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Abstract

The present research aims to evaluate the biomass estimates of Araucaria angustifolia (Bertol.) Kuntze trees
obtained by the direct method, then present results generated from a 2.0 m resolution spectral image
Worldview-2 satellite. The quantification of the biomass in the field was first carried out of 29 trees of the specie
of interest with DBH > 40 cm and then with the image aid the crowns were delimited for analysis. From the
spectral bands (B2-blue, B3-green, B4-yellow, B5-red, B6-near red, B7-near infrared 2 and B8-near infrared 2),
it was possible to obtain vegetation indexes proposed by the literature (NDVI, NDVI 2, RS and SAVI 0,25) and
later incorporated with dendrometric data a correlation matrix was formed. Additionally, mathematical equations
were used to estimate biomass and carbon as a function of dendrometric variables and information obtained from
the satellite image processing. From these equations, the ones that presented better results were those that
contained independent dendrometric variables (DBH) and those that contained vegetation indices (NDVI 2 and
NDVI). For the dendrometers, the relative error found was 14.42% and 14.32% for biomass and carbon
respectively, while for the digital ones, NDVI 2 found a relative error of 37.82% and an adjusted coefficient of
determination of 0.88 in the biomass equations. In the carbon equations, the NDVI variable presented the best
results, being 38.56% the relative error and 0.87 the determination coefficient.

Keywords: forest Inventory, regression, remote sensing
1. Introduction

Over the last few years there has been increasing interest in using remote sensing data to provide efficient
estimates of aboveground biomass (AGB) and carbon because they are able to collect repetitive and
comprehensive observations from local to global scales (Avitabile et al., 1998; Batistella, 2005; Lu et al., 2004;
Sarker & Nichol, 2011; Soenen et al., 2010; Dong et al., 2012). The AGB cannot be measured directly from air
or space, so the approaches using remote sensors are developed by linking information derived from remote
sensing data and measured biomass values in the field (Zhu & Liu, 2015). The close association between tree

height, DBH and wood volume models have a high explanatory power for forest biomass estimates (Koch,
2010).

Forest biomass is one of the main resources for an emerging sustainable bioeconomy (Becker et al., 2009).
Therefore, sustainable management of forest ecosystems as well as climate protection as mechanisms for
Reducing Emissions from Deforestation and Degradation (REDD+) depend on reliable and concise information
on the spatial and temporal distribution of forest biomass (Maack et al., 2015). In addition, precise estimates are
needed to assess the ecosystem services potential (eg erosion control). In the remote sensing area, several sensors
and approaches were evaluated to model above-ground biomass (Lu, 2006; Anaya et al., 2009; Koch, 2010;
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Clark et al.,, 2011; Maack et al., 2015). Most frequent surveys have used remote sensing predictors in
combination with field measurements to train parametric or non-parametric regression models (Fassnacht et al.,
2014).

The biomass estimation using high-resolution spatial images, such as the Worldview-2 sensor, has been
extensively studied with accurate experimental results (Dube et al., 2014; Mutanga et al., 2012; Robinson et al.,
2016; Sibanda et al., 2015). However, the operational use of this data in automated procedures to be applied to
forest inventories and large-scale forest management is still limited to a small number of cases (Fassnacht et al.,
2017).

More precisely, the 8-band Worldview-2 multispectral sensor is characterized by a better spatial resolution of 2
m and two new spectral bands with unique band configurations such as red-edge (705-745 nm) and near infrared
2 (860-1040 nm) when compared to other multispectral sensors. Due to these unique advances, vegetation
indexes as the Normalized Difference Vegetation Index (NDVI), Simple Reason (SR), SAVI (Soil Adjusted
Vegetation Index), EVI (Enhanced Vegetation Index), calculated from the WordView-2 data are more sensitive
to subtle variations in the biochemical/physical properties of the plant and could, therefore, improve the
quantification and mapping of BIAS and carbon in densely forested areas such as the Araucaria forests.

The literature demonstrates that vegetation indexes derived from Worldview-2 are effective in characterizing
forest biomass and other biophysical characteristics of vegetation and many which are sensitive to reflectance in
the visible and near-infrared portions of the electromagnetic spectrum (Adam et al., 2014; Dube et al., 2014;
Mutanga et al., 2012; Robinson et al., 2016). Beyond, sensors with few, but important spectral bands (i.e., the
red band) are critical to minimize any redundancy and unnecessary noise associated with hyperspectral images.
Due to these unique sensor characteristics the introduction of new generation multispectral sensors is in this
study, verifying the usefulness in the carbon standards monitoring stored in terrestrial ecosystems on landscape
scale with high precision and accuracy.

