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ABSTRACT 
 
Agriculture monitoring and managements is a key factor in the food production and food security. 
Mainly, crop identification and area quantification are most important factors in yield estimation and 
predictions. In arid lands, water is a limiting factor for the agriculture expansion and development. 
Conventional methods for both crop discrimination and crop water requirements are very expensive 
and unbearable economically. Remote sensing has been employed several decades ago in the 
different agricultural activities. Crop discrimination, water requirements and even weed and pest 
control could be achieved via remote sensing and geographical information systems. This paper 
utilizes remote sensing data in combination with ground meteorological data to calculate the Actual 
Crop Evapotranspiration (ETa) under modern irrigation systems conditions. Moreover, it also tries to 
discriminate between different crops and calculate area per crop type. Four Landsat8-OLI images 
were used to calculate the Land Surface Temperature (LST) during the different growth stages of 
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the 2014 winter corps season. The dates of these satellite images were chosen to fall in the 
different growth stage of the crops in the study area. Ground meteorological data were used to 
estimate Reference Evapotranspiration (ETo) using the FAO Penman-Monteith (FPM) equation. 
Land surface temperature and Air Temperature (Tair) were used to observe the water distribution 
conditions of the study area by the means of mapping the Water Deficit Index (WDI). The WDI and 
Potential Crop Evapotranspiration (ETc) were used to calculate ETa. The supervised maximum 
likelihood classification method was employed for crop mapping using spectral signatures collected 
from different ground training sites through different field visits during the growing stages of the 
growing season. The use of multi-temporal Normalized Difference Vegetation Index (NDVI) resulted 
in a classification accuracy of 93% with a kappa coefficient of 0.90. The crop water requirement 
was affected by the decreasing surface and air temperature. Crop type and different growth stages 
were detected through applying Multi-temporal images. 
 

 
Keywords: Crop discrimination; Landsat8; potential-crop-evapotranspiration (ETc); reference-

evapotranspiration (ETo); water-deficit-index (WDI). 
 
1. INTRODUCTION 
 
The advancements in satellite, airborne and 
ground based remote sensing, remotely sensed 
data are tremendously being used in agriculture. 
The use this data were evaluated in many 
agriculture activities. Many studies investigated 
the potentiality of remote sensing data in crop 
monitoring, yield prediction, weed control and 
pest management and crop water requirements 
[1-7]. [8] predicted soil water availability for 
irrigation water management by the use of 
remotely sensed data. Remote sensing 
estimation of Evapotranspiration (ET) can help 
detect, map and provide guidance for crop water 
requirements in irrigated lands [9]. It is also very 
beneficial in monitoring water stress in precision 
agriculture [10]. [11] developed the Water Deficit 
Index (WDI) that uses the remotely sensed Land 
Surface Temperature (LST), Tair and vegetation 
index to estimate field relative water status. The 
WDI is a function of Actual Crop 
Evapotranspiration (ETa) to Potential Crop 
Evapotranspiration (ETc) ratio [12]. Yield water 
stress response depends on crop type and the 
phonological stage, soil, climatic conditions. The 
use of WDI in yield predictions or irrigation 
managements requires estimation of WDI for that 
particular crop under different soil, growth stage 
and climatic conditions [13]. Many satellite data 
were used to calculate WDI such as Landsat, 
Advanced Very High Resolution Radiometer 
(NOAA/AVHRR), and Moderate Resolution 
Imaging Spectroradiometer (MODIS). [3] used 
NOAA/AVHRR to calculate WDI in the eastern 
part of Nile delta-Egypt. A MODIS index based 
on the spatial relationship between LST and 
Normalized Difference Vegetation Index (NDVI) 
was evaluated by [14] to estimate WDI in two 
sites with different climatic controls on ETa in 

Andalusia-Spain. It is found that accounting for 
the spatial variation in Tair is one of the most 
critical factors to achieve accurate estimations of 
the Temperature–Vegetation Dryness Index 
(TVDI).  
 
