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Uncertainty and randomness in demand and supply bring significant challenges

to the stable operation of the grid and the scheduling planning of multi-energy

sources. To solve these challenges, we propose and analyze a multi-energy

dispatching model which minimizes the total cost and enhances the efficiency

of supplying power. Specifically, we design matching algorithms that simulate

an appropriately scaled sequence of stochastic EV demand. We also analyze

four different energy dispatching scenarios proving that the scheduling model

and themulti-energy synergistic microgrid structure can bring higher efficiency

and lower costs. Our main contribution is using a simulation approach to take

EVs into account for demand-side uncertainty, which significantly improves the

efficiency of grid dispatch.
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1 Introduction

Most electricity has been produced through fossil fuels (e.g., coal, natural gas, and oil)

with depleting reserves and unstable prices. They emit large amounts of greenhouse gases,

which are very unfriendly to the environment (Akram et al., 2018). In order to ensure

reliable and environmentally friendly power generation, renewable energy sources are

increasingly becoming alternatives to fossil fuels. However, as the inherent intermittency

of renewable energy generation imposes significant forecast uncertainty on the supply

side, it leaves a fundamental challenge for grid energy dispatching (Hosseini et al., 2020).

In terms of the demand side, according to data from China’s Ministry of Public

Security, as of the end of June 2022, the number of new energy vehicles in China has

reached 10.1 million, of which EVs accounted for 80%. The growing number of EVs will

produce new and unpredictable load conditions for the electrical networks (Buzna et al.,

2021). However, affected by battery capacity and user behavior, the distribution of EV

charging load has strong randomness (Huang et al., 2022), which cannot be ignored and

will largely influence the energy dispatch decision from the demand side.
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The decision maker must integrate regional renewable and

traditional energy based on the above two uncertain factors.

Therefore, the purpose of this paper is to propose a solution to

dispatch microgrid energy. Considering the uncertainty of the

arrival time and charging demand of EVs, this paper proposes a

simulation model to optimize the interests of grid operators by

modeling the uncertainty of various parts in the grid system and

the demand for EVs. We brought the EV simulation data, the

main grid load, and distributed solar power data into the

optimization scheduling model. In order to improve the

original load dispatching model, the satisfaction of the grid

system with the uncertain charging demand of EVs is added

to the objective function to measure the effectiveness of the

dispatching model.

Compared with the existing research works on multi-energy

microgrid dispatch, the significant contributions of this paper

can be summarized as follows:

(1) We propose a multi-energy microgrid deployment method

that considers supply and demand uncertainty. The

microgrid system comprises distributed power sources,

energy storage, and traditional energy sources. The

numerical results show that our chosen deployment

method has more robust reliability compared to

microgrids with different energy structures.

(2) We propose a simulation-based optimal scheduling model.

The model reconciles the uncertainty of EV access and

charging with the uncertainty of distributed generation

such as solar energy, considers critical factors such as

carbon emissions and EV charging demand satisfaction,

and converts the multi-objective scheduling problem into

a single-objective decision. The optimal scheduling scheme is

obtained using an exact solution method.

(3) Compared with existing research, our model not only

effectively reduces the total cost of system operation but

also improves the stability of the microgrid load and the

satisfaction rate of EV random charging demand. The

multi-energy synergistic microgrid structure has higher

efficiency and lower cost under demand uncertainty

providing solid practical guidance for grid energy

dispatching.

This paper is structured as follows: The second section

describes the relevant literature. Section 3 proposes the multi-

energy microgrid energy optimal dispatch model considering the

uncertain demand for EVs. Then, the simulation approach is

introduced in Section 4. Section 5 is about the simulation results

and discussion. The final part contains the conclusion,

limitations, and future research.

2 Literature review

Our work considers the uncertainty on the demand side of

multi-energy systems. With the massive popularity of EVs,

multi-energy system scheduling and system optimization

operations face new challenges (Xu et al., 2018). EVs, bring

new uncertainty to the demand side (Xu et al., 2018), which is

reflected in the time when EVs are connected and off the grid, the

uncertainties of charging demand, and the uncertainties of

batteries (Pan et al., 2018). Leou et al., 2015 applied Poisson

distribution to the model to determine the average number of

EVs starting charging within each time interval when building

the load behavior model of electric vehicle charging stations, as

Poisson distribution is appropriate for models waiting for an

occurrence. The charging demand for electric vehicles is related

to the state of charge and driving distance. Li et al., 2019 and

Wang et al., 2020 believed it followed a normal distribution. In

this paper, considering the uncertain demand side of the multi-

energy system brought by EVs, Poisson distribution is used to

simulate the uncertain arrival and departure law of EVs, and

normal distribution is used to simulate charging demand.