Therefore, the objective of this work was to estimate the aerial biomass and organic carbon of native trees of
Araucaria angustifolia (Bertol.) Kuntze in an Araucaria Forest fragment using vegetation indexes in
Wolrdview-2 image.

2. Method
2.1 Characterization of the Study Area

This research was developed in a fragment of Araucaria forest (IBGE, 1992) located in the subbasin of the
Imbituvao river, Assungui community, municipality of Fernandes Pinheiro, State of Parana. The municipality is
located in the Center-South region of Parana (25°27’ S and 50°35’ W), at an altitude of 893 meters (Wrege et al.,
2012). The rural property where the fragment is inserted has a total area of 47.9 hectares, of which 24.5 hectares
are forest remnants (Figure 1), that comprise part of the studies of the Imbituvdo Project developed by the
Forestry Engineering Department of Central Western Parana State University (UNICENTRO).

According to Koppen classification, the climate region is characterized as Subtropical Moist Mesothermal (Ctb),
that means, it has fresh summers and winters with the occurrence of severe frost and that hardly has dry seasons.
The average annual temperature is 18 °C, with a minimum temperature of -2 °C and maximum of 32 °C
(Simepar, 2012).
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Figure 1. Location of the study area in municipality of Fernandes Pinheiro, State of Parana, Brazil

2.2 Determination of Biomass by Direct Method

The determination of the biomass in the field was performed according to the direct method of quantification, by
sampling 29 trees with diameter at breast height (DBH) > 40 cm, randomly distributed in the fragment, aiming to
contemplate the diametric variability (Table 1).

After the trees were felled, the following components were separated: leaves, branchs and stem. Each component
was weighed separately to obtain the green biomass. After that, samples of each component were collected.

The samples were taken to the laboratory and dried in an air circulation greenhouse and at a temperature of
65 °C until reaching constant weight for further determining the moisture content and preparation for chemical
analysis of the organic carbon content.

In order to determine the carbon content, the samples were first fragmented using a planing saw, crushed in a
Willey and Croton mill with a 20 mesh sieve and then analyzed by the direct combustion method using a C-144
LECO elemental analyzer. In this method, the sample is placed in a pure oxygen environment with a temperature
typically set at 1350 °C and is then subjected to complete combustion, releasing the carbon as carbon dioxide,
which is measured by infrared sensors. The instrument converts the result to a percentage using a predefined
equation in the software that takes into account sample weight, calibration, and known moisture value (LECO,
2008). After determining the organic carbon content in each sampled fraction, it was then multiplied by the dry

biomass, thereby obtaining the amount of organic carbon per component. The detail methodology is described in
Roik (2018).

Table 1. Volume, age and number of individuals sampled from the specie Araucaria angustifolia (Bertol.)
Kuntze

DBH Class (cm)
Variable Variation Total
40-50 50-60 60-70
Male 3 7 3 13
Trees sampled Female 9 6 1 16
Total 12 13 4 29
""""""""""""""""""" Minimum 137 234 38 137
Volume (m? tree™) Average 1.99 3.31 4.64 2.94
Maximum 2.74 4.32 5.30 5.30
"""""""""""""""""" Minioum 8 8 9 8
Age (years) Average 99 101 126 104
Maximum 111 119 188 188
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The determination of the age of the trees was made by counting the growth rings of the disc taken from the base
of each tree sampled.

2.3 Obtaining and Preprocessing the Worldview-2 Image

For the biomass estimate through remote sensing, a multispectral image with spatial resolution of 2.0 meters was
used. The image containing a scene from the study area (Figure 2) was obtained on December 21, 2012. The
spectral resolution of the WorldView 2 image can be seen in Table 2.
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Figure 2. WorldView-2 image of the study area in the RGB composition (RSG3B2)
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Table 2. Spectral resolutions of the worldview 2 satellite bands

Spectral Band Minimum (nm) Maximum (nm) Amplitude (nm) Average (nm)
B&W 450 800 350 625
B1(Costal) 400 450 50 425
B2(Blue) 450 510 60 480
B3(Green) 510 580 70 545
B4(Yellow) 585 625 40 605
B5(Red) 630 690 60 660
B6(Near Red) 705 745 40 725
B7(Near Infrared 1) 770 895 125 832
B8(Near Infrared 2) 860 1040 180 950

2.4 Atmospheric Correction and Digital Numbers Conversion Into Radiance/Reflectance

For estimating aerial biomass and organic carbon by remote sensing, it is necessary to establish quantitative
relations between the digital numbers (DN’s) of the image and parameters of the target object. Thus, the
conversion of DN to reflectance should be performed, in order to minimize the illumination conditions variation
in the spectral behavior of the target (Chuvieco, 1990).

