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ABSTRACT 
 

The Debye relaxation equation and its derivatives were used to analyze dielectric constant and loss 
factor of pure methanol in megahertz and gigahertz over the temperature range of 10°C to 50°C. 
This was done in order to ascertain which of the frequency ranges has the highest dielectric 
constant and least loss factor. The graphs of dielectric constant and loss factor were plotted against 
the frequency. The results were also used to plot Cole-Cole diagrams. The results revealed that the 
dielectric constant of methanol is higher at frequency 0.05 GHz and decrease as both frequency 
and temperature increases. However, as the frequency increases beyond 1.0 GHz the dielectric 
constant increase as the temperature increases. The results also showed that methanol actually 
formed a semi-circle which suggested that the solvent indeed exhibits Debye relaxation model. 
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There were some discrepancies observed in the Cole-Cole plots which may just be attributed to the 
distribution of the relaxation times in the methanol. The researchers conclude that dielectric 
constant of methanol is higher in megahertz than those in gigahertz. The loss factor on the other 
hand was small at lower frequencies but as the frequency increases the loss factor also increases 
to a maximum value. The loss factor however decreased when the frequency increases after 
attaining its maximum. 
 

 
Keywords: Debye relaxation; dielectric constant; loss factor; megahertz gigahertz; Cole-Cole plot. 
 
1. INTRODUCTION 
 

Methanol is one of the most widely traded 
chemical commodities in the world today. The 
estimated global demand for methanol also 
known as methyl alcohol, wood alcohol, wood 
naphtha, methyl hydrate, or wood spirit is around 
27 to 29 million metric tons [1-2]. Recently, the 
production capacity of methanol has increased 
considerably. The coming on stream of new 
plants in South- America, China and the Middle 
East is a clear cut example. 
 
Methanol was first produced cheaply as a 
byproduct of the destructive distillation of wood 
but today industrial methanol is produced in a 
catalytic process directly from carbon monoxide, 
carbon dioxide and hydrogen [3-4]. It is a light, 
volatile, colourless, flammable liquid with a 
distinctive odour very similar to that of ethanol 
[5]. However, unlike ethanol, methanol is highly 
toxic and unfit for consumption. Methanol is a 
traditional denaturant for ethanol, the product 
known as denatured alcohol or methylated spirit. 
This was commonly used during the prohibition 
to discourage consumption of bootlegged liquor, 
and ended up causing several deaths [6-7]. 
 
Organic methanol, produced from wood or other 
organic materials (bioalcohol), has been 
suggested as a renewable alternative to 
petroleum-based hydrocarbons [8,1]. Low levels 
of methanol can be used in existing vehicles with 
the addition of co-solvents and corrosion 
inhibitors [9]. Methanol fuel has been proposed 
for ground transportation. The chief advantage of 
a methanol economy is that it could be adapted 
to gasoline internal combustion engines with 
minimum modification to the engines and to the 
infrastructure that delivers and stores liquid fuel 
[10-11]. 
 
The solvent is primarily used as feedstock for the 
manufacture of chemicals and as a fuel for 
specialized vehicles. At about 40% of methanol 
is converted to formaldehyde and from there into 
products as diverse as plastics, plywood, paints, 

explosives, and permanent textiles [1]. Other 
chemical derivatives of methanol include 
dimethyl ether (DME), which has replaced 
chlorofluorocarbons as an aerosol spray 
propellant, and acetic acid. Dimethyl ether can 
be blended with liquefied petroleum gas (LPG) 
for home heating and cooking, and can be used 
as a replacement for transportation diesel fuel 
[12]. It is because of the increasing demand and 
the market value of methanol that the 
researchers have decided to optimize the 
dielectric constant of methanol. This was done in 
order to ascertain which frequency value and 
temperature one can obtain the highest dielectric 
constant. 
 
2. MATHEMATICAL DERIVATION OF THE 

DEBYE EQUATIONS 
 
Consider a capacitor that consists of two plane 
parallel electrodes in vacuum having an applied 
alternating voltage represented by the equation; 
 

V = ��cos ��                                      (1) 
 
Where V= instantaneous voltage, ��= maximum 
voltage, �= angular frequency in radians per 
second = 2��. The current through the capacitor, �	 is given by 
 �	 = ��(Cos �� + � 2�                                 (2a)            

 
Where  ��= 

���  = �C0��                            (2b)         

 
C0 = vacuum capacitance, sometimes referred to 
as geometric capacitance. 
 
