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Raised-floor data centers usually suffer from the local hotspots resulted from
uneven cool air delivery. These hotspots not only degrade server performance,
but also threat equipment reliability. The commonly used industrial practice
of increasing the Computer Room Air Conditioner (CRAC) blower speed for
removing hotspots is energy inefficient and may lead to overcooling of some
servers. In this paper, we explore the potential of active tiles in data center
cooling management. In particular, we deploy a prototype of active tile in a
production data center and conduct extensive experiments to investigate the
cooling performance. It is shown that deploying the active tiles with even 10%
fan speed increases the tile flow by 49%, and sealing the under-rack gap reduces
the rack bottom temperature by up to 6°C. Moreover, three machine learning
techniques, i.e., Gaussian Process Regression (GPR), Artificial Neural Network
(ANN), and Multivariate Linear Regression (MLR) are employed to construct end-
to-end data-driven thermal models for the active tile. Using field measured data
as training and testing data sets, it is concluded that GPR and ANN are competent
for accurate thermal modeling of active tiles. Specifically, GPR achieves the
smallest prediction error which is around 0.3°C.

KEYWORDS

active tiles, data center, energy efficiency, thermal management, thermal modeling and
evaluation

1 Introduction

There has been a boom in big data and cloud computing technologies in recent
years, which require more resources to perform massive computations. As an essential
component of IT infrastructures, the data center, which is a large-scale and complex
building consisting of various energy-hungry IT and cooling equipments, is scattered all
over the world. According to a report of U.S. National Resources Defense Council (NRDC),
the energy consumption of U.S. data centers was as much as 91 billion Kilowatt-hours
in 2013, which was estimated to reach roughly 140 Kilowatt-hours by 2020 (Delforge,
2014). This is equivalent to the annual energy generation capacity of 50 large coal-
fired power plants and poses great challenges to energy conservation and air protection.
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Central to the issue of massive energy consumption in data
centers is removing the waste heat out of server racks Zhang et al.
(2022). On one hand, accumulated heat in the server box
deteriorates the performance and degrades the reliability of IT
devices. Nearly every server manufacturer establishes a correlation
between the thermal design point and the expected performance.
While occasionally going beyond the temperature threshold may be
allowed, the system failure rate would rise dramatically and servers
could even be burnt out once the temperature frequently exceeds
the heat-tolerance. On the other hand, removing the heat from the
machine room causes a huge energy consumption Li and Li (2021).
It was estimated that cooling components used as much as half
of the total energy in a data center (Miyuru Dayarathna and Fan,
2016). Fighting the cooling battle is thus the crux to balance the
performance and energy consumption.

A typical raised-floor data center layout is illustrated in Figure 1
where IT devices and Heating, Ventilation and Air Conditioning
(HVAC) system interact via heat. Multiple servers are installed in
racks whose fronts are laid face-to-face to form a cold aisle. The
cold air is sent to the underfloor plenum by Computer Room Air
Conditioner (CRAC) blowers and flows into the cold aisle through
perforated tiles under the force of pressure differential. The cold
air is then sucked by built-in fans into server boxes and absorbs
the waste heat released by electronic equipments. After turning into
the hot air, it is ejected from rack backs into the hot aisle and
is transported back into CRACs through the false ceiling. Heat is
moved from the machine room to the outside environment through
the heat-exchange process.

In the raised-floor data center, perforated tiles are the critical
components on the airflow path from which the cold air flows into
the cold aisle.While the adjustments in CRAC setpoints (e.g., blower
speed and supplying air temperature) can be considered as global
control strategies since they affect the overall air flow pattern inside
the machine room, the control mechanisms attached on perforated
tiles are more “local” because they just have impact on surrounding
racks. There are some works to control the tiles for balancing the
local cold air supply-and-demand. For example, Mohsenian et al.
(2019), Mohsenian et al. (2021), and Khalili et al. (2019) attached
dampers on tile back and developed fuzzy controllers to finely
tune the porosity. However, these techniques were passive and had
only limited effects. To address this problem, the active tile where
Variable Frequency Drive (VFD) fans are attached to the tile back
is proposed to redistribute the amount of traversing cold air more
flexibly. Recent studiesWan et al. (2021) showed that active tileswith
properly designed controllers effectively removed local hotspots.