According to Chuvieco (1990) and Watzlawick et al. (2009), the conversion process is portrayed in three phases:
(1) DN’s conversion to radiance values; (2) radiance values conversion to reflectance values; (3) atmospheric
correction of the image, necessary, since the presence of elements in the atmosphere as aerosols and water
vapors make the energy that comes from the sun to be dispersed before reaching the target object.

For the process of converting image DN’s into apparent two-way radiance, Equation 1 was used.

K Band x gPixel, Band

LA Pixel, Band =
AX Band

(1

Where, LA Pixel, Band = Pixel spectral radiance (W-m™-sr’'-um™); KBand = Absolute radiometric calibration
factor of a particular band (W-m™-sr''-count™); gPixel, Band = Pixel’s DN of the corrected radiometric image
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(count); AL Band = Effective bandwidth (um) of a band. The calibration factor and the effective bandwidth are
available in the image file metadata.

For the apparent bidirectional radiance values conversion to apparent bidirectional reflectance, Equation 2 was
used.

LA Pixel, Band x d TS*n

pk PlXCl, Band = Esun ABand x cos(Bs)

2

Where, p\ Pixel, Band = Apparent bidirectional reflectance; LA Pixel, Band = Apparent two-way radiance; d TS
= Earth-Sun Distance; m = 3.141592; Esun ABand = Sun average irradiance at the top of the atmosphere for each
band; cos(®s) = zenith solar angle.

The image atmospheric correction was performed in the FLAASH module, which uses MODTRAN4 (Moderate
Resolution Atmospheric and Transmittance Model) radiative transfer code. This code processes data from
hyperspectral and multispectral sensors in the short-wave infrared (SWIR), visible and ultraviolet (UV) bands,
thus minimizing the effects of scattering and atmospheric absorption. In addition to performing the correction for
the pixel mix due to surface scattering, the code also calculates the average scene visibility (aerosol/mist). The
FLAASH method can also be used to correct images collected in vertical or inclined geometries (Silva et al.,
2017).

2.5 Generation of Vegetation Indices
The vegetation indexes analyzed were:

a) Simple Reason (SR): where (Cohen et al., 1992) suggests being the first true index among all others. It’s
expressed by the ratio between the near infrared band 1 and the red band, whose relevant characteristic is to
provide information on vegetation biomass (Schlerf et al., 2005). Its expression (3) is defined as:
— B7hir1
BS5red

Where, B7 is the Near Infrared 1 band and B5 is the red band.
b) NDVI (Normalized Difference Vegetation Index): proposed by Gurgel (2003), the index starts from the

principle of the difference between the measurement of the reflectance in the near infrared channels and the red
one by the sum of the same channels, that is, using the SR bands (4):

(€))

B7nir1 —B5red
BThir1 + BSred

NDVI= )

From the NDVI (5, 6, 7), some tests were performed in this work, altering some bands, and thus three new
indices were tested:

BBhir2 — BSred

NDVI (1) N B8pir2 + BSed (5)
Bnir 7B6re -edge

NDVI (2) = — o rededee (6)
Bnir + Bﬁred»edge
8hir2 — Bbrededge

NDVI (3) = BBhir2 ~ Bbrededge (7

B8yir2 + Bﬁrededge

Where, B8 is the band of Near Infrared 2and B6 is the band of the Near Red.

c¢) SAVI (Soil Adjusted Vegetation Index): one of the most recurrent problems in the estimation of vegetation
indexes in satellite images is the influence that the soil exerts on the characterization of the plants canopy and
Huete (1988) thinking about that formulated the SAVI, which tries to minimize the influence exerted from a
factor (L), aggregated in the expression, which can be: 1.0, when it is a very low coverage, 0.5 for covers
considered intermediate and 0.25 for those of high density. In this research two factors (0.25 and 0.5) were tested,
whose expression was described as (8):

(I +L) x (B7njr] —BSreqd)

SAVI=
(L+ BTy +BSpeq)

x(1+L) ®)