Compared with other relevant literature, for example, Pan

et al., 2018 classified EVs with the same access time and

departure time into one cluster and divided a large number of

EVs into several clusters, the processing method in our paper is

more accurate. Furthermore, the simulation method reduces the

computational burden compared with the study by Mobasseri

et al., 2022, where the refueling demand of fuel cell EVs was

simulated via scenarios.

Our work is also related to the literature on multi-objective

optimization. Hong et al., 2013 and Liu et al., 2022 took multiple

objectives, such as the economy and environment of the system,

into account and used a genetic algorithm to solve the

optimization problem. However, the results obtained by the

meta-heuristic are not optimal, and the calculation process is

complicated. Inspired byWu et al., 2016, with the dual objectives

of charging demand and the total cost considered, we deal with

the multi-objective decision problem synthesized into a single

objective problem, simplifying the calculation and results more

accurately. In addition, the sensitivity test of λ can provide a

reference basis for decision-making. If λ is approaching 0, it

means that the model focuses on meeting EV charging

requirements; otherwise, more emphasis is put on reducing

the cost.

Collaborative scheduling of supply and demand inmulti-energy

systems has excellent economic and environmental benefits. Pan

et al., 2018 analyzed and compared the optimization results of

different energy center structures and found that introducing the

power to gas and gas storage equipment can improve the system

operation. In order to illustrate the influence of the microgrid
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structure on the scheduling scheme, this paper makes a more

comprehensive and consistent comparison through several

variables, including energy storage equipment, thermal power

generation, and Evs orderly charging.

Table 1 compares this paper with other relevant literature.

3 Microgrid load optimal scheduling
model

Considering the uncertainty of the arrival time and charging

demand of EVs, this paper proposes a simulation model to

optimize the interests of grid operators by modeling the

uncertainty of various parts in the grid system and the

demand for EVs.

3.1 Microgrid structure considering EVs’
load

It is assumed that there are multiple distribution subsystems

in the power grid that will supply power to the entire microgrid,

including thermal power, solar power, main grid and energy

storage, while the three factors of microgrid base load, EV load,

and grid electricity sales consume electricity. The multi-energy

grid structure described in this paper is shown in Figure 1.

3.2 Assumptions and notations

In this typical energy system, in order to simulate the actual

dispatching scenario of the microgrid as much as possible, and at

the same time simplify the model within the allowable range, we

formulate the following assumptions.

(1) EVs are not used as energy storage devices but as consumers

and do not provide energy to the microgrid.

(2) The charging demand of each EV is uncertain, and the arrival

time is also uncertain.

(3) Energy storage equipment and distributed power supply all

supply power or store energy as a whole.

(4) The cost of the microgrid system in this paper is mainly

composed of the following parts: the operating cost and

startup cost of various equipment in the microgrid, the

transaction cost between the microgrid and the main

grid, and the cost of carbon emissions disposal. The

carbon emission of the microgrid is mainly carbon

dioxide, which is generated by fuel combustion and

grid operation. Here we only consider the cost of

carbon dioxide disposal.

The key mathematical notations used in this paper are listed

in Tables 2, 3, 4.

3.3 Objective functions

The goal of optimal scheduling of microgrid system load is to

minimize the total system cost, which can be divided into the

following parts.

(1) If demand for EVs cannot be met due to the grid itself, there

is a penalty cost per unit of unmet electricity.

C1 � ∑
i∈I

⎛⎝DEV
i −∑

t∈T
PEV
i,t · Δt⎞⎠ · ρu (1)

(2) The operating cost of energy storage equipment,

which will be incurred as long as there is power

consumption.

C2 � ∑
t∈T

ρES · (PES
t,ch + PES

t,dch) · Δt (2)

(3) Cost of thermal power, including operating costs and fuel

costs.