In an ideal dielectric, the current leads the 
voltage by 90° or � 2� rads. There is no 
component of the current in phase with the 
voltage. If a material of dielectric constant � is 
now placed between the plates, the capacitance 
increases to C0� and the current is given by 
 �� = ��cos [�� + (� 2�  – �)]                        (3a)           
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where                = �C0���                        (3b)     
 �= loss angle 

 
The usual symbol for the dielectric constant is ��, 
but the subscripts was omitted for the sake of 
clarity, noting that � is dimensionless. The 
current phasor will now, not be in phase with the 
voltage but an angle (90°− �). The dielectric 
constant is a complex quantity represented by 
 �∗ = � ′ − �� ′′                                        (4) 
 
The current can be resolved into two 
components; the component in phase with the 
applied voltage is �� = ���′′�� and the 
component leading the applied voltage by 90° is �� = ���′C0. This component is the charging 
current of the ideal capacitor. 
 
The component in phase with the applied voltage 
gives rise to dielectric loss. The loss angle � is 
given by 
 

� = �� !	 "′′
"′                                               (5a)             

 
Note that ��= V��0� ′′, but since C0 = 

"$%&  

 

��= V��′′ "$%& =  �'"$"′′(
& = )����′′*            (5b) 

 
Where E = 

�
&   

  

+� = ,-( =  ('"$"′′
(  ∴ +� = ���� ′′*. 

 
Note:  � ′ = the real part of the complex 

dielectric constant 

� ′′ = The imaginary part of the complex 
dielectric constant 

          +� =    The current density 
 
The alternating current conductivity is given by 
 012 =0 ′ + �0 ′′ = ���[ � ′′ + �(�′− �∞)]           (6) 
 
The total conductivity is given by 
 03 =  012 + 0&2 =  ���� ′′ + 0&2                    (7)  
   0&2 is the direct current conductivity                                                  
 
When a direct voltage applied to a dielectric for a 
sufficiently long duration is suddenly removed, 
the decay of polarization to zero value is not 

instantaneous but takes a finite time. This is the 
time required for the dipoles to revert to a 
random distribution, in equilibrium with the 
temperature of the medium, from a field oriented 
alignment. Similarly, the build-up of polarization 
following the sudden application of a direct 
current takes a finite time interval before the 
polarization attains its maximum value. This 
phenomenon is described by the general term 
“dielectric relaxation”. 
 
When a dc voltage is applied to a polar dielectric, 
let us assume that the polarization builds up from 
zero to a final value according to an exponential 
law such that 
 

P (t)= 4∞ (1 − 6789  )                                      (8)             
 
Where P (t) is the polarization at a time, t and : is 
called the relaxation time. : is a function of 
temperature and it is independent of the time. 
 
If  � = 2��,          �: = 2��: 
 
Differentiating equation (8) with respect to t, 
yields 
 

 &; (<=
&< = ;∞>78 9�

?                                              (9)  

 
Expanding the right hand side of (8) yields 
 4∞678 ?⁄ = 4∞ − P (t)                                   (10) 
 
Which upon dividing both sides by 4∞ yields 
 

678 ?⁄ = ;∞!; (<=
;∞                  

 
Substitute equation (10) into (9) we obtained 
 &; (<=

&< = ;∞!; (<=
?                                           (11) 

 
This by assuming that the polarization is due to 
the dipoles yields 
 &; (<=

&< = ;∞!; (<=
? ≅ ;B!; (<=

?                             (12) 

 
Neglecting atomic polarization, the total 
polarization 43(t) can be expressed as the sum of 
the orientation polarization at that instant 4C(�= 
and electronic polarization, 4> which is assumed 
to attain its final value instantaneously because 
the time required for it to attain saturation value 
is in the optical frequency range. Further, it is 
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assumed that the instantaneous polarization of 
the material in an alternating voltage is equal to 
that under dc voltage that has the same 
magnitude as the alternating voltage at that 
instant. 
 
