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ABSTRACT 
 

The presence of pesticides in both aquatic and terrestrial ecosystems has become an important 
issue globally. This study determined the possibility of bioaccumulation of glyphosate, the active 
compound of Roundup pesticides in muscle tissues of juvenile Catfish (Clarias gariepinus), and the 
effects of exposure on some oxidative stress parameters. Forty fishes were grouped and exposed 
to graded (sub-lethal) concentration of Roundup pesticides for two weeks. Pesticides were 
extracted from the muscle tissues by cold extraction and detection and determination were 
performed using Gas chromatography- Electron captured detector (GC-ECD). Oxidative stress 
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parameters such as catalase, superoxide dismutase, reduced glutathione, glutathione peroxidase 
and malondialdehyde were analyzed. Fish tissue glyphosate concentration increased significantly 
(p<0.05) as dosage increased and residues of organochlorine pesticides such as p-p1DDT,           
p-p1DDE, HCB, α-HCH, γ-HCH, t-nonachlor and γ-chlordane were detected at concentration far 
below the provisional tolerable daily intake (PTDI) value. The biochemical studies showed 
significant increase (p<0.05) in activity of oxidative stress enzymes and lipid peroxidation product 
of fish groups exposed to Roundup pesticides in a dose dependent pattern.  This study reveals that 
the use of Roundup pesticides in ways that could expose aquatic environment to its residues could 
result to adverse biochemical changes. Therefore, the use of this pesticide should be properly 
regulated and monitored to limit chronic exposure of fish consumers. 
  

 
Keywords: Glyphosate; organochloride; pesticides; oxidative stress; xenobiotics; Roundup.  
 

1. INTRODUCTION  
 
The intense utilization of pesticides and 
herbicides to increase agricultural productivity 
has contributed to water pollution. One 
commonly used herbicide in Nigeria is 
Roundup®, a glyphosate-based herbicide, 
containing polyethoxyleneamine or 
polyethoxylated tallow amine (POEA) as 
surfactant [1]. Glyphosate (N-phosphonomethyl 
glycine) is a broad-spectrum herbicide, 
intensively applied on numerous fields, urban 
and industrial areas to control unwanted plants, 
including the macrophytes in aquatic systems 
[2,3]. Aside commercial agriculture, herbicides 
are used in small gardens as well as for de-
weeding railway lines, urban pavements and 
roadsides. Glyphosate inhibits the activity of         
5- enolpyruvylshikimate-3-phosphate synthase 
(EPSPS) that catalyzes the synthesis of aromatic 
amino acids in plants [4,5]. Glyphosate is a 
common terrestrial and aquatic pollutant 
considered persistent and mobile in soil and 
water. The presence of pesticides in aquatic 
environment leads to bioaccumulation in fish 
tissues due to the lipophilicity of the pesticide, 
the fat content of tissues, feeding habit, habitat, 
exposure, biotransformation capacity of the 
organism [6]. 
 

Toxicological studies have shown that chronic 
use of Roundup® is potentially harmful to fish 
living in shallow water [7] and non-target 
organisms [8,9]. Agricultural, industrial and 
domestic activities are the major sources of 
freshwater ecosystems pollution [10,11,12]. Ten 
percent of globally accessible runoff is used, 
generating a stream of wastewater, which flows 
or seeps into groundwater, rivers, lakes, or the 
oceans [10]. However, the agricultural sector’s 
annual application of over 140 billion kilograms of 
fertilizers and large amounts of pesticides 
creates massive sources of diffuse pollution of 
freshwater systems. Pesticides interfere with 

organisms metabolic function [13,14], and may 
be responsible for a number of developmental 
anomalies in a wide range of species, from 
invertebrates to higher mammals [15]. Pesticides 
and its metabolites can cause oxidative stress 
[16] by induction of reactive oxygen species 
(ROS) production [17] via diverse mechanisms 
[18,19]. Most commercial pesticide formulated 
with surfactants or adjuvants are considered 
more toxic by oral route exposure to animals 
than the active compound (glyphosate) because 
of these additions state earlier [20,21,22]. 
Therefore to ascertain the toxicity of this 
herbicide on living organisms it is important to 
assess their whole formulations as mixtures 
because, the commercial formulation is 
implicated in cytotoxicity, oxidative effects, and 
apoptosis [23]. Some animals presented 
anorexia, lethargy, hypersalivation, vomiting, and 
diarrhoea on exposure to commercial glyphosate 
herbicides [24,25].  
 