C3 � ∑
t∈T
(ρTE + ρG

ηTE
) · PTE

t · Δt (3)

FIGURE 1
Power grid system structure.
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(4) Main network and micro-network transactions, microgrids

generate additional revenue by selling excess electricity to the

main grid.

C4 � ∑
t∈T
(ρbuy · Pbuy

t − ρsell · Psell
t ) · Δt (4)

(5) The start-up cost of thermal power equipment can be

ignored if thermal power is not needed to supplement the

electricity gap.

C5 � zte · ρTE (5)

(6) Costs caused by carbon emissions, only carbon dioxide

emissions and disposal are considered here.

C6 � ρCO2 · Q (6)

where Q represents the total amount of carbon emissions, which

is calculated as follow.

Q � eG ·∑
t∈T

PTE
t

ηTE
· Δt + eE ·⎛⎝∑

t∈T
∑
i∈I

PEV
i,t · Δt +∑

t∈T
PES
t,ch · Δt

+∑
t∈T

Psell
t · Δt⎞⎠ (7)

The multi-objective decision problem is synthesized into a

single-objective problem and λ is used to adjust the relationship

between the objectives. When λ is close to 1, the model focuses on

satisfaction with EV charging demand, and when λ is close to 0,

the model focuses on reducing microgrid operating costs.

min C � λ · C1 + (1 − λ) · (C2 + C3 + C4 + C5 + C6) (8)

TABLE 1 Comparison of related literature.

Studies Simulation
method of EVs

Multi-objective Converted into a
single-objective decision

Comparisons

Mobasseri et al. (2022) EVs demand is modelled via scenarios × / ×

Liu et al. (2022) × √ × √

Wu et al. (2016) × √ √ ×

Pan et al. (2018) Dealt with by fuzzy theory √ √ √

Hong et al. (2013) × √ × ×

This study Simulated by Poisson distribution and normal distribution √ √ √

TABLE 2 Variable collections.

Symbol Description

I EV collectionact

T Total time set, with one unit time of 10 min

TABLE 3 Decision variables.

Symbol Description Unit

PEV
i.t Charging power of EV i at time t kW

PES
t,ch The charging power of the energy storage device at time t kW

PES
t,dch

The discharging power of the energy storage device at time t kW

PTE
t Energy supply of thermal power generation at time t kW

Pbuy
t

The microgrid buys power from the main grid at time t kW

Psell
t

The microgrid sells power to the main power grid at time t kW

zi,t Whether the EV i charged at time t Binary

zt,ch Whether the energy storage is charged at all the time t Binary

zt,dch Whether the energy storage device discharges at time t Binary

zt,mb Whether to buy electricity from the main grid at time t Binary

zt,ms Whether to sell electricity to the main grid at all time t Binary

zte Whether to use thermal power during a cycle Binary
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3.4 Model constraints

3.4.1 System balance constraints
Constraint Eq. 9 describes the power balance of power

consumption and supply in the microgrid system. System load

imbalance will have a considerable impact on electricity safety.

PSE
t + PTE

t + Pbuy
t + PES

t,dch � Pload
t +∑

i∈I
PEV
i,t + Psell

t + PES
t,ch (9)

3.4.2 Related constraints of EVs

EEV
i,t+1 � EEV

i,t + PEV
i,t · ηEVch · Δt,∀t ∈ [ti,start, ti,end) (10)

0≤ ∑
t∈Ti

EEV
i,t ≤DEV

i ,∀i ∈ I (11)

ti,arr ≤ ti,start , ti,end ≤ ti,dep , 0≤ ti,end − ti,start ≤ ti,full,∀i ∈ I (12)

0≤PEV
i,t ≤PEV

i,max · zEVi,t , zEVi,t � { 1 ∀t ∈ [tstart, tend]
0 ∀t ∉ [tstart, tend] (13)

∣∣∣∣PEV
i,t+1 − PEV

i,t

∣∣∣∣≤ rEV,∀i ∈ I, t ∈ [ti,start, ti,end) (14)

Constraint Eq. 10 represents energy conservation in an EV

charging state. Constraint Eq. 11 describes the charging capacity

limit for EVs. Constraint Eq. 12 characterizes the quantitative

relationship at critical moments, such as the arrival of EVs and

the start of charging. Constraint Eq. 13 limits the charging power

of each EV within a specific range, and the upper and lower limits

of the charging power are both 0 when not charging. Constraint

Eq. 14 describes the power grid climb power limit, which means

the power change between two time periods cannot exceed a

particular value.