2.6 Sampling of Spectral Variables and Adjustment of the Mathematical Model

For obtaining the digital variables, initially a buffer was generated, considering the crown diameters of the
sampled trees, through their (x, y) coordinates. Subsequently, the image clipping was performed and thus the
mean values of the pixels of each tree sampled were extracted. This step was performed for all indexes under
analysis as well as for each spectral band separately. Figure 3 illustrates how were arranged the delimitations
made in the image for the calculations of each tree.
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Figure 3. Araucaria crowns delimitation

2.7 Statistical Analysis

Statistical analysis of the data was performed based on the correlation between aerial biomass and organic
carbon data with the digital data, which correspond to the image values (reflectance of the spectral bands B2 to
B8 and reflectance of the vegetation indices SR, NADVI, NDVI (1, 2, 3) and SAVI).

For the estimation of aerial biomass and organic carbon (dependent variables), the equations were generated by
the Stepwise procedure, considering the reflectance values of spectral bands and vegetation indexes as
independent variables. The evaluation of the equations was done based on the higher adjusted determination
coefficient (R? adj), lower standard error of estimate (%) and analysis of the residuals distribution.

3. Results and Discussion
3.1 Images of the Vegetation Indexes Generated From the Spectral Bands

The application of the vegetation indexes as well as the reflectance of the Near Infrared spectral band in the
study area resulted in thematic maps, which are presented in Figure 4.
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Figure 4. Study area thematic maps obtained based on: (A) Vegetation Index NDVI; (B) Vegetation Index
NDVI 1; (C) Vegetation Index NDVI 2 and (D) Spectral Band B7-Near Infrared

The classes that correspond to the lowest values of the evaluated indexes correspond to the Araucaria
angustifolia and shade regions. According to Watzlawick et al. (2009), coniferous forests have a lower spectral
response in the near infrared region when compared to deciduous forests.

As the class values increase, other objects become more evident in the scene, thus gaining greater prominence
due to spectral response. The classes can be understood as exposed soil, grasses and the own vegetation
corresponding to the leafy species, expressing the highest reflectance values.

When performing the visual interpretive analysis of the generated thematic maps, no difference was observed
regarding the spectral responses of the objects in the scenes generated by NDVI and NDVI 1 (Figure 6A and 6B,
respectively). On the other hand, in the scene obtained by NDVI 2 (Figure 6C) the differences become more
evident. The results of the research by Adam et al. (2014) have demonstrated that the utility of EVI and NDVI
vegetation indices calculated from hyperspectral images in the estimation of biomass in dense forests is a
challenging task with broadband satellite sensors because of the proximity of the spectral responses of the
objects.

Sarker and Nichol (2011) stated that the performance in the biomass estimation can be significantly increased
using texture parameters using high resolution optical sensors such as the AVNIR-2 sensor of the ALOS
platform. However, obtaining these data sets, that is hyperspectral, LIDAR and radar, remains a major challenge,
especially in developing countries. In addition to these data sets, the limited space/coverage area is associated
with high costs/data volume, as well as high pre-processing costs compared to Worldview-2. Therefore, it is
prudent to examine the potential of integrating high resolution multispectral sensors and environmental variables
in the quantification and mapping of biomass and carbon.

3.2 Statistical Analysis

The correlation matrix generated from the biomass and carbon data and the Worldview-2 digital image data,
such as vegetation indexes and spectral bands, are presented in Table 3.
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Table 3. Correlation matrix between obtained data in the field and digital values of the indexes and spectral
bands

DBH DW Carb NDVI NDVI_1 NDVI_2 NDVI_3 SR SAVI B1 B7
DBH 1.00 0.93 0.93 -0.06 -0.12 0.13 -0.03 -0.06 -0.06 -0.10 -0.20
DW 0.93 1.00 1.00 0.02 -0.06 0.22 0.03 -0.01 0.01 -0.10 -0.11
Carb 0.93 1.00 1.00 0.01 -0.06 0.22 0.03 -0.01 0.01 -0.10 -0.10
NDVI -0.06 0.02 0.01 1.00 0.96 0.58 0.52 0.98 1.00 0.11 0.14
NDVI_1 -0.12 -0.06 -0.06 0.96 1.00 0.49 0.63 0.97 0.96 0.07 0.03
NDVI_2 0.13 0.22 0.22 0.58 0.49 1.00 0.75 0.53 0.58 -0.13 0.04
NDVI_3 -0.03 0.03 0.03 0.52 0.63 0.75 1.00 0.54 0.51 -0.17 -0.19
SR -0.06 -0.01 -0.01 0.98 0.97 0.53 0.54 1.00 0.98 0.09 0.05
B1 -0.10 -0.10 -0.10 0.11 0.07 -0.13 -0.17 0.09 0.11 1.00 0.79
B7 -0.20 -0.11 -0.10 0.14 0.03 0.04 -0.19 0.05 0.15 0.79 1.00

