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The uncertainty caused by the growing use of renewable energy sources, such as
wind and solar energy, makes it difficult to forecast the operation costs of micro-
energy systems, particularly those in remote rural areas. Motivated by this point,
this paper analyzes the possible operational risks and then introduces Condition
Value at Risk (CVaR) to quantify the cost of the operational risk. On this basis,
stochastic programming based on a multi-energy microgrid planning model that
minimizes the investment cost, the operating cost, and the cost of operational risk,
while considering the physical limitations of the multi-energy microgrid, is
presented. Especially, scenarios of wind and solar energy output are generated
using the Latin hypercube sampling method and reduced using the crowding
measure-based scenario reduction method. After piecewise linearization and
second-order cone relaxation, the model proposed in this paper is processed
as a mixed integer linear model and solved by CPLEX. According to the achieved
typical scenarios processed by the reduction method, the simulation shows that
the presented configuration model can balance the investment cost and the cost
of the operational risk, which effectively enhances the system’s ability to copewith
uncertainties and fluctuations. Moreover, by adjusting the risk preference
coefficient, the conservativeness of the planning scheme can be
correspondingly adjusted.
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1 Introduction

It is pointed out that the power industry is one of the largest sources of greenhouse gases
(Wang et al., 2020). During the production process, conventional generators produce a large
amount of carbon emission. In this context, due to the outstanding environmental protection
characteristics of renewable energy sources (RES), the penetration of RES is rapidly
increasing. However, the uncertainty and volatility of RES output will lead to
unpredictable blackouts (Mahzarnia et al., 2020), which greatly challenges the resilience
of the power system. These unpredictable power outages will bring potential safety and
economic risks to the system’s operation. It is pointed out that reasonable configuration of
various devices in the multi-energy microgrid can give full play to its multi-energy
complementary characteristics (Li et al., 2021a; Wang et al., 2021; Wang et al., 2023).
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Consequently, the risks in the system operation decreased, and the
economy and resilience of the system are improved.

To make full use of the advantages of multi-energy microgrids
and further explore their potential, it is particularly important to
develop the proper allocation method of the equipment capacity. In
terms of frequency regulation, Chen et al. (Chen et al., 2021a)
proposed a distributionally robust model to allocate the capacity of
the energy storage systems in microgrids. However, the economic
advantages of research results have not been analyzed. Leveraging
the multi-energy complementary characteristics, Ding et al. (Ding
et al., 2022) proposed an energy storage capacity allocation method
in a multi-energy microgrid, which realizes a balance between the
investment cost and the operating cost. Further, Alraddadi et al.
(Alraddadi et al., 2021) proposed a distribution network expansion
planning model, which considers the assets including transmission
lines, photovoltaic (PV) plants (centralized and distributed PV),
wind farms (WT), energy storage stems, and combined cycle gas
turbines. The presented model verifies the positive effects of the joint
planning multiple types of assets on promoting renewable energy
accommodation. Based on the energy supply-demand responses, Li
et al. (Li et al., 2021b) proposed a bi-level optimal configuration
model to realize the economically optimal operation under typical
scenarios. Additionally, Barik et al. (Kumar Barik and Das, 2021)
proposed a comprehensive resource optimal allocation method for
microgrids considering energy storage systems and electric vehicles.
To further promote the utilization of multiple energy sources in
microgrids, Chen et al. (Chen et al., 2022) presented an allocation
method focusing on those multi-energy microgrids which are
equipped with ground source heat pumps and electric heaters. In
view of the principles of heating supply priority (Lin et al., 2017),
Shen et al. (Shen et al., 2022) built an optimal capacity allocation
model for the equipment in multi-energy microgrids. Although
extensive studies have been done to reasonably allocate the
equipment, the volatility and uncertainty of RES are not
considered in the configuration process.