3.4.3 Related constraints of energy storage
equipment

EES
t+1 � EES

t + PES
t,ch · ηESch · Δt − PES

t,ch · Δt
ηESdch

,∀t ∈ T (15)

0≤PES
t,ch ≤PES

ch,max · zt,ch
0≤PES

t,dch ≤PES
dch,max · zt,dch (16)

zt,ch + zt,dch ≤ 1,∀t ∈ T (17)
zt,ch ∈ {0, 1}, zt,dch ∈ {0, 1} (18)∣∣∣∣PES

t+1,ch − PES
t,ch

∣∣∣∣≤ rESch∣∣∣∣PES
t+1,dch − PES

t,dch

∣∣∣∣≤ rESdch (19)

Constraint Eq. 15 represents the energy conservation

equation for stored energy. Constraint Eq. 16 limits the

charging and discharging power of the energy storage.

Constraint Eq. 17 describes that the charging and discharging

processes of the energy storage cannot proceed simultaneously.

Constraint Eq. 19 represents the climb power limit.

TABLE 4 Parameters.

Symbol Description Unit

PSE
t Solar energy supplies power at timet kW

Pload
t

The basic load of the microgrid at time t kW

r Maximum climbing power of various power sources kW

DEV
i Charging demand for EV i kW·h

ρu Unit penalty costs for failing to meet EV’s charging demand ¥/(kW·h)
ρES Unit operating cost of energy storage ¥/(kW·h)
ρTE Unit operating cost of thermal power equipment ¥/(kW·h)
ρG Unit cost of fuel for thermal power generation ¥/(kW·h)
ρbuy Unit cost of purchasing electricity from the main grid ¥/(kW·h)
ρsell The price that the microgrid sells electricity to the main grid ¥/(kW·h)
ρCO2 Disposal cost of unit CO2 emission ¥/kg

ρstart Thermal power start-up cost ¥

eG CO2 emissions per unit of thermal power generation kg/(kW·h)
eE CO2 emissions per unit of electricity consumption in the grid kg/(kW·h)
ηTE Thermal power conversion efficiency %

ηESch Charging efficiency of energy storage %

ηESdch Discharge efficiency of energy storage %

ti,arr Arrival time of EV i T

ti,dep Leaving time for EV i T

ti,full The amount of time needed for EV i to be fully charged T
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3.4.4 Related constraints on solar power
generation

P SE
min ≤PSE

t ≤P SE
max ,∀t ∈ T (20)∣∣∣∣PSE

t+1 − PSE
t

∣∣∣∣≤ rSE (21)

Constraints Eqs. 20, 21 represent distributed energy (solar)

power constraints and ramp power constraints.

3.4.5 Constraints related to main grid
transactions

0≤Pbuy
t ≤P buy

max · zt,mb

0≤Psell
t ≤P sell

max · zt,ms

(22)

zt,mb + zt,ms ≤ 1,∀t ∈ T (23)
zt,ms ∈ {0, 1}, zt,mb ∈ {0, 1} (24)∣∣∣∣Psell

t+1 − Psell
t

∣∣∣∣≤ rsell∣∣∣∣∣Pbuy
t+1 − Pbuy

t

∣∣∣∣∣≤ rbuy
(25)

Constraint Eq. 22 limits the power limit of the microgrid to

purchase and sell electricity from the main grid at each moment.

Constraint Eq. 23 states that the power purchase and sale

behavior of the microgrid cannot be carried out at the same

time, and constraint Eq. 25 describes the climbing power of

power purchase and sale.

3.4.6 Power supply constraints of thermal power
generation

0≤PTE
t ≤P TE

max (26)
zte ∈ {0, 1} (27)∣∣∣∣PTE

t+1 − PTE
t

∣∣∣∣≤ rTE (28)
∑
t∈T

PTE
t · (1 − zte) � 0 (29)

Constraints Eqs. 26, 28 describe the power limits and ramp-

up power limits for conventional energy generation.