Note. DBH = diameter at breast height (cm); DW = Dry weight (kg); Carb = Carbon (kg); NDVI = Normalized
Difference Vegetation Index; NDVI (2 and 3) = Vegetation Index using the red-edge band; SR = Simple Reason;
SAVI = Soil Adjusted Vegetation Index; B1 = Spectral Band Costal Blue and B7 = Near Infrared Spectral Band.

The biomass and carbon correlations, presented statistical significance (p value = 0.000) in relation to DBH. This
result can also be seen in the research of Watzlawick et al. (2009) who also worked with the same variables.

When the data (biomass and carbon) are compared with the image data, which correspond to vegetation indexes
and spectral bands, they are not statistically significant (p value > 0.05). However, index NDVI_2 has the largest
positive correlation in relation to biomass and carbon, 0.223 and 0.222, respectively. These values can be
explained by the fact that the bands that integrate the index are the near infrared 1 and the red-edge band, which
in turn have a very strong relation with spectral behavior of the plant.

Therefore, the presence of single and strategically positioned bands, such as red-edge and near-infrared bands,
has the potential to improve the accuracy of biomass and carbon estimates of vegetation when compared to other
sensors, strengthening vegetation mapping performance (Dube et al., 2014; Mutanga et al., 2012; Ozdemir ¢
Karnieli, 2011; Robinson et al., 2016; Sibanda et al., 2015a; Tan et al., 2003). For example, Robinson et al.
(2016), found with red-edge and near infrared double bands (NIR1 and NIR2) the best combination for species
discrimination. Table 4 shows equations adjusted from the regression using the Stepwise method.

In the study of biomass (Table 4) there was a minimum difference in relation to the adjusted determination
coefficient (R? adj) of each equation. Equation (2) stands out showing the highest value of R? adj (0.87), but with
the standard error (Syx%), there is a notable disparity between the four proposed models, especially those
involving only the vegetation indexes. Equation 1 presents the lowest standard error (14.42%), because considers
only the variable DBH (cm), which is directly related to biomass and carbon. However, Equation 2, which uses
the red-edge and near infrared band 1, obtained a standard error of 37.82%, and R?adj of 0.87.

Table 4. Equations to estimate the aerial biomass and organic carbon of Araucaria angustifolia obtained by the
Stepwise procedure

RM. Model Syx% Readj Bo By B, Bs Ba

1 Bio = Py + p-DBH 144 086 -2901.85 963 - - -

2 Bio = B;"NDVI 2 378 087 - 23168.7 - - -

3 Bio = BBl 388 0.87 - 51.8 - - -

4 Bio = B,-(NDVI) + B»-(SR) + B5-(SAVI) 396 0.6 - 549026  75.765  -36715 -

1 Cb = By + B1-CA + B-DBH + Bsh 144 085 -1428.88 09038 41249  6.161 -

2 Cb=pB,"NDVI + By NDVI_1 +ByNDVI 2+B,NDVI 3 385  0.87 - 271157 29405 337388  -25671.2
3 Cb =P, + B-DBH 143 086 -126091  42.0935 - - -

4 Cb = B;"NDVI 385 0.87 - 1508.6 - - -

5 Cb = pB,"NDVI 2 375 088 - 10194.4 - - -

Note. Bio = Biomass (kg); Cb = Carbon (kg); R. M. = Regression Model; Syx% = standard error of estimative;
R?adj = coefficient of determination adjusted; Bi = parameters of the equation; h = total height (m); CA = Crown
area.
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For the models considering as dependent variable the carbon content (kg), the equations obtained some values
close to those found with the biomass variable (kg). Equations 1 and 3 can be highlighted, being those that
presented a smaller relative error in relation to the others. In Equation 3, a greater prominence is given by
presenting values of 0.86 for the R? adj and 14.32% for the relative error. By the fact of they are independent
variables directly related to individuals, that is, variables extracted from each tree in the field, such as the DBH
and the crown area, it can be a point to be observed to justify the values presented in the equations Table 4.