To cope with volatility and uncertainties caused by RES and
loads, a closed-loop predict-and-optimize framework was presented
by Chen et al. (Chen et al., 2021b) to improve the accuracy of load
forecasting. Further, a novel ultra-short-term wind power
forecasting model (Liu et al., 2023) is applied and a short-term
load forecasting method base on machine learning (Lin et al., 2022)
is explored. Nevertheless, even the most advanced algorithm still
cannot fill the gap of prediction errors. To solve the problem of low
accuracy of single-point load forecasting, Lei et al. (Lei et al., 2021)
proposed a multi-stage scenario tree generation method based on
the conditional generative adversarial network-random forest-
Markov chain. However, the large number of RES scenarios
directly leads to an increase in the computational cost. Therefore,
it is necessary to apply appropriate scene reduction methods (He
et al., 2023) to get typical scenarios and the occurrence probability of
each scenario.

To further reduce the impact of uncertainties, Zhang et al.
(Zhang et al., 2019) tried to explore better operation strategies by
minimizing the expectation of the operating cost under an
ingeniously constructed ambiguity set. The study effectively
integrated the advantages of stochastic optimization and
traditional adjustable robust optimization. However, the
generated scheme is too conservative. From the perspective of the

electricity market, Hasankhani et al. (Hasankhani and Hakimi,
2021) proposed a stochastic management algorithm, which
clarified the interactions between microgrids and electricity
markets. Further, considering the uncertainties from the carbon
trading market, Wang et al. (Wang et al., 2022) successfully built a
two-stage stochastic programming model. It is noted that taking
uncertainty into account at the planning stage can effectively
improve the resilience and operational economy of the system.
With that in mind, Liu et al. (Liu et al., 2020) proposed a two-
layer collaborative planning model for multi-energy microgrids. Yan
et al. (Yan et al., 2021) built a planning method that combines fuzzy
multi-objective decision-making and two-stage adaptive robust
optimization. On this basis, Chitalia et al. (Chitalia et al., 2020)
further proposed a multi-stage stochastic planning model
considering the uncertainty and the construction time. This
model can effectively reduce the number of idle facilities and is
beneficial to cost recovery, increasing the revenue of the energy
center, and carbon reduction.

Furthermore, Conditional Value at Risk (CVaR), a commonly
used concept in the financial sector, is introduced to quantify the
uncertainty and the corresponding risk cost (Li et al., 2020).
Considering the uncertainties of RES and the charging and
discharging behaviors of electric vehicles, Tang et al. (Huiling
et al., 2021), proposed an energy risk management model based on
CVaR. Xuan et al. (Xuan et al., 2021) measured the potential risk
loss using CVaR in the operation scenarios of the multi-energy
microgrid. In terms of operating strategies, an operation
coordination model of the multiple multi-energy microgrids is
proposed by Xuanyue et al. (Xuanyue et al., 2022), which took
active and passive demand responses and CVaR into
consideration. Based on CVaR, Li et al. (Li et al., 2023)
explored energy trading methods of grid-tied multi-energy
microgrids participating in the market, which provides a novel
view in dealing with uncertainties. In addition, CVaR is also quite
vital in the configuration process. Cao et al. (Cao et al., 2021)
proposed an effective risk-averse strategy for energy storage
systems configuring. However, in a multi-energy system, it is far
from enough to only get the energy storage configuration scheme
that takes into account the risk. Therefore, it is quite necessary to
obtain the proper capacity of various equipment with the
consideration of CVaR.

To summarize, existing strategies for coping with
uncertainties in multi-energy microgrids or integrated energy
systems, such as stochastic optimization and robust
optimization, are generally effective. However, approaches for
mitigating the risks associated with uncertainty in the
configuration process are extremely limited. Furthermore, after
taking CVaR into consideration, the mechanism for configuring
the capacity of each device in the multi-energy microgrid must be
investigated. With a focus on the aforementioned issues, this
paper presents a multi-energy microgrid planning model that
minimizes the investment cost, the operating cost, and the cost of
operational risk. Latin hypercube sampling method and
crowding measure-based scenario reduction method are also
employed to generate and reduce the scenarios that simulate
the uncertainty of renewable energy inside the multi-energy
microgrid. The numerical simulation verifies the effectiveness
of the presented model.
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2 The structure and equipment
modeling of the multi-energy
microgrid

2.1 The structure of the multi-energy
microgrid

The structure of the multi-energy microgrid studied in this
paper is shown in Figure 1. It consists of a variety of equipment
including wind turbines, photovoltaics, fuel cells, gas turbines, gas
boilers, heat pumps, and energy storage systems. The multi-energy
microgrid imports energy relying on the power injection and natural
gas inflow respectively from the external power grid and natural gas
grid, while supplying its electrical and thermal loads.