4 Simulation

4.1 Simulation of uncertain arrival and
departure times for EVs

In this model, uncertain variables are represented by

simulation methods. Leou et al. (2015) proposed that the

uncertain arrival law of EVs can be described by the arrival

frequency per unit time, which can be simulated by Poisson

distribution, as shown in Eq. 30.

P(Xt � k|λt) � λkt
k!
e−λt , k � 0, 1, 2 . . . (30)

where λt is the average number of EV arrivals in

unit time t, and Xt is the number of EV arrivals in unit

time t.

The operating system used for this simulation is win10 ×

64, and the programming language is Python 3.9. According

to the actual situation, the departure and arrival peak times

of private EVs in the city are 6:00–9:00 and 16:30–19:30. In

this paper, a day is divided into 144 periods, each period is

10 min, and the origin of the coordinates is 12:00 noon to

simulate the arrival and departure time of EVs, as shown in

Figure 2.

FIGURE 2
The Number of EVs Arriving or Leaving in Period t.

FIGURE 3
Distribution of EVs’ charging demand (%).
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4.2 Simulation of uncertain charging
demand for EVs

Li et al., 2019 and Wang et al., 2020 proved that an EV’s state

of charge (SOC) is related to the driving distance, and a normal

distribution can represent the driving distance. Its probability

density is shown in Eq. 31. The relationship between this and the

charging demand is shown in Eq. 32.

fd(x) � 1���
2π

√ · x · σd
exp[ − (lnx − μd)2

2σ2d
] (31)

dEV
i � 1 − SOCi � d

d max
(32)

where dEVi is the percentage of the charging demand of

the EVito the total electricity, d is the actual driving

distance of the EV, and dmax is the maximum driving

distance of the EV.

The normal distribution N(0.5, 0.12) is used to describe the

proportion of the EVs’ uncertain charging demand to its total

power. The simulation results are shown in Figure 3.

5 Results and discussion

5.1 Scheduling results

The parameters and energy supply datasets of the microgrid

system used in this study come from a set of typical datasets and

parameter tables (Hong et al., 2013). The main grid load

distributed solar power selected in this paper is shown in Table 5.

Gurobi Optimizer (Version 9.1.2) was used to solve the

model. After inputting a set of actual parameters, the solution

result is shown in Figure 4.

5.2 Analysis of scheduling results

Figure 4 depicts the grid maintaining power balance during

one cycle of operation. The upper part describes the total power

supply of the grid in each time interval, and the sources include

solar power supply, energy storage discharge power, thermal

power generation, and main grid power purchase power, and the

lower part describes the power consumption of the grid in each

time interval. Total power, including EV charging power, energy

storage device discharging power, main grid electricity sales

power, and basic load.

It can also be seen from Figure 4 that the charging peak

period of EVs and the time of solar power generation hardly

coincide, which is in line with common sense. During the

daytime, solar energy is the main energy source, and the

microgrid relies on energy storage and main grid transactions

to maintain balance; at night, when EVs begin to charge, the

microgrid mainly relies on thermal energy generation, energy

storage discharge, and main grid transactions to maintain system

balance.

Comparing the processing method of the multi-objective

problem in this paper with the processing method in the

related work (Pan et al., 2018) that also obtains the exact

solution under the same example, the obtained time

comparison is shown in Table 6.

Pan et al., 2018 introduced the membership function into the

multi-objective optimization problem. Considering that the

optimal value of the objective function we need is the cost of

system operation, which has practical significance, this method

will become relatively complicated in this scenario.

Adjust the value of λ to obtain the cost caused by unmet

demand, total system cost, and demand satisfaction rate, as

shown in Table 7.

It can be seen that the more decision-makers pay attention to

the satisfaction rate of the microgrid for the uncertain demand of

EVs, the lower the cost caused by the charging demand of EVs.

However, at the same time, the total cost of the microgrid system

will rise to a certain extent, which requires decision-makers to

TABLE 5 Typical baseload and solar powered power data.