The active tile as a new configuration was only investigated in
a limited number of works where Computational Fluid Dynamics
(CFD) simulations were often employed for performance evaluation
(Athavale et al., 2018a; Phan et al., 2019; Hu et al., 2020). However,
CFD models usually cannot capture the structural details which are
critical to the thermal performance and the obtained models are
hard to generalize due to tile shape and geometry diversity (Xiong
and Lee, 2021). To address these limitations, various experimental
and measurement studies were conducted in real data centers.
Athavale et al. (2016) studied the thermal performance of active
tiles; Arghode et al. concentrated on the overall energy efficiency
(Arghode et al., 2016); both factors were jointly considered in
(Fulpagare et al., 2022). Nevertheless, the thermal modeling issue,

i.e., the construction of concise models to characterize the
relationship between thermal performance and environmental
variables, is not well investigated. Most efforts on thermal modeling,
model-based thermal management, and parametric investigation
were related to the data centers with passive tiles, and majority
of these thermal models are constructed based on data generated
by the CFD simulation (Zhang et al., 2015; Athavale et al., 2018b).
We emphasize that CFD simulations are computationally expensive
and can hardly be used in real-time control (Wan et al., 2021). In
addition, constructing thermal model is essential since inaccurate
models make the active tile controller susceptible to making wrong
decisions that either is energy inefficient or violates the thermal
constraints. Therefore, it is imperative for researchers to develop
end-to-end and reduced-order models directly from measurement
data for better understanding and control of active tiles.

In this paper, we conduct performance evaluation and thermal
modeling of active tiles leveraging measurement data from a
production data center. Our field measurement study shows that
the active tile remarkably improves the local cooling efficiency. In
addition,we propose data-driven thermalmodels based onGaussian
Process Regression (GPR), Artificial Neural Network (ANN), and
Multivariate Linear Regression (MLR). It is concluded that GPR
and ANN are competent for accurate thermal modeling of active
tiles.

2 Related work

The local imbalance between cold air supply and demand leads
to uneven thermal pattern and energy inefficiency. Specifically, at
the top of racks in open aisles, the hot air recirculation gives rise to
local overheating, i.e., the hot air produced by servers flows reversely
into the cold aisle through available channels. This phenomenon is
ascribed to the deficit of cold air in higher positions, i.e., the cold
air provided by the CRAC units cannot reach the rack top. As a
consequence, the inlet air temperature at rack top is rising and local
hot spots emerge. Simply setting a higher volumetric air flow rate at
CRAC blowers cannot fully address the problem because it increases
the air supply for all racks.While somehotspots are removed, servers
in other racks are overcooled. In addition, the over-provisioned
cold air increases the underfloor plenum pressure, which aggravated
the floor leakage and further degrades the cooling efficiency. To
better manage the thermal and air flow distribution, the structure
optimization in the tile level is extensively studied since the tile only
affects neighboring racks.

Perforated tiles as one of themain components of cooling system
in raised-floor data centers are the pathway for cold air flowing into
the cold aisle. According to whether there are attached fans, they are
generally categorized as passive and active tiles.

2.1 Passive tile

There are different types of tiles with various geometry designs
and opening areas in the market (RLE-Technologies, 2022). The
impact of multiple factors, such as the opening geometry, open
area ratio, cross flow orientation, and tile size, etc., on the air
flow distribution and thermal performance were investigated by
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FIGURE 1
A typical raised-floor data center model with the heat-exchange process.

researchers from both industry and academia (Arghode and Joshi,
2015; Nada et al., 2016; Ling et al., 2017). The faster decay of the
air jet momentum was observed above tiles with the smaller pore
diameter. Lower porosity tiles accelerated the air flow rate above the
tile surface and at the rack top. This aggravated the cold air bypass
for exactly or over-provisioned case, but promoted the cold air to
reach rack tops for under-provisioned case due to higher airflow
momentum. While changing the physical structure of perforated
tiles enables a more uniform thermal field and airflow distribution,
it requires intervention from maintenance staff and cannot be
frequently applied to satisfy the dynamic thermal load due to
inconvenience.

2.2 Adaptive vent tile (AVT)

The passive tile is upgraded to the AVT with an additional
damper, which can be dynamically controlled by a motor to adjust
the tile opening ratio from 0 to 100 percent so that the local cold
air demand is satified. Besides the supplying cold air volume, the air
flow direction could also be turned by the damper vane to reduce the
bypass. Model Predictive Controller (MPC) andMulti-Input-Multi-
Output (MIMO) controller were applied to dynamically control
AVTs to make the cold air supply adapt to the variable thermal
load (Zhou et al., 2011, Zhou et al., 2012). In these systems, the rack
inlet temperature was continuously captured and fed back to the
controller. The controller then compared the preset temperature
threshold with sensor readings and updated the valve deviation
distance. Mohsenian et al. (2019) and Khalili et al. (2019) proposed
to leverage fuzzy controllers to adjust the angle the damper’s
vane to maintain the pressure differential between containment
and room. The idea is further extended in (Mohsenian et al.,
2021) where the pressure differential between underfloor plenum
and room is also included as the control objective. It was
concluded that combining AVTs with other smart control
techniques could effectively balance the cooling supply-and-demand
and optimize the energy consumption while met the cooling
demand.