2.2 The equipment modelling in the multi-
energy microgrid

2.2.1 Photovoltaic
The power generation of Photovoltaics (PV) is greatly affected

by weather and environmental conditions, and mainly depends on
solar irradiance and the ambient temperature. Based on research
(Chen et al., 2021a), the power output of a PV array can be modeled
as in (1):

PPV � PPV,N G

1000
1 +Kp Tcell − Tcell,STC( )[ ] (1)

where PPV (kW) is the actual power output of the PV array;G (W/m2)
represents the solar irradiance; PPV,N (kW) is the maximum power
output under the standard test condition;Kp (%/°C) is the temperature
coefficient of power; Tcell (°C) is the actual surface temperature of the
PV array; and Tcell,STC (°C) is the PV surface temperature under the
standard test condition, which is usually set as 25°C.

2.2.2 Wind turbine
Wind turbines (WT) capture the kinetic energy of the wind with

their blades to make rotors rotate to create a magnetic field and

finally generate electrical energy. Based on research (Chen et al.,
2021a), a wind turbine’s power output is mainly related to the wind
speed and can be modeled as in (2):

PWT �

0 v≤ vin

PWT,N v
3 − v3in

v3N − v3in
vin ≤ v≤ vN

PWT,N vN ≤ v≤ vout

0 v≥ vout

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where PWT (kW) and PWT,N (kW) are the actual output power and
maximum power output of the WT; v (m/s), vin (m/s), vN (m/s), and
vout (m/s) are respectively the actual wind speed, cut-in wind speed,
rated wind speed, and cut-out wind speed.

2.2.3 Fuel cell
Fuel cells (FC) convert chemical energy in fuels such as natural

gas, methane, and hydrogen into electricity (Lu et al., 2022). The
power output of a fuel cell is modeled as in (3):

PFC � ηFCFFCQLHV (3)
where PFC (kW) is the output power of the FC; ηFC represents the
power generation efficiency; FFC (m³/s) is the natural gas inflow to
the FC; andQLHV is the lower calorific value of natural gas, which is a
constant parameter and set as 9.7 kW/m³.

2.2.4 Gas turbine
Gas turbines (GT) simultaneously generate electricity and heat

by combusting gasoline, natural gas, hydrogen, or other fuels. The
output of a gas turbine is modeled as in (4) considering natural gas as
the fuel:

PGT � ηGT,eFGTQLHV

HGT � ηGT,hFGTQLHV
{ (4)

where PGT (kW) andHGT (kW) are the electrical power and thermal
power output of the gas turbine; ηGT,e and ηGT,h respectively
represent the power generation and heat production efficiencies;
and FGT (m³/s) represents the natural gas inflow to the gas turbine.

2.2.5 Heat pump
Heat pumps (HP) driven by electrical motors that consume

electricity can transfer the thermal energy from a low-temperature
object to a high-temperature object without consuming additional
primary energy. Referring to research (Huiling et al., 2021), the
thermal power output of a head pump is modeled as in (5):

HHP � ηHPPHP (5)
where HHP (kW) represents the thermal power output of the HP;
ηHP represents the heat production efficiency of the HP; PHP (kW)
denotes the electrical power input of the HP.

2.2.6 Gas boiler
Gas boilers (GB) consume natural gas, liquefied gas, and others

as the fuel to produce heat and are currently the most common
heating equipment. Referring to research (Xuanyue et al., 2022), the
thermal power output of a gas boiler can be modeled as in (6) with
natural gas being the fuel:

FIGURE 1
The structure of the micro energy network.
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HGB � ηGBFGBQLHV (6)
where HGB (kW) represents the thermal power output of the GB;
ηGB represents the heat production efficiency of the GB; FGB (kW)
denotes the natural gas inflow to the GB.