Fish is important in human diets, animal and 
poultry rations. Fish diet is palatable and easily 
digestible, rich in protein, essential oil, vitamins, 
calcium, phosphorous and iodine. Fish is often 
considered as a pollution   marker for the natural 
aquatic environment [26,27,28], because it can 
metabolize, concentrate and bioaccumulate 
water pollutants. This study determined the 
possibility of bioaccumulation of glyphosate (an 
important constituent of Roundup herbicide) in 
fish muscles and the oxidative changes on fish 
exposed to varying concentration of Roundup, a 
glyphosate-based herbicide. 
 

2. MATERIALS AND METHODS  
 

2.1 Experimental Animals and Pesticide 
 
Roundup®, a glyphosate-based herbicide was 
purchased from Abia State Ministry of 
Agriculture, Umuahia, Abia State Nigeria, and 
were preserved in an ambient temperature prior 
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to use. Forty juvenile Cat fish (Clarias gariepinus) 
weighing 135±20 g were purchased from the 
Department of Fishery and Aquaculture, Federal 
University of Technology, Owerri, Imo State of 
Nigeria. The fish and their sexes were identified 
by Mr. C. Ezeafulukwe of Fishery and 
Aquaculture Department. The male Clarias 
gariepinus have a distinct sexual papilla located 
above the anus. All animals received 
professional humane care in compliance with the 
guidelines of Ethical Animal Handling [29], and 
approved by the ethics committee of the 
Department of Biochemistry, Federal University 
of Technology, Owerri, Nigeria. 
 
2.2 Treatment 
 
The animals were divided into four groups of ten 
fishes each, and were placed into different 
aquariums labelled A (Control) B, C and D. The 
aquariums with fishes were kept at the 
Department of Fishery and Aquaculture, for 
proper caring by the Hatchery personnel. They 
were allowed to acclimate for one week under 
close observation and were maintained on 
standard fish feed. After acclimatization, each 
aquarium was treated as follows: Group A fishes 
were put into 100 litres of water only (Control), 
Group B was dosed, 2.78 ml Roundup per 100 L 
of water (10 mg glyphosate/100L), Group C 
received 16.68 ml Roundup per 100 L of water 
(60 mg glyphosate/100L), and Group D received 
83.4 ml Roundup per 100 L of water (300 mg 
glyphosate/100L) at alternate days for two 
weeks. They were fed accordingly and the water 
changed at alternate days. At the third week no 
death was recorded and the aquariums and 
fishes were transported to the Laboratory of 
Department of Biochemistry. Blood samples 
were collected from the fishes after immersion in 
ice cold water. The blood samples were 
processed and stored. Afterwards, the fishes 
were sacrificed and muscles and gills were 
collected for chemical and biochemical analyses. 
 
2.3 Preparation of Samples and Gas 

Chromatography (GC) Analysis  
 
2.3.1 Pesticides extraction and preparation of 

sample for GC analysis  
 
Pesticides were extracted from fish muscle 
tissues by Sohxlet extraction method as 
described by AOAC [30]. Ten grams of the 
muscle sample was homogenized and mixed 
with 60g of anhydrous sodium sulphate in agate 
mortar to absorb moisture. The homogenate was 

placed into a 500 ml beaker and the extraction 
was carried out with 300 ml of n-hexane for 24 
hours. The crude extract obtained was filtered, 
concentrated to 1 ml with a vacuum evaporator 
at 40°C. The extract (1 ml) was dissolved in 50 
ml chloroform, transferred to a 100 ml volumetric 
flask and diluted to the mark. Most of the 
chloroform was evaporated at room temperature 
and 1 ml of the reagent (20 vol % benzene and 
55 vol% methanol) was added. The mixture was 
sealed and heated in a water bath at 40°C for 30 
min. After heating, the organic sample was 
extracted with hexane and water, so that the final 
mixture of the reagent, hexane and water were in 
a ratio of 1: 1: 1. The mixture was shaken 
vigorously by hand for 2 min and the stable 
emulsion formed was broken by centrifugation. A 
portion of the hexane phase was transferred to a 
small test tube for injection into the gas 
chromatograph.  
 

