponding to distributions β1, β2, and β3 are (3,2), (4,3), and (1,4), respectively. So 
the prior conditional probabilities P(X1=1), P(X2=1|X1=1) and P(X2=1|X1=0) are determined: 

 ���� = 1� = )��)�� : 6�� = 33 : 2 = 0.6 

��� = 1 | �� = 1� = )� )� : 6� = 44 : 3 D 0.57 

��� = 1 | �� = 0� = )��)�� : 6�� = 11 : 4 = 0.2 
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When these prior probabilities were calculated, the BN is totally determined with full of prior CPT (s) as in 
Fig. 5. 
 

 
 

Fig. 5. Bayesian network with full of prior CPT (s) 
 

Table 4. The normal biases of (a2, b2) with respect to β2 

 

a2 b2 L21 L22 G21 G22 ∆21 ∆22 ∆2 

1 1 0.0729 0.0009 0.0183 0.0183 –0.0546 0.0174 0.0573 
1 2 0.0729 0.0009 0.0025 0.1353 –0.0704 0.1344 0.1518 
1 3 0.0729 0.0009 0.0007 0.2636 –0.0722 0.2627 0.2725 
1 4 0.0729 0.0009 0.0002 0.3679 –0.0727 0.3670 0.3741 
2 1 0.0729 0.0009 0.1353 0.0025 0.0624 0.0016 0.0625 
2 2 0.0729 0.0009 0.0357 0.0357 –0.0372 0.0348 0.0509 
2 3 0.0729 0.0009 0.0131 0.0970 –0.0598 0.0961 0.1132 
2 4 0.0729 0.0009 0.0059 0.1653 –0.0670 0.1644 0.1775 
3 1 0.0729 0.0009 0.2636 0.0007 0.1907 –0.0002 0.1907 
3 2 0.0729 0.0009 0.0970 0.0131 0.0241 0.0122 0.0270 
3 3 0.0729 0.0009 0.0436 0.0436 –0.0293 0.0427 0.0518 
3 4 0.0729 0.0009 0.0224 0.0849 –0.0505 0.0840 0.0980 
4 1 0.0729 0.0009 0.3679 0.0002 0.2950 –0.0007 0.2950 
4 2 0.0729 0.0009 0.1653 0.0059 0.0924 0.0050 0.0925 
4 3 0.0729 0.0009 0.0849 0.0224 0.0120 0.0215 0.0246 
4 4 0.0729 0.0009 0.0479 0.0479 –0.0250 0.0470 0.0532 

 
Table 5. The normal biases of (a3, b3) with respect to β3 

 

a3 b3 L31 L32 G31 G32 ∆31 ∆32 ∆3 

1 1 0.1 0.9 0.3679 0.3679 0.2679 –0.5321 0.5957 
1 2 0.1 0.9 0.2231 0.6065 0.1231 –0.2935 0.3183 
1 3 0.1 0.9 0.1599 0.7165 0.0599 –0.1835 0.1930 
1 4 0.1 0.9 0.1245 0.7788 0.0245 –0.1212 0.1237 
2 1 0.1 0.9 0.6065 0.2231 0.5065 –0.6769 0.8454 
2 2 0.1 0.9 0.4346 0.4346 0.3346 –0.4654 0.5732 
2 3 0.1 0.9 0.3385 0.5580 0.2385 –0.3420 0.4169 
2 4 0.1 0.9 0.2771 0.6376 0.1771 –0.2624 0.3166 
3 1 0.1 0.9 0.7165 0.1599 0.6165 –0.7401 0.9633 
3 2 0.1 0.9 0.5580 0.3385 0.4580 –0.5615 0.7246 
3 3 0.1 0.9 0.4569 0.4569 0.3569 –0.4431 0.5690 
3 4 0.1 0.9 0.3867 0.5397 0.2867 –0.3603 0.4604 
4 1 0.1 0.9 0.7788 0.1245 0.6788 –0.7755 1.0306 
4 2 0.1 0.9 0.6376 0.2771 0.5376 –0.6229 0.8228 
4 3 0.1 0.9 0.5397 0.3867 0.4397 –0.5133 0.6759 
4 4 0.1 0.9 0.4679 0.4679 0.3679 –0.4321 0.5675 

 
 
 

X1 P(X1=1)    P(X1=0) 
 

    0.6          0.4 

X2 

 X1    P(X2=1)  
 
1       0.57 

  0       0.20 



 
 
 

Nguyen; BJMCS, 16(3): 1-21, 2016; Article no.BJMCS.25731 
 
 
 

19 
 
 

Let ��)���, ��6���, ��)� �, ��6� �, ��)���, and ��6��� be standard errors of  )�� , 6�� , )� , 6� , )�� , and 6�� . By 
applying equation 22, it is easy to determine these standard errors as follows: 
 �� = 15 E��)���E��6��� − 5E��)�� : 6��� 2E��)��� : E��6���3 = 0.191684 

��)��� = ��� 25E��6��� − E��)�� : 6���3 = 0.758744 
��6��� = ��� 25E��)��� − E��)�� : 6���3 = 0.579731 
� = 14 E��)� �E��6� � − 4E��)� : 6� � 2E��)� � : E��6� �3 = 0.726437 
��)� � = �� 24E��6� � − E��)� : 6� �3 = 1.01786 
��6� � = �� 24E��)� � − E��)� : 6� �3 = 0.844498 
�� = 11 E��)���E��6��� − 1E��)�� : 6��� 2E��)��� : E��6���3 = 25.0051 
��)��� = ��� 21E��6��� − E��)�� : 6���3 = 1.25013 
��6��� = ��� 21E��)��� − E��)�� : 6���3 = 5.96637 

 
The errors ��)��� and ��6��� are minimum because the number of instances of Xi is 5 – the largest, which 
implies that )�� and 6�� are best estimates. 
 
In general, the iterative algorithm for solving simple equations specified by equation 20 is the result of 
applying MLE method into beta density function. 
 

4 Conclusion 
 
This research shares the same methodology with the previous research [14] where positive integer 
parameters of beta distribution are estimated based on interesting features of gamma function. The ultimate 
purpose is to simplify solving differential equations in order to estimate such integer parameters by easiest 
way. The resulted equations are not absolutely simpler than ones from [14] but this research digs deeply into 
mathematical functions relevant to gamma function such as digamma and trigamma. Consequently, this 
research is more general and all equations are proved in detail. 
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