2.2.7 Energy storage system
Energy Storage Systems (ESSs) can shift energy consumption

and the model of a typical ESS is shown as in (7); (8) (Wu et al.,
2023). Constraint (7) represents the energy evolution of the ESS.
Constraint (8) guarantees that the stored energy of the ESS at the
initial time interval is equal to that at the terminal time interval in
the scheduling time horizon. In constraints (7) and (8), EESS

t (kWh)
is the stored energy at time interval t. PESS,chr

t (kW) and PESS,dis
t (kW)

are respectively the charging and discharging power during time
interval t. ηESS,chr and ηESS,dis are corresponding charging and
discharging efficiencies. Δt represents the timespan of a time
interval.

EESS
t � EESS

t−1 + ηESS,chrPESS,chr
t − PESS,dis

t

ηESS,dis
( )Δt (7)

EESS
0 � EESS

T (8)

3 Risk analysis and quantification of the
cost of operational risk

3.1 Risk analysis

The inherent uncertainty of renewable energy resources makes
the difficulties to accurately predict the outputs of the multi-energy
microgrids, which may lead to deviations between the actual and
scheduled power outputs during the operation phase. Consequently,
the following risks may occur:

1) With a large installed capacity of renewable energy resources,
wind and solar energy curtailment is prone to occur due to the
excessive generation capacity.

2) With a low installed capacity of renewable energy resources, the
multi-energy microgrid is prone to purchasing high-priced
energy from external systems and even load shedding due to
energy shortage.

3) With a certain installed capacity of renewable energy resources, if
the planned capacity of multi-energy conversion equipment is
insufficient, the system will lack operational flexibility, possibly
causing wind and solar energy curtailment during load peaks and
load shedding during load valleys.

4) If the planned capacity of multi-energy conversion equipment is
redundant, although wind and solar energy curtailment and load
shedding can be avoided with the excessive system operational
flexibility, the investment cost will dramatically increase.

The above-mentioned risks that potentially occur during the
operation phase of the multi-energy microgrid will be caused by an
unappreciated capacity scheme of the equipment and the
uncertainty of renewable energy. These risks occur with some
probabilities. The probability of risk occurrence and the

corresponding degree of loss jointly characterize the cost of
operational risk that needs to be considered in the planning
phase of the multi-energy microgrid. Therefore, CVaR is
employed to quantify this cost of the operational risk.

3.2 CVaR based cost of operational risk
quantification

CVaR is an improved variant of Value at Risk (VaR) (Roustai
et al., 2018). VaR is widely used in the financial sector to express the
maximum possible loss of an investment portfolio over a specified
period of time in future at a certain confidence level. It can be
expressed as in (9) and (10). In (9), X represents the decision variable
in an investment portfolio and ξ represents a random variable. For a
given X, namely given the investment portfolio, Ψ(X, ·) represents
the probability distribution function of the investment loss f(X, ξ).
Formula (10) defines VaR, where α represents a confidence level,
which is usually set close to 1; α � 0.9, for example.

Ψ X, y( ) � Pr ξ
∣∣∣∣f X, ξ( )≤y{ } (9)

VaRα � min y
∣∣∣∣Ψ X, y( )≥ α{ } (10)

To make up for the shortcomings of VaR, such as high
computational complexity and insufficient tail risk consideration,
an improved variant of VaR, namely CVaR, was proposed (Wu et al.,
2018). This index is defined as the loss that exceeds themean value of
VaR at a certain confidence level. Compared to VaR, CVaR can take
the tail risk of the investment portfolio into consideration and
effectively evaluate the loss degree when the worst case occurs. In
general, CVaR is more comprehensive and conservative than VaR
(Gao et al., 2015). CVaR can be expressed as in (11), where p(·)
represents a probability density function.