2.4 Identification and Quantification of 
Pesticides Residue with Gas 
Chromatograph 

 
Buck 530 Gas Chromatograph fitted with 
Electron captured detector (ECD) was used for 
the identification and quantification of pesticides 
residue as described by Harris and Daniel, [31].  
Residues were quantified by comparing peak 
heights with the corresponding peak heights of 
standard (Accu standard for pesticides residue, 
USA). One microlitre of the sample was injected 
into the injection port of the GC. The sample was 
subjected to gas chromatography analysis on a 
HP 88 capillary column with dimensions (100m x 
0.25 um film thickness). The inlet and detection 
temperatures were set at 250°C and 280°C. The 
equipment was run on split injection, with 20: 1 
split ratio and utilized nitrogen as the carrier gas. 
The hydrogen and compressed air pressures 
were 22 psi and 35 psi respectively. The oven 
temperature was initially run in 180°C. The first 
ramping was at 2°C/min for 10mins and second 
ramping was at 20°C/min for 5 min and was 
maintained for another 2 min. The integrator 
chart speed was at 2 cm/min. The gas 
chromatography analysis was done in duplicate. 
 
2.5 Biochemical Studies 
 
The gills were cut into smaller pieces and 
homogenized in a phosphate buffered saline 
(PBS) to give a 10% (w/v) homogenate. The 
crude homogenates were centrifuged at 12,000 
rpm for 15 minutes. The supernatant obtained 
was labelled gill sample and was used for the 



 
 
 
 

Ujowundu et al.; JAMMR, 22(11): 1-14, 2017; Article no.JAMMR.34374 
 
 

 
4 
 

determination of some oxidative stress 
parameters. The activity of superoxide dismutase 
(SOD) of gill sample was assayed according to 
the method of Xin et al. [32]. Briefly, using a 
clean test tube, a stock solution was made with 
0.1 ml gill homogenate and 0.9 ml distilled H2O. 
Afterwards, 0.1 ml of the stock solution was 
mixed with 0.9 ml carbonate buffer, and 75 µl 
xanthine oxidase. Absorbance of reaction was 
taken at 500 nm for 3 min at 20 seconds 
intervals. Rate of absorbance change indicated 
activity of SOD. The activity of catalase (CAT) 
was assayed according to the method of Aebi 
[33]. Briefly, 0.5 ml gill sample, 2.5 ml phosphate 
buffer and 2.0 ml H2O2 were mixed in a test tube 
and labelled stock. Then, 1.0 ml of the stock and 
2 ml dichromate acetic acid reagent were added 
into a test tube and mixed appropriately. Four 
absorbances of the mixture at 240 nm were 
taken at a minute interval.  The concentration of 
glutathione was determined according to the 
method of King and Wootton [34]. Briefly, 0.1 ml 
of gill sample and 0.1 ml distilled H2O were 
delivered into test tubes labelled test and blank 
respectively. Afterwards, 0.9 ml distilled H2O and 
0.02 ml 20% sodium sulphite were delivered to 
both tubes. The setup was appropriately mixed 
and allowed to stand at 25°C for 2 min. 
Afterwards, 0.02 ml of lithium sulphate and 0.02 
ml of 20% Na2CO3 were added to all test tubes 
and mixed. Also, 0.2 ml phosphor-18-tungstic 
acid was added, mixed and allowed to stand for 
another 4 min for maximum colour             
development. Finally, 2.5 ml of 2% sodium 
sulphite was added and absorbance taken at 680 
nm within 10 min.  
 
The activity of glutathione peroxidase (GPx) was 
assayed by the method of Paglia and Valentine 
[35]. Briefly, 0.1 ml gill sample was delivered into 
a test tube containing 3 ml phosphate buffer, 
0.55 ml guaiacol and 0.03 ml H2O2. The setup 
was appropriately mixed and absorbance of the 
mixture taken at 436 nm for 2 min at 30 seconds 
intervals. Malondialdehyde (MDA) concentration 
was determined by the method of Wallin et al. 
[36]. Briefly, 0.1 ml gill sample and 0.45 ml 
normal saline were added into test tubes labelled 
sample and blank, respectively. The setup was 
appropriately mixed before adding 0.5 ml, 25% 
trichloroacetic acid (TCA) and 0.5 ml of 17% 
thiobarbituric acid (TBA) in 0.3% NaOH. To the 
Blank tubes 0.1 ml distilled H2O and same 
quantity of TCA, TBA and normal saline were 
added. The mixture was incubated at 950C for 40 
min, cooled and 0.1 ml 20% sodium dodecyl 
sulphate was added and absorbance read 

spectrophotometrically at 532 and 600 nm 
against blank. 
 