For the equations with the vegetation indexes as independent variables, the values increased considerably,
however, it is emphasized the Equation 2, which presents the three NDVIs modified in the research as
independent variables, and that their values of R?adj (0.87) and relative error (38.56%), did not show a
significant difference with model 4, which uses the standard NDVI in the equation.

Ramirez et al. (2010) obtained a R?adj of 0.85 and standard error of 5.1% for biomass, in which the independent
variable was the green band of the satellite image Quickibird-2 for the coffee crop, contradicting this research in
which the green band did not present satisfactory results to compare with the dependent variables, biomass and
carbon.

The results are in accordance with the study by Watzlawick et al. (2009) to estimate biomass in an Araucaria
Forest using the IKONOS-2 platform, using the NDVI, obtaining R?adj of 0.53 and a standard error of 42.69%.
Bendig et al. (2015), estimating the biomass of the summer barley crop in the Cologne municipality in Germany,
where also using vegetation indexes for estimation, obtained R?adj of 0.65 and a standard error of 56.45%. Both
of the aforementioned studies obtained lower estimation results related to the present study.

The results of this study demonstrate the precision degree and importance of the Worldview-2 integration in the
estimation of biomass and carbon. Dube and Mutanga (2015) obtained correlation coefficients from 0.86 to 0.92
for the estimation of biomass and carbon using vegetation indexes combined with spectral variables. These same
authors commented that the humidity, slope, temperature, aspect, total moisture content, elevation and sunshine
along with image spectral information significantly improved biomass and carbon estimates, because these
factors influence vegetation growth and spectral response.

According to Watzlawick et al. (2009) the explanation about the near infrared presenting good results regarding
biomass estimates it is closely associated with the vegetation, in the interaction of the incident energy with the
cellular structure and the amount of water in the leaf. Dube and Mutanga (2015) commented that the use of
vegetation indexes can be attributed to the saturation challenges associated with most multispectral sensors. The
literature shows that NDVI calculated from traditional near-infrared and red bands produce poor biomass
estimates (Hansen & Schjoerring, 2003; Lee et al., 2004; Mutanga & Skidmore, 2004). However, when
compared with this study, NDVI-2 (near infrared and red-edge), obtained an acceptable result for biomass,
mainly due to the Worldview-2 sensor characteristic.

For the graphical analysis of the residuals the best equations were chosen as a function of the R?adj and the
standard error, that can be visualized in Figure 5.
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Figure 5. Residuals graphs for the best models for estimating biomass (A) and carbon (B) obtained by
dendrometric and remote sensing variables

It can be observed that in the graphs shown in Figure 5 there were no trends in the distribution of residues.
Highlighted it is presented the dendrometric variable DBH as independent for both biomass (Equation 1) and
carbon (Equation 3), where its distribution is more uniform and distributed on the y-axis. The graphs with
vegetation indexes as variable (Equation 2 for biomass and 4 for carbon) present more concentrated distributions,
but without tendencies of overestimation or underestimation. This difference may be associated to the
relationship between forest parameters and satellite spectral responses, which is still poorly understood in the
scientific world, according to Lu et al. (2004).

Ferraz et al. (2012) estimating biomass in an area with semideciduous seasonal forest fragments and using image
generated from the IKONOS 1I satellite, obtained similar results to those presented in Figure 5. The residuals
graphs showing the spectral variables of the image, showed a graphical distribution close to those presented in
graphs 1 and 3 of Figure 5, but the difference between the studies is that the independent variables of these
graphs are dendrometric (DBH), confirming what was described previously in that these variables are more
correlated with biomass.

4. Conclusion

This study investigated the potential of the multispectral sensor Worldview-2 using vegetation indexes in the
estimation of biomass and carbon stocks in a fragment of Araucaria Forest in the southern region of the Parana
State.

A high correlation between biomass and carbon can be observed in relation to the digital variables (spectral
bands). The indexes that presented significant correlations were NDVI 2 and NDVI for biomass and carbon,
respectively.

The results showed that the Worldview-2 high-resolution spatial sensor provides valuable primary data source
for accurate and reliable estimation of biomass and carbon. The combined equations, especially with the NDVI,
produced high estimates of R? adj, when compared to the traditional equation that considers only the variable
DBH.

The methodology proposed in this study using the vegetation indexes was satisfactory, which makes the method
advantageous, mainly in the sense of reducing the time spent in fieldwork related to estimates.
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