Several image classifiers are implementing in the 
different software packages such as the 
Maximum Likelihood, nearest neighbor, and 
minimum distance. These classifiers are used to 
group similar objects in thematic classified maps 
[15]. There are two types of these classifiers, 
supervised and unsupervised classifier. The 
unsupervised classifier do not require a prior 
knowledge about the study area while, the 
supervised one requires a prior knowledge of the 
concerned region. Prior knowledge about the 
study area could be via the selection of 
representatives training sites defined by the 
analyst having the knowledge about land cover 
and spectral characteristics of the region. These 
training sites would be used to train the 
classification algorithm. Different classifiers were 
compared to determine their performance under 
different situations and conditions. [15] compared 
the unsupervised ISODATA and the supervised 
Maximum likelihood to each other. He found that 
both of the two methods preforms well defining 
the spatial context. While, [16] reported the main 
disadvantage of Maximum likelihood is the prior 
knowledge of the distribution functions of the 
information classes, which is not possible to 
know the distribution functions. 
 
Many authors confirmed the inaccuracies 
associated with crop discrimination depending on 
single date remotely sensed data. They also 
pointed out the use of multi-temporal remote 
sensing data corresponding to different growth 
stages was efficiently in crops identification and 
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discrimination [17-19]. Several researchers had 
discussed different methods to assess the 
accuracy of remotely sensed data [20]. However, 
the most widely used accuracy measures are 
derived from the confusion or the error matrix 
[21]. 
   
The main objectives of the current study are 
estimating the crop water status under pivot and 
drip irrigation using remotely sensed data as well 
as, crop discrimination using the multi-temporal 
Landsat8 images analysis. 
 
2. MATERIALS AND METHODS 
 
2.1 The Study Area  
 
The study area is located in the eastern part from 
Nile Delta. It is called El-Salhia project as shown 
in Fig. 1. The irrigation systems exist in the 
project are mainly two systems, the central pivots 
and the drip irrigation system. It has about 100 
pivot units. Each unit irrigates an area of about 
63.6 ha. The common pivot length is about 450 
m. Central pivots are particularly allocated for 
grain and cash crops such as vegetables, grain 
and silages while the drip irrigation system is 
mainly for trees. 
 
2.2 Data Collection 
  
Four Landsat 8 satellite images (path 176/row 
039) were downloaded from the internet to cover 
the winter crops season. The acquisition dates of 
these images are 10 of Jan 2014, 11 Feb 2014, 
15 Mar 2014 and 31 Mar 2014. These images 
were unzipped and stacked using image 
processing packages for further processing. 
Meteorological data were obtained from the 
closest available weather station in the study 
area. It includes air temperature, relative 
humidity, wind speed, and wind direction in      
the format of mean, minimum and maximum 
hourly readings. The hourly readings are 
averaged in daily mean for the corresponding 
satellite date. 
 
2.3 Data Processing 
  
2.3.1 NDVI and crop coefficient (Kc)  

estimation 
 
Landsat8 bands 4 and 5 provide red (R) and 
near-infrared (NIR) measurements and therefore 
can be used to generate NDVI with the following 
formula: 
 

NDVI = (Band 5 - Band 4) / (Band 5 + Band 4) (1) 
 
The relation between Kc and NDVI represented 
by equation (2), which established by [22] and 
calibrated for wheat by [23].  
 

)(
2.1

mv
dv

NDVINDVI
NDVI

Kc −=
                (2)  

 
Where 1.2 is the maximum Kc under Egyptian 
conditions, NDVIdv is the difference between the 
minimum and the maximum NDVI value for 
vegetation and NDVImv is the minimum NDVI 
value for vegetation. 
 
2.3.2 LST estimation 
 
The recorded digital numbers of Band                          
10 was converted to radiance units (Rad) as 
follow:- 
 
Rad = 0.0003342* DN+ 0.10000                      (3) 
 
Where DN is the pixel Digital Number 
 
Land-Surface-Emissivity (e) was estimated 
according to the proportion of vegetation (Pv). 
 
e = 0.004 Pv + 0.986                                        (4) 
 
To apply this equation, the NDVI values for 
vegetation and soil are needed. 
 