CVaRα � E f X, ξ( )∣∣∣∣f X, ξ( )≥VaRα[ ]
� 1
1 − α

∫
f X,ξ( )≥VaRα

f X, ξ( )p ξ( )dξ (11)

Based on the definition of CVaR, the planning scheme and the
corresponding cost are considered as “investment portfolio”, and the
operating cost that contains penalties are seen as “possible losses”.
Thereby CVaR can be adopted to describe the cost of the operational
risk of a certain planning scheme, as shown in Figure 2. In terms of

FIGURE 2
The risk of the operating cost.
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the formulation, in (11), the variable X represents the planning
scheme of the equipment in themulti-energy microgrid; ξ represents
the output of wind and solar energy resources with randomness; and
f(X, ξs) represents the system operating cost with the planning
scheme X and the wind and solar output scenario ξs.

Based on research (Lu et al., 2022), CVaRα can be calculated by
solving the purpose-built optimization problem (12). The optimal
objective is CVaRα and the solution to z is VaRα.

minf X, z( ) � z + 1
1 − α

∑S
s�1
ps f X, ξs( ) − z[ ]+ (12)

4 Multi-energy microgrid planning
model considering the cost of
operational risk

4.1 The objective of the planning model

The planning model built in this paper introduces WT and PV
output as random variables, which belongs to Wait-and-See model
(Li et al., 2016; Cao et al., 2021). To obtain several scenarios with
probability, the scenario analysis method is utilized to discretize its
probability distribution.

minC � CINV + w · COP + 1 − w( ) · COP,CVaR (13)
The objective of the multi-energy microgrid planning model,

formulated as in (13), is to minimize the sum of the annual
investment cost, the annual operating cost, and the cost of the
operational risk. Among them, the cost of the operational risk is
represented by CVaR. In (13), CINV is the equivalent annual
investment cost of the multi-energy microgrid converted from
the total investment cost. COP is the expected value of the annual
operating cost. COP,CVaR is the CVaR value of the annual
operating cost, which characterizes the cost of the operational
risk of a certain planning scheme. w is defined as the risk
preference coefficient that indicates the decision maker’s
preference of the risk. The higher the value of w is, the higher
the acceptability of the risk is. Intuitively, a lower w indicates low
acceptability of risk, which means the decision maker is more
conservative.

4.1.1 Investment cost
Due to the differences in service life of different equipment, to

take the influence of equipment service life into account in the
investment cost, the net annual value method is adopted to convert
the whole life cycle cost of the equipment to the equivalent annual
investment cost. CINV is calculated as in (14):

CINV � ∑K
k

ck · Capk · r 1 + r( )Lk

1 + r( )Lk − 1
⎡⎣ ⎤⎦ (14)

where k denotes the equipment index; ck denotes the per kW
investment cost of equipment k; Capk denotes the planned
capacity of equipment k; r is the discount rate; and Lk is the
service life of equipment k.

4.1.2 Operating cost
The operating cost of the multi-energy microgrid, formulated as

in (1), consists of energy purchase cost, maintenance cost, renewable
energy curtailment penalty, and load shedding penalty. In (1), s is
utilized to index the scenarios and d to index the typical days. CBUY

s,d ,
COM
s,d , CAB

s,d , CCUR
s,d respectively represent energy purchase cost,

maintenance cost, renewable energy curtailment penalty, load
shedding penalty in scenario s of typical day d. p(s) denotes as
occurrence probability of scenario s; Nd denotes the duration of
typical day d. FGrid

s,d,t and PGrid
s,d,t are respectively the natural gas and

electrical power purchased from the external nature gas grid and
power grid at time interval t in scenario s of typical day d. JG and JEt
denote the natural gas price and the electricity price, in which the
former is a constant and the latter is a time-of-use price. Rk is the
maintenance cost coefficient of equipment k. Pk

s,d,t andHk
s,d,t are the

power and thermal power outputs of equipment k at time interval t
in scenario s of typical day d. PESS,chr

s,d,t andPESS,dis
s,d,t are the charging and

discharging power of the ESS at time interval t in scenario s of typical
day d. PAB

s,d,t andH
AB
s,d,t respectively represent the electrical energy and

heat curtailment at time interval t in scenario s of typical day d. ξE,
ξH, δE, and δH respectively denote the penalty prices of electrical
energy curtailment, thermal energy curtailment, electrical load
shedding, and thermal load shedding.