Period Base load (KW) Solar energy (KW)

00:00–01:00 101 0

01:00–02:00 80 0

02:00–03:00 42 0

03:00–04:00 101 0

04:00–05:00 67 0

05:00–06:00 82 0

06:00–07:00 85 0

07:00–08:00 111 0

08:00–09:00 115 63

09:00–10:00 121 206

10:00–11:00 99 731

11:00–12:00 104 1286

12:00–13:00 122 1389

13:00–14:00 136 1259

14:00–15:00 138 1395

15:00–16:00 119 1040

16:00–17:00 139 603

17:00–18:00 157 300

18:00–19:00 102 0

19:00–20:00 127 0

20:00–21:00 135 0

21:00–22:00 97 0

22:00–23:00 90 0

23:00–24:00 110 0

Frontiers in Energy Research frontiersin.org07

Ye et al. 10.3389/fenrg.2022.1021766

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1021766


make a trade-off between satisfaction and cost to formulate a

more economical and practical compliance scheduling scheme.

The energy storage system in the microgrid can absorb excess

energy or release energy to compensate for the microgrid’s lack of

energy and plays a crucial role in maintaining the stable

distribution of the microgrid load. With the upgrading of

technology or the increase in the number of energy storage

devices in the microgrid, the energy storage capacity in the

microgrid will also increase accordingly. When changing the

microgrid’s energy storage capacity, set λ to 0.7, the impact on the

dispatching results is shown in Table 8.

Table 8 proves that as the capacity of the energy storage

system increases, both the demand satisfaction cost and the total

cost of the system show a downward trend, and the demand

satisfaction rate continues to rise. This shows that decision

makers can improve the economic and social benefits of

microgrid charging for EVs by increasing the energy storage

upper limit of the energy storage system.

As EV technology advances, EV battery capacity will also

increase. Sensitivity analysis of the model is carried out with the

change of the battery capacity of the EV, and the results are

shown in Table 9.

Keeping the original electric vehicle arrival and demand

distribution unchanged, and changing the number of electric

FIGURE 4
Multi-energy power distribution in each period.

TABLE 6 Comparison with related work.

The method of this
paper

The method of
Pan et al. (2018)

Run time (seconds) 54.14 55.31

TABLE 7 Sensitivity analysis of cost weights.

Weight 0.10 0.30 0.50 0.70 0.90

C1 44,746 44,746 14,610 14,599 13,028

Total Cost (*107) 3.913 3.913 3.944 3.945 3.964

Demand Satisfaction Rate 75% 75% 91% 92% 95%

TABLE 8 Sensitivity analysis of energy storage.

Energy Storage
(KW·h)

2000 3000 4000 5000 6000

C1 15,141 14,599 14,058 13,517 12,975

Total Cost (*107) 4.001 3.945 3.881 3.818 3.756

Demand Satisfaction Rate 91.5% 91.8% 92.1% 92.4% 92.8%

TABLE 9 Sensitivity analysis of EVs’ battery capacity.

EVs’
battery Capacity (KW·h)

60 70 80 90

C1 14,599 42,806 59,641 67,096

Total Cost (*107) 3.945 4.753 7.107 8.626

Demand Satisfaction Rate 91.8% 79.5% 72.0% 67.4%
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vehicles connected to the system, the changes in related

indicators are shown in Table 10.

The results in Tables 9, 10 show that holding other

existing parameters constant, an increase in EV battery

capacity and the total number of EVs leads to a decrease

in charging satisfaction rates and an increase in total system

cost. Decision makers need to increase the energy storage

capacity of the microgrid or the energy supply capacity of

thermal energy sources on time so that the microgrid

system can adapt to this change and avoid significant

changes in the total system cost and EV charging

satisfaction needs.

5.3 Comparison of various microgrid
configuration methods

In order to illustrate the influence of the microgrid structure

on the dispatching scheme, this paper considers dispatching

under two other microgrid configuration schemes. We

designed four scenarios to compare the scheduling model

under these three configuration schemes with the basic model

under the EV disorder charging scenario. The four scenarios are

described as follows.

Scenario 1: Basic model, that is, a microgrid scheduling

model that considers the disordered charging of EVs under

the constraints of total power.

Scenario 2: The microgrid structure includes distributed

power, energy storage, and thermal energy generation, and

EVs are charged in an orderly manner.

Scenario 3: The microgrid structure only includes distributed

power and energy storage, and EVs are charged in an orderly

manner.