2.3 Active tile

Benefits of using active tiles include: 1) More flexible control of
cooling resource. Instead of adjusting CRAC parameters to globally
control the thermal performance, an additional control knob of tile
fan speed can adaptively adjust the local air supply according to the
thermal load of adjacent racks. In addition, this strategy avoids the
potential overcooling in other racks. 2) Higher energy efficiency.
With passive tiles, the cold air is discharged into cold aisles by a
positive pressure differential, which can be achieved only by feeding
sufficient cold air into the underfloor plenum at the cost of increased
CRAC blower speed. Whereas, active tiles do not require such
strictly positive pressure differential to drive the cold air, and thus
the CRAC blower speed can be reduced. While additional energy is
consumed by tile fans, it is trivial for well controlled fans compared
with CRAC blowers. 3) More uniform thermal pattern. As a result
of the large flow resistance of passive tiles, only a fraction of cold
air reaches the rack tops, leading to severe hot air recirculation even
if CRAC blowers run at full speed. Fan-assisted tiles, on the other
hand, deliver the air flow into cold aisles with less momentum loss,
i.e., the deficiency of supplying cold air is eliminated at the rack top.

To evaluate the performance of active tile, measurement studies
are preferred since they capture the physical characteristics more
precisely. However, when field measurements are not applicable
due to reliability and security concerns, CFD simulations can also
provide some insightful observations.

Real-time Measurement. Four cases, which were categorized
based on whether active tiles were installed and whether the
cold aisle was contained, were evaluated in a real data center by
Arghode et al. (2016).They found that the air flow rate for active tiles
was significantly higher than that for passive tiles. The ratio of tile-
to-rack flow rate approached to 1 for active tiles in both contained
(103%) and open (98%) aisles, indicating a good match between the
supply-and-demand of cold air. The cold aisle pressure with respect
to the room space were 0.56 Pa and −1.02 Pa for open and contained
aisles, respectively. Furthermore, nearly equal air pressures between
underfloor plenum and room space were observed. Lower pressure
differential is favourable since it leads to less air leakage from the cold
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FIGURE 2
Layout of the data center of Inner Mongolia Meteorology Information Center.

FIGURE 3
The prototype of active tile: (A) Front view, (B) back view, (C) fan speed controller.

aisle and underfloor plenum to the room space. The deployment of
active tiles resulted in more uniform thermal fields in both the cold
aisle and rack inlets, but there was no improvement in Power Usage
Efficiency (PUE), which was attributed to more energy expenditure
to run tile fans. A key observation was that the tile fan speed in
(Arghode et al., 2016) was not adjustable, i.e., it was fixed atmaximal
speed regardless of thermal load. Wan et al. (2021) Leveraged the
recently proposed model-free Deep Reinforcement Learning (DRL)

techniques to control the tile fan speed. A remarkable advantage
of this approach is that the DRL controller can learn the optimal
cooling policy directly from the data acquired in the field. It
was shown that adjustable tile fans did reduce the overall energy
consumption.

CFD Simulation. Considering the security and reliability, real
data centers hardly permit non-staff members to conduct indoor
and practical experiments, so the CFD simulation appears to be an
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TABLE 1 Experimental tools’ specifications.

Tools Range Accuracy Resolution Power Data transportation

Hand-held anemometer 0 ∼ 45 m/s ±3%m.v ± 0.1 0.001 m/s 4*1.5V AAA batteries USB

Temperature sensor −40 ∼ 123.8°C ±0.5°C 0.1°C 3.3V DC serial interface

Differential pressure sensor 0 ∼ 100 Pa 0.5%FS 1Pa 24 V DC RS485

aFS = Full Scale or span, m.v. = measured value, i.e., reading

FIGURE 4
The framework of the temperature and pressure differential
monitoring tool.

alternative approach to explore the data center performance. For
example, Athavale et al. (2018b) modeled a raised floor data center
with all passive, single active and all active tiles using the CFD
method. Real measurement and model-based calculation reached
a good agreement, i.e., average discrepancies between for rack
inlet temperature and total tile flow rate were less than 1.7°C and
4%, respectively. These models could be used for the prediction
of the thermal performance and intelligent control of the cooling
system. In addition, the CFD approach can also save experimental
cost and facilitate parametric studies. Song (2016a), Song (2016b)
Leveraged the CFD approach to investigate the thermal and air
flow distribution arising from two variables-tile flow angle and
fan-to-tile distance. It was concluded that straightening the tile
flow and a proper fan-to-tile distance are essential to the cooling
efficiency.