COP � ∑S
s�1
p s( ) · COP

s
⎡⎣ ⎤⎦

COP
s � ∑D

d�1
Nd · CBUY

s,d + COM
s,d + CAB

s,d + CCUR
s,d( )

CBUY
s,d � ∑T

t�1
FGrid
s,d,t J

G + PGrid
s,d,t J

E
t( )

COM
s,d � ∑T

t�1

∑WT,PV,GT,FC{ }

k

RkPk
s,d,t + ∑GB,HP{ }

k

RkHk
s,d,t

⎡⎣
+ ∑ESS{ }

k

Rk Pk,chr
s,d,t + Pk,dis

s,d,t( )⎤⎦
CAB

s,d � ∑T
t�1

ξEPAB
s,d,t + ξHHAB

s,d,t( )
CCUR

s,d � ∑T
t�1

δEPCUR
s,d,t + δHHCUR

s,d,t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

4.1.3 Cost of operational risk
The cost of the operational risk is denoted by COP,CVaR and can

be calculated as in (16):

COP,CVaR � COP,VaR + 1
1 − α

·∑S
s�1
∑D
d�1

Nd · p s( ) · COP,CVaR
s − COP,VaR[ ]+

(16)
where COP,VaR represents VaR value of the annual operating cost. α
represents the confidence level. An auxiliary variable κ is introduced
to equivalently linearize (16) as (17) and (18):

COP,CVaR � COP,VaR + 1
1 − α

·∑S
s�1
∑D
d�1

Nd · p s( ) · κ (17)

κ≥COP,CVaR
s − COP,VaR

κ≥ 0
{ (18)

Frontiers in Energy Research frontiersin.org05

An et al. 10.3389/fenrg.2023.1121644

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1121644


4.2 Physical constraints

4.2.1 Capacity constraints of equipment
The upper bound of the plannable capacity of the equipment

may be affected by the available space, the lower bound may be
affected by the minimum installed capacity of the equipment.
Therefore, the model should include the plannable capacity
constraints of the equipment:

uk,INVCapk,min ≤Capk ≤ uk,INVCapk,max, k ∈ GT, FC,GB,HP,ESS{ }
(19)

uk,INV � 0, not planed
1, planed

{ (20)

where Capk,min and Capk,max indicate the upper and the lower
bounds of the plannable capacity of equipment k. Binary variable
uk,INV indicates whether the equipment k is planned.

4.2.2 Power output constraints
All types of the energy generation equipment should meet their

output upper and lower bounds:

Uk
t · χk,minCapk ≤Pk

s,d,t ≤U
k
t · χk,maxCapk, k ∈ GT, FC{ }, ∀s, d, t

(21)
Uk

t · χk,minCapk ≤Hk
s,d,t ≤Uk

t · χk,maxCapk, k ∈ GB,HP{ }, ∀s, d, t
(22)

where χk,max and χk,min are the ratios of the output upper and the
lower bounds to the capacity of the equipment k. The indicators are
set as 1 and 0.1 in this paper. Capk represents the capacity of
equipment k. Binary variable Uk

t represents the ON/OFF status
of the equipment k at time interval t. Uk

t = 1 means ON and Uk
t =

0 means OFF.