We can express the total polarization, 43(t) as  
 43(t) = 4C(�= + 4>                                      (13)                
                                                
The final value attained by the total polarization 
is 
 43 = ��(�D − 1=*                                  (14) 
 
Under steady voltages; 
 4> = ��(�∞ − 1=*                                      (15)                                                        
 
where �D and �∞ are the dielectric constants 
under direct voltage and at infinity frequency 
respectively. Also note that Maxwell’s relation 
holds 
 �∞ = n2                                                                                                  
 
Substituting (14) and (15) into (13) to have 
 4C = ��*(�D − �∞=                                      (16) 
 
Representing the alternating electric field as 
 

E= *�1�6E'<                                             (17)                                               
 
Substituting (16) into (12), we have 
 &; (<=

&< = "$("F!"∞=G!; (<=
?                                 (18)                                             

 
Substituting (17) into (18); yields 
 &; (<=

&<  = 	
? H��(�D − �∞=*�1�6E'< − 4(�=I       (19) 

 
By using the idea of solving linear equations by 
the use of integrating factors, 
 

P (t)= "$("F!"∞=G�.>JK8
	LE'? +  �6!< ? �  or 

 

P(t) =  �6!< ? � +  �� ("F!"∞=G�.>JK8
	LE'?                 (20) 

 
Where C, is a constant. At time, t sufficiently 
large when compared with :, the first term on the 
right hand side of equation (20) becomes so 
small that it can be neglected, so the solution for 
P (t) becomes 

P (t)=  �� ("F!"∞=G�>JK8
	LE'?                                (21) 

 
Substituting (15), (17) and (20) into (14) and let  
 

P (t)= 4C(�= = �� ("F!"∞=G�>JK8
	LE'? ; 

 
We have upon simplification 
 

P (t)= N�∞ − 1 + ("F!"∞=
	LE'? O ��*�6E'<                 (22= 

 
Equation (22) shows that P (t) is a sinusoidal 
function with the same frequency as the applied 
voltage. The instantaneous value of flux density, 
D is given by 
 

D(t)= ���∗*�6E'<                                               (23= 
 
But flux density is also equal to 
 

D(t)= ��*�6E'< + 4 (�=                             (24) 
 
Equate equation (23) to (24) ; 
 ���∗*�6E'< = ��*�6E'< + 4 (�=                     (25= 
 
Substitute (24) into (25) and simplify 
 

���∗*�6E'< = ��*�6E'< + R�∞ − 1 + (�D − �∞=
1 + ��: S ��*�6E'< 

 
Dividing each term by ��*�6E'<, the last equation 
reduces to 
 

 �∗ = 1 + N�∞ − 1 + ("F!"∞=
	LE'? O                             (26= 

 
Substitute equation (4) into (26) 
 

  � ′ − �� ′′ = 1 + R�∞ − 1 + (�D − �∞=
1 + ��: S             (27= 

 
Simplifying further produces 
 � ′ = �∞ + "F!"∞	LE'? + �� ′′                                          (28= 

 

Setting  � ′′ = ("F!"∞='?
	L'W?W   and substituting into 

equation (28) gives 
 � ′ = �∞ + "F!"∞	L'W?W                                         (29) 

 
From equation (28); 
 �� ′′ = � ′ − �∞ − "F!"∞	LE'?                                  (30) 
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Substituting equation (29) into (30); we have 
 

� ′′ = ("F!"∞='?
	L'W?W                                             (31) 

 
Recall equation (5), 
 

tan � = � ′′
� ′ =  

(�D − �∞=�:1 + ��:�
�∞ + �D − �∞1 + ��:� 

[  

           = ("F!"∞='?
"
∞KW9W\]F

                                (32) 

 
Equations (29) and (31) are known as Debye 
equations and they describe the behaviour of 
polar dielectrics at various frequencies. 
 
3. MATHEMATICAL DERIVATION OF THE 

RELAXATION TIME 
 
Recall equation (31) and differentiating it with 
respect to �: using quotient rule i.e. 
 

&"′′
&'?      = ^	L'W?W_("F!"∞=!("F!"∞='?.�'?