3 Experiment setup

All experiments in this work are conducted in a
Data center of Inner Mongolia Meteorology Information Center
(2019), where the air flow organization is the underfloor supply
and flooded ceiling return. Figure 2 depicts the overall geometry
and layout of the data center. The height of machine room is 4 m,
the depth of the raised floor plenum is 0.5 m. There are totally 78
standard 42-U (1-U = 44.45 mm) racks with 2 m height placed
around 5 open cold aisles comprised of two rows of standard 0.61 m
×0.61 m (2 ft × 2 ft) perforated tiles. Multiple types of devices
including servers, storages, and network facilities, etc., are installed

into racks. The machine room houses 5 CRAC units (Emerson
Liebert PeX P3080FARMS1R) arranged around the periphery, each
one has the cooling capacity of 81.4 kW. The peak power load of a
rack is 6 kW, but not all racks are fully occupied. As a result, the
overall thermal load is around 65% of the cooling capacity and
CRAC-1 is turned off because the data center is currently under
utilized. During our experiments, the CRAC units, which supply
cold air into the underfloor plenum at a relatively stable rate, operate
at a supplying temperature of 23°C (this information is shown on the
CRAC dashboard), although the CRAC setpoint is 21°C. Cold air is
then delivered into cold aisles via perforated tiles with the porosity
of 55% (RLE-Technologies, 2022).

We design a prototype of active tile illustrated in Figure 3. 8
auxiliary fans (12 V, 0.7 A) are fixed on a metal plate which is
attached to the back of a passive tile.The fan-to-tile distance is 5 cm.
Moreover, the active tile is integrated with a switching power supply
(Mean Well LRS-150-12) and a speed-controller (AQMD2410NS).
Tile fan speed can be varied from 1% to 100% in response to the
voltage input determined by the controller. The control signals are
sent from a Personal Computer (PC) via RS485 port.

To precisely evaluate the performance of the active tiles,
measurements are conducted leveraging in-house built and
commercially available tools. More specifically, we construct a
thermal field and pressure monitoring tool to capture the rack
temperature distribution and pressure differential between over
and under floor. A hand-held air flow anemometer is used
to measure the velocity of air flow out of tiles. Specifications
of measurement instruments are briefly summarized in
Table 1.

3.1 Measurement tools

Thermal field and pressure differential monitoring tool. The
structure of this tool is illustrated in Figure 4where the temperature
and pressure differential data are gathered in a Personal Computer
(PC). Zigbee nodes attached with temperature sensors transmit
temperature data periodically to a Zigbee WIFI gateway where data
are routed to the PC via a wireless network. Pressure differential is
captured by a differential pressure sensor and then transmitted to
the PC via an RS-485 port. Sensors used in this monitoring tool are
described as follows.

• Temperature sensors (Figure 5A) are packaged SHT 10 sensors
produced by the Sensirion. The operating temperature range is
−40 ∼ 123.8°C with ±0.5°C uncertainty at 25°C. The minimal
sensitivity to temperature change is 0.1°C.
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FIGURE 5
Measurement tools: (A) Temperature sensor, (B) differential pressure sensor.

FIGURE 6
Tile flow regulation tool.

• The differential pressure sensor is shown in Figure 5B, whose
pressure ports are lengthened using Polyvinyl Chloride (PVC)
tubes in practical measurement. The measurement range is
0 ∼ 100 Pa. The sensor outputs digital signal in hexadecimal
with uncertainty 0.5% FS (Full Scale) and resolution 1 Pa.
Before the measurement begins, linking high and low ports for
calibration is essential.

Digital hand-held air flow anemometer. It captures the velocity
of air flow through a wind wheel.Themeasurement range, accuracy,
and resolution are 0 ∼ 45, ±3% ± 0.1, and 0.001 m/s, respectively.
During the measurement process, it is noted that the wheel blades
should be aligned with the air outlet to mitigate the air flow
bypass. In addition, blades should be kept perpendicular to the flow
direction.

3.2 Measurement strategies

Temperature. Rack inlets and outlets are deployed with
temperature sensors equispaced from the bottom to the top with

vertical distance 0.4 m. Temperature data are collected under 11
different tile configurations (passive tile and active tile fan speed
adjusted from 10% to 100% with 10% granularity). Temperature
measurement lasts for 30 min for each configuration to characterize
the tile’s stationary behavior. Furthermore, measurement starts
10 min later than a configuration change to ensure that the
environment achieves a steady state.

Air Flow Velocity. The airflow rate is severely non-uniform
at the tile surface. It was observed that nearly 50% air flow
velocity fluctuation occurred in different measuring points for a
perforated tile (Pervila et al., 2013). In addition, during the real-
timemeasurement, we also notice that the flow direction of different
measuring points at the same tile surface is even opposite at some
locations, i.e., the room air inversely flows into the underfloor
plenum from a cold aisle at some measuring points. To facilitate the
tile flow measurement, we place a carton (Figure 6) with the size
same as the tile and the height of 43 cm above the tile to regulate
the air flow direction and deter the air flow from diffusing and
bypassing.The cross-section area of the carton is further divided into
3× 3 sections.Theoverall tile flow rate is then estimated by averaging
the sensor readings from all nine sections.