�� =   � ���	
���	�
���	�
���	�

�
                                          (5) 

 
Where NDVI, NDVIS and NDVIV are the pixel, the 
minimum and the maximum NDVI values 
respectively. 
 
The brightness temperature (BT) was calculated 
depending on band 10 radiance (Rad10) using 
calibration constants K1=774.89 and 
K2=1321.08. 
 
BT = (K2/ Ln((K1/Rad10) +1)) -272.15             (6) 
 
LST = BT/1+W*(BT/p)*Ln (e)                            (7) 
 
Where BT is the at sensor temperature, 
W=Wavelength of emitted radiance (11.5µm), p 
= h*C/S (1.438*10-2 mk), h = Planck’s Constant 
(6.626*10 -34 JS), S = Boltzmann Constant 
(1.38*10-23 J/K), C = Velocity of light (2.998 *108 
m/s), p = 14380. 
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Fig. 1. Location map of the study area 
 
2.3.3 ETo and ETc estimation 
 
ETo was calculated from meteorological data 
using FAO Penman equation (FPM) method 
(equation 8) which prepared by [24].  
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Where Rn, net-radiation at the crop surface [MJ 
m-2 day -1], G, soil-heat-flux-density [MJ m-2 day -

1], T, mean daily Tair at 2 m height [°C ], u2 ,wind 
speed at 2 m height [m s-1], es, saturation-vapor-
pressure [kPa], ea, actual-vapor-pressure [kPa], 
es - ea, saturation-vapor-pressure deficit [kPa], 
∆, slope-vapor-pressure curve [kPa °C -1], γ, 
psychrometric constant [kPa °C -1]. 
 
Equations (2) and (8) were used to estimate 
(ETc) as shown in equation (9).  
 
ETc = ETo*Kc                                                    (9) 
 
 2.3.4 WDI and ETa estimation 
 
The WDI was developed by [11]. It depends on 
LST, Tair and vegetation-index. It could be 
calculated as illustrated by equation (10). It gives 
an estimate of the relative-water-status for the 
study area.  

��� = ∆�
∆��
∆��
∆��                                                (10) 

 
Where ∆T is the difference between LST and Tair, 
∆Tm is the difference between LSTmin and Tair, 
∆Tx is the difference between LSTmax and Tair. 
 
The WDI considers evaporation from the soil 
surface as well as the crop. It can be interpreted 
as a measure of the amount of ET actually 
occurring relative to the ETc (equation 11). 
 
WDI = 1 –ETa/ETc                                           (11) 
 

 2.4 Crop Discrimination and Accuracy 
Assessment 

 
Maximum likelihood supervised classification 
technique was used to perform multi-temporal 
crop area identification using the NDVI signature 
extracted from a combinations of the four 
different Landsat8 images and four Landsat 7 
images. It was very useful to get a full NDVI 
spectrum during the growing season and give 
insights to select the probable dates for crop 
discrimination based on the NDVI. Dates were 
selected to represent the agricultural activity 
period for the selected study area. Training sites 
with known crops were used to extract            
pure signatures. Four NDVI composites were 
used for the season of 2014 winter crops to 
determine the crop cycle for these crops, 
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discriminate different crops and calculate the 
area. 
 
Accuracy assessment was carried out                        
by the mean of confusion matrix and kappa 
coefficient. The confusion matrix is a simple 
cross-tabulation of the mapped class label 
against that observed in the ground or reference 
data for a sample of cases at specified locations 
[21]. 
 