Scenario 4: The microgrid structure includes distributed and

thermal energy sources, and EVs are charged in an orderly

manner.

Under the condition that the weight λ is taken as 0.7 and the

other main parameters remain unchanged, the average charging

power of EVs in each period in the four scenarios is shown in

Figure 5.

Under the three scenarios of orderly charging of EVs, the

charging demand at the peak period has been allocated more

orderly manner. The disordered charging of EVs in Scenario

1 causes the microgrid to allocate a large amount of charging load

during the afternoon-evening period. The curves of scenario

2 and scenario 4 are similar, the demand is evenly scheduled in

each period, and the load fluctuation is slight. The curve of

Scenario 3 is more volatile and tends to shift more charging

demand to the early morning hours.

Next, the total cost, demand satisfaction rate, and microgrid

load variance of the last three scenarios are compared, as shown

in Table 11.

The cost, demand satisfaction rate, and load variance of

scenario 2 are better than those of the other two scenarios.

The indicators of scenario 4 are better than those of scenario

3 because there is no energy storage device in Scenario 4; excess

or missing energy can be directly sold or supplemented through

the primary grid, so there are additional benefits, and the load is

relatively stable. In Scenario 3, no part is missing from thermal

energy supplements, and the energy storage capacity can only be

reasonably arranged. More costs will be invested in purchasing

electricity from the primary grid.

Based on the above comparison results, our model not only

effectively reduces the total cost of system operation but also

improves the stability of the microgrid load and the satisfaction

rate of random charging requirements for EVs. At the same time,

it also shows that under uncertain demand, the multi-energy

TABLE 10 Sensitivity analysis of total number of EVs.

Total number of EVs
(*103)

1 1.25 1.5 2.0

C1 14,599 55,102 102,418 179,574

Total Cost (*107) 3.945 4.913 5.838 9.347

Demand Satisfaction Rate 91.8% 75.3% 62.2% 50.1%

FIGURE 5
Average charging power of EVs in each time period under
four scenarios.

TABLE 11 Comparison of cost, demand satisfaction rate and load
variance for scenarios 2–4.

Scenarios Scenario2 Scenario3 Scenario4

Total Cost (*107) 3.945 6.2806 4.204

Demand Satisfaction Rate 91.8% 65.0% 86.2%

Microgrid Load Variance (*105) 2.84 4.44 3.36
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synergistic microgrid structure has higher efficiency and

lower cost.

6 Conclusion

This paper proposes a multi-energy scheduling model for

microgrids based on the simulation method, which uses Poisson

distribution and normal distribution to simulate the time point

when EVs connect or leave the microgrid and the charging

demand of EVs. In order to improve the original load

scheduling model, the degree of satisfaction of the grid system

with the uncertain charging demand of EVs is added to the

objective function to measure the effectiveness of the scheduling

model. Using a set of actual data as parameters to solve the

scheduling model, the demand satisfaction rate can reach more

than 90%, and the total cost in one cycle is about 40 million. The

sensitivity analysis is carried out on energy storage capacity, the

EV battery capacity, and the cost weight in the target, which

shows that the stability of the model is good. In addition, this

paper compares the scheduling models in three different

scenarios with the existing models, proving that this

scheduling model and the multi-energy synergistic microgrid

structure can bring higher efficiency and lower costs.

However, this article also has the following shortcomings.

Firstly, there have been many V to G modes, namely Vehicle-to-

grid, a two-way interactive technology from EVs to the grid that

can realize two-way electric energy storage (Cai Li et al., 2020).

Therefore, the impact of the access of EVs on the power grid is

not only limited to increasing the power grid load but also may

provide power to the power grid. However, our article does not

consider the impact of this aspect and only treats EVs as electrical

energy consumables. In future research, the V2G mode can also

be considered in the model through the way that the grid directly

dispatches each EV connected with other power generation units

in a unifiedmanner, and adopt an intelligent algorithm to control

the V2G operation of each vehicle to restore the reality of EV

access to a greater extent.

Second, in fact, in the process of modeling, we only

considered the costs of punishment, pollution control,

operation, thermal power generation, foremost microgrid

transactions, and constraints such as system balance, EV

energy storage equipment, and distributed power sources.

However, many other costs and constraints were still not

considered and should be included in subsequent studies.
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