2.6 Statistical Analysis 
 

The results obtained from this study were 
analyzed using one way analysis of variance 
(ANOVA) and expressed as mean ± standard 
deviation in bar charts. Values were considered 
statistically significant at p≤ 0.05. 
 

3. RESULTS  
 

3.1 Pesticide Accumulation 
 

The result (Fig. 1) of glyphosate concentration in 
C. gariepinus shows a significant (p< 0.05) dose 
dependent increase from group B to group D. 
Group treated with 83.4 ml Roundup per 100 L 
(group D) showed the highest concentration of 
glyphosate while group treated with 2.78 ml 
Roundup per 100 L (group B) had the lowest, 
whereas no glyphosate was detected in control. 
 

Fig. 2 presents a significant increase of HCB in 
groups B and C when compared to control and 
group D groups. For α-HCH, it shows a non-
significant increase of α-HCH in groups B and D 
but group B when compared to control. The 
concentration of γ-HCH was significantly higher 
in all treated groups when compared to the 
control with the highest concentration presented 
by group B.  
 

Fig. 3 presents a significant decrease of γ-
chlordane in group B and C when compared to 
control and group D. Also, significant increase of 
t-nonachlor was observed in group B and C 
when compared to control and group D. The 
concentration of p-p1-DDT (Fig. 4) increased 
significantly in group D when compared to other 
groups. No difference in p-p1-DDT concentration 
was observed amongst control, group B and C. 
Furthermore, a significant increase in 
concentration of p-p1-DDE (Fig. 4) was observed 
in group B and C when compared to control and 
group D. However, organochlorine pesticides 
such as p-p1-DDD and p1-p1-DDD were 
measured but not detected. 
 

3.2 Oxidative Parameters 
 

Fig. 5(A1) presents the SOD activity of fish gill 
exposed to Roundup herbicide. The activity of 
SOD increased significantly (p<0.05) in group B, 
C, and D compared to group A (control). The 
control has the lowest activity while group D has 
the highest activity. Fig. 5(A2) presents catalase 
activity of gill exposed to Roundup herbicide. 
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Comparing group D and group C, catalase 
activity of gill increased significantly (p<0.05) in 
group B, C and D compared to group A (control). 
The group exposed to 83.4 ml Roundup/100 L 
had the highest activity. Fig. 6(B1) represents 

glutathione concentration in fish gill exposed          
to Roundup pesticide. It shows significant 
decrease in GSH of Roundup herbicide      
exposed groups in dose dependent            
pattern when compared to control group.

 

 
 

Fig. 1. Glyphosate concentration of muscle tissue o f C. gariepinus exposed to graded doses of 
Roundup herbicide  

Bars represent the mean ± standard deviation of duplicate determination. Bars with different alphabets indicate 
significant difference (p< 0.05). ND= Not detected 

 

 
 

Fig. 2. Concentration of HCB, α-HCH and γ-HCH of muscle tissue of C. gariepinus exposed to 
graded doses of Roundup herbicide 

Bars represent the mean ± standard deviation of duplicate determination.  
Bars with different alphabets indicate significant difference (p< 0.05) 
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Fig. 3. Concentration of γ-chlordane and t-nonachlor of muscle tissue of C. gariepinus 
exposed to graded doses of Roundup herbicide  

Bars represent the mean ± standard deviation of duplicate determination.  
Bars with different alphabets indicate significant difference (p< 0.05) 

 

 
 

Fig. 4. Concentration of p-p 1-DDT and p-p 1-DDE of muscle tissue of C. gariepinus exposed to 
graded doses of Roundup herbicide 

Bars represent the mean ± standard deviation of duplicate determination.  
Bars with different alphabets indicate significant difference (p< 0.05) 
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group B showed no significant difference. Fig. 7 
shows that the concentration of malondialdehyde 
was highest in group D and lowest in group A. 