A number of 100 random points were selected to 
generate accuracy assessment report of 
classification. These points were representative 
of each different class and the number of points 
was selected considering the size of the study 
area and available ground truth data. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Potential Crop Evapotranspiration 

(ETc) 
 
Many researchers used FPM method to estimate 
ETo from the ground meteorological data to 
evaluate or to couple it with remotely sensed 
data. In the current study, ETo values varied from 
1.5 mm/day to 3.3 mm/day during study season. 
ETo values were 1.5, 2.3, 2.8 and 3.3 mm/day on 

Jan. 10th, 2014, Feb. 11th, 2014, Mar. 15th, 2014 
and Mar. 31st, 2014 respectively. 
 
Kc was first fully implemented by relating ET for 
a given crop over a specific period, which called 
ETc as the rate of ET from a non-water-stressed 
crop having an aerodynamically rough surface 
like grass or alfalfa with 0.3-0.5 m [25]. 
 
The Kc was stated to represent the combined 
effects of resistance to water movement from the 
soil to the evaporating surfaces, resistance to 
diffusion of water vapor from the evaporating 
surfaces through the laminar boundary layer, 
resistance to turbulent transfer to the free 
atmosphere, and relative amount of radiant 
energy available as compared to the reference 
crop [26, 27]. 
 
Kc value depends on the stage of canopy height, 
crop growth, architecture, and cover [24, 28]. The 
Kc-NDVI relationship is highly correlated. Many 
parameters are affecting on NDVI values such 
as; planting density, crop age, and chlorophyll 
activity. The results of Kc values varied in study 
area according to Landsat8 data from 0 to 1.2, 
while the ETc values varied from 0 to 3.7 mm/day 
according to land cover type, crop stage and 
weather conditions as shown in Fig. 3. 
  

 
 

Fig. 2. NDVI for the existing crops during the winter seasons 
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Fig. 3. ETc distribution in study area 
 

3.2 Water Deficit Index (WDI) 
 
The canopy temperature is an indicator of 
vegetation water stress. When plants suffer from 
water shortages accordingly, stomata close to 
reduce or even stop transpiration as an 
adaptation step, which will increase the leaf 
temperature [29]. [11] developed the WDI to 
count for the soil background which is sometimes 
mislead to vegetation water stress in the early 
growing stages due to the partial plants cover. 

The WDI depends mainly on LST and Tair. It has 
minimum value of zero of the indicating no water 
stress, and a maximum value of one represents 
maximum water stress. 
 
Fig. 4 represents the spatial distribution for the 
WDI over the study area. It is clear that the bare 
soil has a very high WDI since it is almost dry 
while the central pivots have low values of WDI. 
The values of the cultivated areas ranged 
between 0 and 0.5 according to the growth 



 
 
 
 

El-Shirbeny et al.; JGEESI, 12(4): 1-12, 2017; Article no.JGEESI.37283 
 
 

 
7 
 

stage, water shortage and crop cover 
percentage. Hence, at the early growth stage, 
the crop cover is partially and soil contributes 
more to the net WDI values so it appears by the 
yellow color. In fact WDI can tell many useful 

information not only the water status of the crop 
but also it can tell the current development stage 
of the growing crop via multi-temporal satellite 
based WDI over the entire season. In the current 
study, one can find some pivots at January with

 

  
  

  
 
 

Fig. 4. WDI distribution in the study area 
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Fig. 5. ETa distribution in study area 
 
low values of WDI while these values                     
start to increase consequently in following 
months. The wise interpretation of these                   
results must lead to the fact that these pivots 
tends to the harvesting stage. On the other hand, 
if the pivot starts with high values of WDI and 
tends to decrease consequently it indicates the 
start of growing a new crop. Other useful 
information could be extracted from the multi-
temporal WDI investigation is the crop type i.e. 
biannual, annual or a dominant crop such as 
tress. 