(	L'W?W=W  

 
Simplifying the above expression gives 
 `� ′′

`�: = (�D − �∞= R1 + :��� − 2��:�
(1 + ��:�=� S 

= (�D − �∞= (1 − ��:�=
(1 + ��:�=� 

&"′′
&'? = ("F!"∞=^	!'W?W_

(	L'W?W=W                                   (33) 

 
According to Agilent [13] Basics of Measuring the 
Dielectric properties of materials, a material that 
has a single relaxation frequency as exhibited by 
the Debye relation will appear as a semicircle 
with its centre lying on the horizontal a′′ = b axis 

and the peak of the loss factor occurring at
c
d.  

Assuming that it is lying below the horizontal � ′′ = 0 axis and then equating equation (33) to 
zero.  
 

&" ′′
&'? = ("F!"∞=^	!'W?W_

(	L'W?W=W = 0                            (34) 

  (�D − �∞=(1 − ��:�= = 0                            (35) 
 
In equation (35), if (�D − �∞= ≠ 0, then  
 (1 − ��:�= = 0                                          (36) 

Solving for �: in equation (36), we have 
 ��:� = 1 

 ⇒�: = 1                                                   (37) 
 
Recall                                        
 � = 2���                                                   (38) 
 
Where �� is the relaxation frequency. Now 
substituting equation (38) into equation (37) and 
then solve for :, we have 
 2���: = 1 

 : = (2���=!	                                             (39) 
 
The values of the complex and static                   
permittivity of methanol used in this work was 
adapted from National Physical Laboratory 
Report MAT 23 [14]. The experimental data of 
both complex and static permittivity as adapted in 
[14] were solved in the Debye relaxation 
equations (29) and (31) using Maple-13 and 
results were generated as shown in Table 1 
below: 
 

Table 1. The static permittivity ah, complex 
permittivity a∞ and relaxation frequency 

 
Temperature °C  ah a∞ f (GHz) 
10 35.74 5.818 2.262 
20 33.64 5.654 2.822 
30 31.69 5.450 3.490 
40 29.85 5.251 4.283 
50 28.19 5.224 5.175 

Source: NPL Report MAT, 2012 [14] 
 

4. RESULTS AND DISCUSSION 
 
The experimental data for static �D and complex �∞ permittivity substituted in equations (29) and 
(31). An algorithm was written and maple-13 was 
used to generate results for dielectric constant � ′ 
and loss factor � ′′. The obtained in this work were 
discussed based on the already existing theories. 
The effect of the frequency for the dielectric 
constant and loss factor of methanol for different 
temperatures are shown in the Fig. 1 and Fig. 2. 
The results of our work are also used to plot 
Cole-Cole diagrams as shown in Fig. 3a to                
Fig. 3e. 
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Fig. 1. Graph of the dielectric constant of methano l against the frequency. The dielectric 

constant is higher at frequency 0.05 GHz and tempera ture 10°C. The dielectric constant then 
decrease as both frequency and temperature increase s 
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Fig. 2. Graph of the loss factor against the freque ncy. The loss factor of methanol is small at 
low frequency (i.e. 0.66, 0.50, 0.46, 0.29 and 0.22 ) for temperature 10°C, 20°C, 30°C, 40°C, and 

50°C respectively but as the frequency increases th e loss factor also increases to a maximum 
value of 14.95, 14.00, 13.09, 12.30 and 11.45 respe ctively. The value however decreased to 5.97, 
6.81, 7.64, 8.40 and 8.92 when the frequency increa sed to 10 GHz after attaining its maximum 
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Fig. 3a. A Cole-Cole plot at temperature 10°C 
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Fig. 3b. A Cole-Cole plot at 20°C 
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Fig. 3c. A Cole-Cole plot at 30°C 
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Fig. 3d. A Cole-Cole plot at 40°C 
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Fig. 3e. A Cole-Cole plot at 50°C 

 
Fig. 3a to Fig. 3e shown in the above, are graphs 
of loss factor � ′′ against the dielectric constant � ′  
known as Cole-Cole plot. The points on these 
graphs actually formed a semi-circle. However, 
there are some discrepancies in all the figures as 
shown in the above. 
 