The concentration of MDA increased significantly 
(p<0.05) as the concentration of Roundup 
herbicide increased in B, C and D. 

 

 
 

Fig. 5. SOD and CAT activities of gills of Cat fish  exposed to graded doses of Roundup 
herbicide  

Bars represent mean±standard deviation of triplicate determinations.  
Bars with different alphabets are significantly different (p <0.05) 

 

 
 

Fig. 6. GSH concentration and GPx activity of gills  of cat fish exposed to graded doses of 
Roundup herbicide 

Bars represent mean±standard deviation of triplicate determinations.  
Bars with different alphabets are significantly different (p <0.05) 
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Fig. 7. Malondialdehyde activity of gills of cat fi sh exposed to graded doses of Roundup 
herbicide  

Bars represent mean±standard deviation of triplicate determination.  
Bars with different alphabets are significantly different (p <0.05) 
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Furthermore, Roundup treated and control 
groups showed the presence of pesticides such 
as p-p1DDT, p-p1DDE, HCB, α-HCH, γ-HCH, t-
nonachlor and γ-chlordane in fish tissues.  The 
borehole water used in this study may be the 
source of these organochlorine pesticides. The 
underground water source may have been 
polluted by illegal use of banned organochlorine 
pesticides [52]. These pesticides are used in 
homes, industries and agricultural farms and 
their residues percolate into underground water 
or runoff during storms into rivers, streams and 
eventually oceans. Pesticides may become part 
of the water column overtime and fish ingest it 
through their gills or fish scales and are absorbed 
into tissues and organs [53]. Bioconcentration of 
pesticides residues in animal tissues could cause 
death of the organism at high concentration or 
disruption of normal metabolic and physiologic 
functions. The accumulation of pesticides in 
edible portions of fish is a problem for humans 
because when these fishes are eaten, the 
pollutants which accumulate may cause diseases 
such as cancer, tumours, reproductive inhibition 
or failure, suppression of immune system, 
disruption of endocrine system, birth defects, 
cellular and deoxyribonucleic acid damage, 
teratogenic effects, intergenerational effects 
amongst others [53,54,55,56]. 
 
Trans-nonachlor (t-nonachlor) is a component of 
chlordane. The recommended guideline values 
of 0.2 µg/L was given for chlordane and all 
isomers in drinking water [57]. However, the 
provisional tolerable daily intake (PTDI) value 
was 0.0005mg/kg body weight [58]. The results 
of this study showed the highest concentration of 
t-nonachlor as 0.005ug/g, and this is within the 
range of acceptable limit. The wide distribution of 
α-HCH in fish tissues may be explained by the 
photochemical isomerisation of γ-HCH to α-HCH 
[59].  Fish age, size and weight are determinant 
factors for presence and levels of organochlorine 
pesticides [60]. Symptoms of γ-HCH intoxication 
include seizures, convulsions, vomiting and 
dizziness [61]. Gamma-HCH have anti-
estrogenic properties and increase incidences of 
adenomas and carcinomas over the liver in mice 
[62]. Other organochlorine detected in tissues of 
C. gariepinus include p-p1DDT and p-p1DDE. 
However, p-p1DDD and p1-p1DDD were not 
detected. It is important to note that p-p1DDT has 
lower half life than p-p1DDD and p-p1DDE, and 
lower persistence when compared to DDD and 
DDE [63]. Firstly, the non-accumulation of p-
p1DDD and p1-p1DDD in fish tissues may be due 
to low persistence of the pesticides in soil 

sediments, low octane-water partition coefficient 
(kow) which makes them water soluble and 
readily excreted from the system, thus leaving 
very insignificant residuals that amount to no 
threat in humans when fishes with such residuals 
are consumed. Secondly p-p1DDD were not  
detected in the tissues which may have been as 
a result of reduced presence of the parent form 
of the compound p-p1DDT which normally 
undergo chemical changes to p-p1DDD in the 
presence of water [64]. Due to environmental 
regulation DDT has been banned in Nigeria and 
has been classified by National Agency for Food 
and Drug Administration and Control (NAFDAC) 
as probable human carcinogens but is still in use. 
 