Pressure Differential. The airflow pressure differential between
the underfloor plenum and cold aisle is one of the most important
factors to determine the airflow rate out of tiles. Unfortunately,
after interviewing with some large-scale data center operators, we
found the pressure differential monitoring was absence in almost
all of them. While the pressure differential was involved in several
academic studies, e.g., the measurement-based pressure loss factor
calculation (Arghode and Joshi, 2015) and the effect of the cold aisle
and tile configuration on pressure (Arghode et al., 2016), there were
no details about how pressure differential sensors were installed and
used.

Based on extensive experiments, we note that the direction and
the position of the pressure tube-end have significant effects on
the measurement accuracy. The pressure differential measurement
scheme in our experiments is presented in Figure 7. The sensor
(Figure 5B) is fixed in the center of a cold tile at 0.6 m height above
the floor, whose pressure ports are vertically towards the ground.
High and low pressure ports are extended to the measurement point
via two PVC tubes with 8 mm external diameter and 1.2 m length.
An overlength connecting tube would lead to a large measurement
error, so it should be as short as possible. One tube-end is on the
surface above the perforated tile, and another is in the underfloor
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FIGURE 7
Pressure differential measurement for the active tile.

plenum. Both ends are opened downward as shown in Figure 7.
In the experiments, we observed that quite significant variations
exist in different measuring points of the same tile. For example, the
pressure differential (the pressure of the underfloor plenum minus
that of the cold aisle) is positive in most points, but negative values
occasionally appear in others. Therefore, we use the same approach
as in the tile flow measurement to compute the overall pressure
differential.

4 Experimental results and analysis

The performance of active tiles are evaluated from three aspects:
rack inlet temperature, tile airflow velocity, and tile pressure
differential. To select a position to carry out our experiments, the
pressure differential of all passive tiles along a cold aisle is measured,
which is illustrated in Figure 8, where values in the y axis are equal
to subtracting the pressure of tile surface from that of under floor
plenum. It is shown that there is remarkable difference in the tile
pressure differential along a cold aisle. The pressure differential
is negative for sections near the CRAC unit, whereas positive for
regions far away from CRAC unit. This phenomenon arises from
the Venturi effect, i.e., the cold air flowing out of CRAC blowers at
a high speed creates a low-pressure region near the CRAC outlets,
leading to a negative pressure differential. Since the rack D-03 has
remarkable hot air recirculation and lies in the margin of positive
and negative pressure differential, all the experiments are conducted
in D-03 except in Section 4.3. In addition, there is gap between
rack D-03 and tiles, whose effect on thermal performance is also
investigated in Section 4.1.

4.1 Rack inlet temperature

We first investigate the impact of tile fan speed on thermal
performance. The average inlet temperatures at different heights of
rack D-03 are shown in Figure 9 where temperature curves reflect
the thermal distribution with respect to various tile fans speeds.
The passive curve refers to the case of traditional perforated tile

FIGURE 8
Pressure differential vs. location for passive tiles.

FIGURE 9
Rack inlet temperature distribution.

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1073879
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Gao et al. 10.3389/fenrg.2023.1073879

FIGURE 10
Comparison of rack inlet temperature for blocked and unblocked under-rack gaps.

TABLE 2 TVs for both blocked and unblocked under-rack gaps at various
tile fans speed.

Tile fans speed (%) Unblock (°C) Block (°C)

20 5.19 0.42

40 3.41 0.12

60 3.72 0.17

80 4.61 0.12

100 2.64 0.057

without assisted fans rather than the unpowered active tile. The
temperature of top regions in active tile cases is much lower (up to
4°C) than the passive case, because the amount of cold air supplied
to the rack top is increasing with the tile fan speed and the hot air
recirculation problem is mitigated. In the middle of rack D-03, the
thermal performance in active tile cases is slightly poor than the
passive case, which can be explained by that the cold air out of tiles
at a highermomentumwith the assistant of tile fans rapidly bypasses
the rack and less cold air goes through servers to remove heat. The
usage of active tile deteriorates the performance in the bottom region
compared to the passive tile case. This is because the low pressure
created by the Venturi effect due the increased air flow rate at tile
surface. Hot air recirculated from the under-rack gap is responsible
for the temperature increase in the bottom.