4.1 Discussion   
 
The dielectric constant � ′ and the loss                           
factor � ′′of methanol were fitted using the                    
Debye relaxation model. The computation                   
was done within the frequency range of 500 MHz 

to 10 GHz and temperature range of 10°C to 
50°C. The parameters such as temperature and 
frequency were varied in order to ascertain which 
value of the frequency and temperature one can 
obtain the highest value of the dielectric 
constant. The graph of the dielectric constant � ′ 
against the frequency and that of the loss factor � ′′ against the frequency were then plotted. The 
results of the loss factor � ′′  and dielectric 
constant � ′ obtained in this work were used to 
plot Cole- Cole diagrams as shown in Fig. 3a to 
Fig. 3e above. 
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The Cole-Cole plots indeed formed a semi-circle 
which suggest that methanol exhibits Debye 
relaxation model. The discrepancies observed in 
our plots may just be due to distribution of 
relaxation times in methanol. 
 
The dielectric constant of methanol was found to 
be higher at 0.05 GHz and temperature 10°C 
(see Fig. 1). However, as both the frequency and 
temperature increases beyond 0.05 GHz and 
10°C, the dielectric constant continue to 
decrease steadily until it reaches 1.0 GHz. 
Beyond this frequency the dielectric constant of 
methanol decreases as the frequency increases. 
The dielectric constant however increased as the 
temperature increases at higher frequency 
values.  
  
The higher value of the dielectric constant � ′ at 
low frequencies as observed in Fig. 1 may be 
due to the overall conductivity which consists of 
different conduction mechanisms. The most 
prevalent one in moist materials is the ionic 
conductivity which varies inversely proportional 
to the frequency. The decrease in the dielectric 
constant as frequency increases 1.0 GHz may be 
due to the fact that the dipoles cannot follow up 
the rapid variation of the applied field [15].  
 
As the temperature increased beyond 10°C the 
dielectric constant decreases especially at the 
frequency range of 0.05 ≤ � ≤ 1.0 jkl . This 
decrease in the dielectric constant as the result 
of increase in the temperature may be due to the 
relaxation time which has been found to be fast 
at high temperature and increases dramatically 
at low temperatures. This suggest a freezing of 
electric dipoles at low temperature [16] and 
because of orientation polarization which depend 
on temperature and decreases with increase in 
temperature. This is because at higher 
temperature the thermal energy will increase 
which will try to disorient the dipoles. The results 
have shown a sudden increase in the dielectric 
constant as the temperature increased beyond 
10°C between the frequency ranges of 1.2 GHz 
to 10 jkl . This increase in the dielectric 
constant as the result of an increase in the 
frequency may be due to the permanent electric 
dipoles possessed by methanol [15]. 
 
The loss factor on the other hand has a small 
value at frequency 0.05 GHz and increases to 
reach its maximum value as the frequency 
increases. It then decreases steadily after 
attaining the maximum value (see Fig. 2). This 
behaviour exhibited by the loss factor may be 

due to the contribution from all the four types of 
polarization (i.e. space charge, dipole, ionic and 
electronic) [13]. But as temperature increases the 
loss factor decreases especially within the 
frequency range of 0.05 GHz to 4.5 GHz. This 
behaviour exhibited by methanol is contrary to 
the statement made by Guan et al. [17] which 
said “Generally, the loss factor increases with 
increasing temperature at low frequencies due to 
ionic conductance and decreases with increasing 
temperature at high frequencies due to free 
water dispersion [18]”. However, beyond the 4.5 
GHz, the loss factor of methanol increased as 
the temperature increase in line with what Guan 
and Wang said.  
 
5. CONCLUSION 
 
The dielectric constant of methanol has been 
optimized by varying the frequency and 
temperature. The computation was done using 
the Debye equation and its derivatives within the 
frequency range of 0.05 ≤ � ≤ 10jkl. The 
results from our computation reveals that 
methanol has the highest dielectric constant at 
0.05 GHz at temperature 10°C. However, as 
both the frequency and temperature increases 
the dielectric constant decreases continuously 
except for values beyond 1.0 GHz. At frequency 
1.2 GHz and above the dielectric constant value 
increased as the temperature increases. This 
suggests that the dielectric constant of methanol 
is easily polarizable at lower frequency and 
temperature.  
 
The loss factor � ′′ was also plotted against the 
dielectric constant � ′ in order to decide which 
relaxation model methanol obeyed. The results 
showed that methanol at those temperatures fit 
in Debye relaxation model (m = 0=. This is 
because all Cole-Cole plots that are shown in 
Figs. 3a to 3e formed a semi-circle. 
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