The accumulation of these pesticides in tissues 
of aquatic organisms could induce the production 
of reactive oxygen species (ROS) and exert 
oxidative stress in target organisms living in the 
exposed aquatic environment. In the present 
study, the gill of C. garienpinus exposed to 
graded glyphosate concentration showed 
important changes in the activity of the various 
oxidative stress parameters. The observed 
decrease in reduced Glutathione (GSH) 
concentration in fish groups exposed to graded 
doses of Roundup pesticide may  be  related  to  
its  increased  utilization  and  conversion  to  
oxidized  glutathione  (GSSG) by the increased 
activities of GPx as observed in this study. It may 
as well result from inefficient GSH regeneration 
[65], by the actions of glutathione reductase or 
poor delivery of reducing equivalents by NADPH 
systems. This does not corroborate with the work 
done by Di Giulio et al. [66], which reported high 
levels of GSH in catfish exposed to polluted 
waters compared with control. Also, Pandey et 
al. [67] observed increase in GSH activity in 
Wallagoattu fish from the Panipal River in India. 
A higher hepatic glutathione concentration (GSH) 
in Cyprinus caprio inhabiting the polluted Ceyhan 
River in Turkey was reported by Sahan et al. 
[68].  
 
The observed increase in SOD and CAT 
activities may be a response to the increased 
superoxide anions (.O2−) and H2O2 levels [69]. 
Superoxide anion, are formed during 
hydroxylations of xenobiotics, by cytochrome 
P450 system and these hydroxylation reaction 
obtains hydrogen from NADH (or NADPH) via 
flavoprotein and Cyt P450. [70]. Glutathione 
peroxidase activity may be increased due to the 
increased production of H2O2 derived from .O2− 
[71]. The dose dependent increase in the 
antioxidant enzyme activities (such as SOD) may 
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be due to the excessive generation of free 
radicals induced by glyphosate metabolism. 
Superoxide dismutase catalyzes the conversion 
of superoxide radical to H2O2. Therefore, 
elevated CAT activity may indicate increased 
presence of H2O2 substrate as a result of 
increased conversion of superoxide radical by 
SOD. Catalase catalyses rapidly, tissue-toxic 
hydrogen peroxides to water and molecular 
oxygen. Furthermore, increase in redox reaction 
may increase oxygen consumption.  
 
Therefore, the significant increase in MDA 
concentration in the gills could be attributed to 
excess free radicals generation, beyond the 
capacity of tissue’s antioxidant system to quench 
[72]. This assertion corroborates the increased 
activities of antioxidant enzymes (SOD, CAT, 
and GPx) and depletion of antioxidant molecule 
(GSH) recorded in this study. This is also in line 
with reports [73,74,75], that when antioxidant 
defences are impaired or overcome, oxidative 
stress may exert effects on biomolecules like 
proteins, lipids and DNA. Thus, explaining the 
significant increase in concentration of MDA – a 
product of lipid peroxidation recorded in this 
study. 
 
The consumption of fish that bears residues of 
Roundup by human could lead to occurrence 
similar to metabolic changes in human subjects. 
A study by Chaufan et al. [23] indicated that a 
combination of glyphosate, aminomethyl-
phosphonic acid (AMPA) and surfactants/ 
adjuvants induced toxic metabolic and oxidative 
changes in human HepG2 cell line. Pure 
glyphosate without surfactants was found to 
exert proliferative effects only in human 
hormone-dependent breast cancer, T47D cells, 
but not in hormone-independent breast cancer, 
MDA-MB231 cells [76]. Furthermore, Glyphosate 
in soil inhibits bacteria and kills off algae and can 
cause manganese, to be unavailable for plant 
absorption. A similar process is suspected to 
take place in the digestive tract of humans and 
animals when they consume food containing 
glyphosate residues and this may affect 
adversely the microflora of the gastrointestinal 
tract of humans and animals [46]. 
 

5. CONCLUSION 
 
The accumulation of pesticides in fish can result 
in chronic illness and cause potential damage to 
the consuming population. Pesticides affect vital 
organs such as kidney, liver, gills etc eliciting 
oxidative stress. This study revealed that 
glyphosate induced adverse oxidative changes in 

juvenile C. garienpinus. Therefore, the use of 
glyphosate on/near fish farm or in area close to 
aquatic environment should be discouraged or 
properly regulated. The changes in concentration 
or levels of biomarkers of oxidative stress in fish 
may be helpful in assessing the risk of 
environmental contaminants and the safety of 
fish meat for human nutrition. 
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