Further experiment is performed to investigate the effect of
under-rack gaps on thermal distribution. The comparison of rack
inlet temperatures for blocked and unblocked under-rack gaps at
various tile fans speeds are illustrated in Figure 10, where significant
thermal performance improvement at the rack bottom is observed
when under-rack gaps are covered. Specifically, sealing the under-
rack gap reduces the temperature at rack bottom by as much as
6°C at 20% tile fans speed and by over 4°C at other tile fan
speed configurations. By contrast, Figure 10 only shows a slight
change of rack inlet temperature at top and middle regions, which
indicates that these areas are not prone to be affected by the under-
rack gaps. To characterize the uniformity of rack inlet temperature

FIGURE 11
Tile airflow velocity for passive and unpowered active tile.

distribution, we calculate the Temperature Variance (TV), defined
as 1

n
∑ni (ri − ̄r)

2 where ri is the temperature reading for sensor i, ̄r is
the average rack inlet temperature, and n is the number of sensors.
The TVs for both blocked and unblocked cases under various tile
fan speeds are shown in Table 2, where TVs shrink significantly
after sealing gaps, because the recirculating hot air caused by the
Venturii effect is physically separated from the cold aisle. Therefore,
deterring hot air from recirculating via available gaps does promote
the thermal field uniformity.

4.2 Tile flow velocity

The tile flow velocities for the passive tile and the unpowered
active tile at the same porosity and CRAC blower speed are shown
inFigure 11.The tile flow rate for the passive tile ismuchhigher than
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FIGURE 12
Comparison of tile flow velocity between passive and active tiles: (A) Transient, (B) average.

FIGURE 13
Tile air flow velocity is a function of the fan speed up, which is expressed by the polynomial with first order (A) and second order (B).

that for the unpowered active tile (around 0.95 m/s vs. 0.45 m/s),
which suggests that the unpowered active tile adds significant
flow resistance. Note that our observation is inconsistent with
Athavale et al. (2016), where the tile flow rate was approximately
the same for both cases. This may be caused by various reasons
such as different CRAC blower speeds, fan motor types, and tile fan
geometries, etc.

The tile flow velocity for passive and active tiles at different fan
speeds is compared from both transient (Figure 12A) and average
perspectives (Figure 12B). It is observed that 1) the tile flow rate
with the help of tile fans is much higher than that with the passive
tile and 2) the flow rate generally increases with respect to the fan
speed. Specifically, when the passive tile is replaced by an active
tile with 10% fans speed, the average tile flow velocity jumps from
0.92 to 1.37 m/s, a 49% increase. It indicates that the active tile has

a remarkable impact on the air flow performance. Furthermore,
the average tile flow velocity increases by around 0.1 m/s as tile
fans speed up by 10% until the speed achieves 70% of full capacity.
Hereafter, the tile flowvelocity increasing rate drops as tile fans speed
up.

To precisely control the tile fan speed, it is necessary to establish
an analytical model to estimate the tile flow rate for various fan
speeds. Based on the measurement data, we use the regression
technique to characterize the model by linear (Figure 13A) and
quadratic (Figure 13B) polynomials, which are shown in Eqs 1, 2:

V (x) = 0.8453x+ 1.336, (1)

V (x) = −0.3622x2 + 1.244x+ 1.257, (2)
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TABLE 3 Error metrics.

Metric Linear Qudratic

SSE 0.8665 0.4509

RMSE 0.038 0.027

R-square 0.9761 0.9875

where V and x are the tile flow velocity and the tile fans speed,
respectively. As analysed formerly, the quadratic function may be
superior to the liner function in terms of prediction errors. This
is further supported by some advanced metrics listed in Table 3:
Sum of Squares due to Error (SSE), Root Mean Square Error
(RMSE), and R-square. Formulating the air flow rate prediction
model by the second order polynomial results in an SSE of
0.4509, which is approximately 0.41 lower than the first order
polynomial model (0.8665). However, SSE only decreases slightly
as higher order polynomials are used (the SSE are 0.43 and 0.42
for third and forth order polynomials, respectively). Therefore,
the second order polynomial reaches a good tradeoff between
prediction accuracy and computational complexity. The superiority
of quadratic polynomial compared to the linear model is also
reflected by RMSE (0.038 vs. 0.027). Another metric to represent
the goodness of curve fitting is the R-square, which is defined by
R2 = 1− ∑(y−ŷ)

2

∑(y−ȳ)2
, where y, ŷ, and ȳ are the sample, predicted, and

mean values, respectively. R-square is strictly less than 1 and a value
closer to 1 indicates a more precise model. Specific to this work,
while the R-square approaches to 1 for both first and second order
models, it is a little bit larger for the second order model (0.9875
vs. 0.9761). In sum, the second order model is better than the first
order model. However, if little prediction errors are tolerable, the
first order model is also applicable.

4.3 Pressure differential

Figure 14 shows the tile pressure differential as a function of tile
flow velocity achieved at different tile fans speeds from 10% to 100%.
Here, the differential pressure is equal to PDtilesurface—PDplenum, i.e.,
the pressure above perforated tiles is higher than that below tiles.The
pressure differential generally increases with the tile flow rate, since
more cold air sucked from the plenum into cold aisles leads to a low
pressure region below tiles. However, apparently the relationship is
not linear. Therefore, we model it by a quadratic function as Eq. 3

PD = −13.77V2 + 59.58V− 52.36, (3)

where PD and V represent the pressure differential and the tile
flow velocity, respectively. The average prediction error is about
1.8 Pa and cannot be improved remarkably using higher order
polynomials.