3.3 Actual Evapotranspiration (ETa) 
 
ETa can be estimated by many models which 
vary in complexity but the accuracy of ETa 
estimation is proportional to the degree of 
calibration and validation of the used model or 
sub-models. [30] categorized the ETa estimation 
into three groups of methods: 1. Methods based 
on analytical modeling of ET; 2. Methods use the 
deduction from the ET of a reference surface; 3. 
Methods based on a soil water balance 
modeling. 
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In arid and semi-arid climates, ET ranges over a 
large interval depending on water regimes. 
Moreover, the variation in one weather 
parameter immediately influences all the other 
variables that are mutually related. This                     
fact makes difficult to correctly evaluate the ETa 
[30]. 
 
Er-Raki [31] have analyzed the efficiency of three 
methods based on the FAO-56 Kc approach to 
estimate ETa for winter wheat under different 
irrigation treatments in the semi-arid conditions of 
Morocco.  
 
ETa (mm/day) is the product of an uptake 
coefficient (α, mm/day) and available water                       
(θ – θWP) when ETa is less than ETc (mm/day): If 
ETa < ETc, ETa = α (θ – θWP) and If ETa ≥                    
ETc, ETa = ETc. ETc occurs when the availability 
of soil water does not limit transpiration [32]               
and it could be estimated using the FPM model 
[24]. 
 
In the current study the values of ETa varied from 
0 to 3.7 mm/day. ETa was affected by the 
changing in WDI and ETc according to Equation 
(11). As shown in Fig. 5, the variation of ETa was 
observed according to land cover type, crop 

stage, weather conditions and water stress 
conditions. 
 

3.4 Crop Discrimination and Accuracy 
Assessment  

 
The classification of multi-temporal images gives 
valuable information on agricultural activities in 
terms of crop type identification and crop area 
identification. The multi-temporal variability of 
profiles was assessed by analyzing the multi-
temporal NDVI differences among season. This 
approach has been used in many studies using 
NDVI from NOAA/AVHRR and MODIS images 
[33,34]. Classification procedure runs with the 
use of homogenously distributed signatures that 
are associated with training sites and the result is 
the determination of information classes [35].  
 

This classification approach was evaluated with 
accuracy assessment procedure and visual 
interpretation of the result images based on 
ground truth information. According to the 
accuracy assessment results, the supervised 
classification of four multi NDVI image overall 
classifications accuracy was 93% and kappa 
value was 0.90. Classification results are shown 
in Fig. 6 and the area of the different classes are 
shown in Table 1. 

 

 
 

Fig. 6. Supervised classifications using multi-temporal NDVI 
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Table 1. Total area (Feddans) of the different winter crops in study area (season 2014) 
 

Wheat Potato Onion Alfa Sugar beet Bare area Trees 
2825.871 7951.551 2549.408 111.8614 807.1021 10742.43 5347.107 

 
As shown, the classification results of El-salhia 
site that almost 35.4% of the total area was 
temporary non-vegetated areas during the winter 
season. Largest vegetated area (almost 25% of 
the total area) was cultivated by potato followed 
by trees that occupy 17.62% of the total area. On 
the other hand wheat and sugar beets 
represented by 9.3 % and 2.66 % respectively. 
 
4. CONCLUSIONS 
 
The study was carried out in El-Salhia project 
which located in eastern part of Nile delta, Egypt. 
The extensive use of modeling techniques in 
water resources management increases the 
demands of more spatial and temporal data for 
modeling accuracy and validity improvements. 
Four Landsat8 scenes were acquired on Jan. 
10th, 2014, Feb. 11th, 2014, Mar. 15th, 2014 and 
Mar. 31st, 2014. NDVI and LST were extracted 
from Landsat8 satellite data and used with Tair to 
estimate WDI. The Kc was derived from remotely 
sensed data depending on NDVI. The integration 
of FPM model with remotely sensed data was 
able to detect ETc. The results showed that the 
ETo varied from 1.5 to 3.3 mm/day where ETc 
and ETa varied between 0 and 3.7 mm/day 
during the study period. As a result, the planning 
for irrigation strategies will be easier with 
approaches which use remotely sensed derived 
parameters. It could be a useful and low-cost 
method for estimating crop water requirements 
and enhancing water resources management, 
especially in arid and semi-arid regions. 
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