We further investigate the joint effects of tile fan speed and
tile pressure differential on tile flow velocity. Here, the tile pressure
differential refers to the initial counterpart in passive case. Since the
CRAC blower speed is not allowed to be adjusted arbitrarily due to
operating regulations, we vary the initial tile pressure differential
by moving the measurement point along the cold aisle (refer to

FIGURE 14
The tile airflow velocity vs. tile pressure differential.

FIGURE 15
Relationship between pressure differential, fan speed and tile airflow
velocity.

Figure 8).Figure 15demonstrates the results, wherewe observe that
the active tile flow velocity only fluctuates slightly as the initial tile
pressure differential lies within 1 ∼ 4 Pa, which means the impact of
initial tile differential pressure on the active tile flow speed in our
data center is tiny or even negligible.

5 Modeling the rack inlet thermal
distribution

IT manufactures usually use the inlet temperature as a critical
metric to justify whether the operating environment is reliable.
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FIGURE 16
Neural network topology.

However, as the airflow is very complex inside the machine room,
the inlet temperature is often non-uniform. As a result, hot spots,
which degrade the equipments performance and reliability, emerge.
Therefore, prediction of the thermal distribution in rack inlet is
essential. It also sheds some light on how to design control strategies
to satisfy the IT equipment specification.

However, characterizing the air flow dynamics and heat transfer
process is notoriously difficult. Traditional CFD approach is too
time-consuming. Recently, some works demonstrated that Machine
Learning (ML) can effectively model the thermodynamics based on
data obtained in field experiments Mokhtari et al. (2021). In this
section, leveraging ML technologies, several data-driven thermal
distribution models mapping multiple environmental variables
(height in rack box H, tile air flow velocity Vtile, and tile differential
pressure DPtile) to the thermal distribution Trackinlet are constructed.
The advantage of these ML-based models is that they generally
require less computation time than the CFD approach. In addition,
as we will see below, they provide estimation with satisfactory
precision.

We use 3 ML techniques, namely, GPR, ANN, and MLR, to
model the thermal distribution based on field measurement data
set, which consists of 3100 input-output pairs where 2500 pairs are
used as the training data set and the remainder are used for testing.
For different ML methods, this prediction errors are compared and
analyzed.

5.1 Gaussian Procession regression
approach

Gaussian Process (GP)-based ML Rasmussen and Williams
(2006) is a supervised learning method after the widely-used
Support Vector Machine (SVM). It is an effective solution to both
regression and classification problems in machine learning and

FIGURE 17
MAE vs. number of iterations in ANN training.

FIGURE 18
MAE vs. the number of neurons in the hidden layer.

statistics. A GP is a stochastic process where a set of random
variables are indexed by continuous domain, e.g., time or space,
and it is completely specified by its mean function and covariance
function. A real process f(x) with mean function m(x) and
covariance function k(x,x′) is defined as Eqs 4, 5.

{{{{
{{{{
{

m (x) = 𝔼[ f (x)] ,

k(x,x′) = 𝔼[( f (x) −m (x)) ( f (x′) −m(x′))] ,

(4)

f (x) ∼ GP(m (x) ,k(x,x′)) . (5)

Specific to the GPR in this work, it is assumed that the prior
distribution of observations y is Eq. 6.

y ∼ N (0,K) , (6)
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where setting the mean function as 0 is a common choice. K ∈
ℝn×n is a covariance matrix evaluated by the Squared Exponential
(SE) covariance function where n is the number of input-output
pairs in the training data set D{(xi,y) ∣ i = 1,2,… ,n} = (X,y).
Hyperparameters in the SEard kernel function are determined by
maximizing the log marginal likelihood. An entry kij = k(xi,xj) in
matrix K denotes the nearness between data points xi and xj.

Giving n* testing points (X*,y*), the joint prior distribution of
the training outputs y and test outputs y* is Eq. 7.

[[

[

y

y*

]]

]

∼ N(0,[[

[

K(X,X) K (X,X*)

K(X*,X) K(X*,X*)

]]

]

), (7)

where K(X,X*) is a n× n* covariance matrix quantifying the
similarity of training and test points and similarly for the other
entries K(X, X), K(X*,X) and K(X*,X*). The expected function
values y*, i.e., the prediction values, can be generated by Eq. 8.

𝔼(y*) ∣ X*,X,y = K(X*,X)K(X,X)−1y. (8)

5.2 Artificial neural network approach

The artificial neural network as an intelligent machine learning
method can precisely express the non-linear relationship between
input variables and output results. The neural network topology
used in this experiment is shown in Figure 16, which consists of
three layers-an input layer, a hidden layer, and an output layer.
The architecture of this neural network is (3-14-1), i.e., three,
fourteen, and one neurons are set in input, hidden, and output layers,
respectively. Every neuron in a layer is linked to all neurons in
adjacent layers and the dependence is expressed by the connection
weight. Denote βj as the output of neuron j in the hidden layer and
y as the final output, we have Eqs 9, 10.

βj = f (v1jH+ v2jVtile + v3jDPtile + bj) , (9)

y = f (∑n
j=1

wjβj + b) , (10)

where f(x) is the ReLU activation function defined as Eq. 11.

f (x) =
{{{{
{{{{
{

0 x ≤ 0,

x x > 0,

(11)

In Eqs 9, 10, v and w are connection weights, and b is the bias term.
Weights v and w are iteratively updated in the training process to
minimize the loss function (12), where ŷ, y, andm are the predicted
temperature, the measured temperature, and the number of samples
in the training set.

E = 1
m

m

∑
k=1
| ŷk − yk) |. (12)

The number of nodes in the hidden layer has a crucial effect
on the model accuracy. To develop an appropriate model for

FIGURE 19
Comparison of predicted & measured temperature.

the temperature prediction, extensive configurations with different
number of neurons in the hidden layer are considered. The
performance of multiple ANN models is shown in Figures 17, 18.
We see that MAE converges as the training proceeds to around the
2*104th iteration. Furthermore, the lowest MAE can be found for
ANN with 14 neurons in the hidden layer. Therefore, the (3-14-1)
architecture is selected as the prediction model.

5.3 Multivariate Linear Regression
approach

In this paper, the relationship between input features x and the
output target y is assumed as a linear function, so their relevance is
expressed by the following multivariate linear equation Eq. 13.

y = b0 + b1x1 + b2x2 + b3x3, (13)

where bi ∈ ℝ, i = 0,1,2,3, are regression coefficients. These
coefficients are determined from training data by minimizing the
loss function, i.e., min∑ni=1(yi − ŷi), where i is the index of data
entry and n is the number of entries in the training data set. The
performance of various methods is evaluated in terms of MAE,
which is shown in Figure 19, where the horizontal axis is the sample
index in the testing data set. It can be observed that GPR and BP
curves fluctuate around the measured data, but the MLR curve is
relatively far away from sensor readings. The MAEs for different
approaches are shown in Figure 20. TheMAE for MLRmodel is the
highest for both training and test data sets among three approaches
used in this work. By contrast, models constructed by GPR and
BP methods can predict the temperature more precisely. While the
training error for GPRmodel is higher than that for ANNmodel, the
test error for GPR model is smaller. The training and test errors are
enumerated inTable 4. It is observed thatGPRandANNpredictions
have good agreements with themeasurement data withMAEs being
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FIGURE 20
Comparison of prediction accuracy in terms of MAE.

TABLE 4 Prediction errors.

Method Training error (°C) Testing error (°C)

GPR (SEard kernel) 0.47 0.3

BP 0.37 0.34

MLR 0.59 0.5

0.3°C and 0.34°C, respectively. The prediction precision of the MLR
model, by contrast, is inferior than the other methods.

6 Conclusion

Accurate thermal modeling of the active tile is the prerequisite
for designing advanced control policies to improve the energy
efficiency in data centers. In this paper, we study the cooling
performance of active tiles in a production data center. Our
contributions can be summarized as follows:

1. A prototype of active tile, integrated with fans, a speed controller,
and a power supply, is designed and deployed into a real data
center. Thermal performance data are collected using an in-
house developed measurement system based on Wireless Sensor
Network (WSN).

2. Comparative studies of the rack inlet temperature distribution
and tile air flow characteristics are conducted with respect to
various system configurations, e.g., with or without tile fans,
different tile fan speeds, whether under-rack gaps are blocked, etc.
The active tile remarkably improves the local cooling efficiency for
the peripheral rack in an open cold aisle. A surprising observation
which does not consist with previous study is that the unpowered
active tile adds significant flow resistance such that the tile
flow rate suffers from a significant reduction compared with the
passive tile. Sealing the under-rack gaps significantly promotes the
thermal field uniformity over the rack inlet.

3. Three machine learning approaches, i.e., Gaussian Process
Regression (GPR), Artificial Neural Network (ANN), and

Multivariate Linear Regression (MLR), are used to construct
thermal performance prediction models for an active tile. The
performance of multiple approaches is analyzed with respect to
Mean Absolute Error (MAE). It is shown that GPR and ANN
models have better accuracy with MAE around 0.3°C, compared
to MLR where MAE is around 0.5°C.
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