4.2.3 Charging and discharging constraints of
the ESS

The ESS should meet its power upper and lower bounds of
charging and discharging and its energy storage capacity bounds:

χESS,minCapESS ≤PESS,chr
s,d,t ≤ χESS,maxCapESS, ∀s, d, t (23)

χESS,minCapESS ≤PESS,dis
s,d,t ≤ χESS,maxCapESS, ∀s, d, t (24)

Soc minCapESS ≤EESS
s,d,t ≤ Soc maxCapESS, ∀s, d, t (25)

where CapESS represents the capacity of the ESS. χESS,maxCapESS and
χESS,minCapESS set the upper and the lower bounds of the charging
and discharging power of the ESS. χESS,max and χESS,min are set to
0.5 and 0 in this paper. Socmax and Socmin denote the upper and the
lower bounds of the state of charge of the ESS. They are respectively
set as 90% and 10%. EESS

s,d,t represents the stored energy at time
interval t in scenario s of typical day d.

4.2.4 Capacity limitations of interconnection
transformer and pipelines

The multi-energy microgrid is connected to the external power
grid and the natural gas grid through interconnection transformers
and pipelines. The power injection and nature gas inflow from the
external grids are limited by their capacities as in (26), where

PGrid,max is the upper bound of the power injection and FGrid,min

is the upper bound of the nature gas inflow.

0≤PGrid
s,d,t ≤P

Grid,max

0≤FGrid
s,d,t ≤FGrid,max{ , ∀s, d, t (26)

4.2.5 Multi-energy flow and balance model
The multi-energy power flow and balance model adopted in

this paper refers to research (Wu et al., 2023). This model
includes an AC power flow model, a steady-state natural gas
flow model, and a simplified thermal energy model that ignores
the delay of the thermal transfer and the heat loss during the heat
transfer process.

4.3 Solving methodology

The model building and solving process of the presented
planning model is shown in Figure 3.

Firstly, according to the historical wind speed, and solar
irradiance, and load data, the wind power, photovoltaic and load
curves, and their prediction error distributions are obtained. And
then, on this basis, a large number of scenarios are generated
leveraging Latin hypercube sampling method to simulate the
uncertainty of wind and solar energy. These generated scenarios
are then reduced with the crowding measure-based scenario
reduction method to an appropriate number:

For any two scenesXi and Xj (i ≠ j), the distance between these
scenes can be modeled:

dij �
������������∑n
k�1

xik − xjk( )2√√
(27)

The intensive distance of Xi can be formulated as:

FIGURE 3
The model building and solving process.
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ci � dia + dib

2
(28)

where a and b are the numbers of the scenes most close to the scene
Xi, dia and dib are the corresponding distances.

The importance of scene i is defined as:

Ii � cipi (29)
where pi is the probability of the appearance of scene i.

Then, calculate all I s, and eliminate the scene with the
minimum I. Update the probability of Xa and Xb by (30):

pa � pa + dib

dia + dib
pi

pb � pb + dia

dib + dia
pi

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (30)

Repeat the above process until the number of remaining scenes
meet the requirements.

Afterwards, the data and settings including the risk preference
coefficient of the model, the equipment parameters, and the grid
parameters are input into the proposed model. After the solution of
the model, the planning scheme can be obtained.

5 Case study

5.1 The case setup

The presented model is verified using the multi-energy
microgrid which is shown in Figure 4. Plannable devices include
ESS, GT, GB, FC, HP, WT and PV in the multi-energy microgrid.
Considering that the capacity of the equipment is usually an integer,
the change step of the plannable equipment’s capacity is set as
10 kW. The parameters of the multi-energy microgrid are set as
follows:

1) The capacities of the interconnection transformer and the
natural gas pipeline of the multi-energy microgrid, namely

PGrid,max and FGrid,max, are respectively set as 800 kW and is
300 m³.

2) The natural gas price is set as $0.357/m³, and the electricity time-
of-use prices are shown in Table 1. The penalty prices for the
electrical energy curtailment, the thermal energy curtailment, the
electrical load and the thermal load shedding (ξE; ξH; δE,; δH) are
respectively $0.296/kWh, $0.296/kWh, $0.267/kWh and
$0.267/kWh.

3) Three typical days respectively representing winter, summer,
spring and autumn and lasting 90 days, 90 days and 180 days in a
year are generated. The load curves, wind energy output curves,
and solar energy output curves of three typical days are shown in
Figure 4. The peak of the electrical load is 2000 kW and the peak
of the thermal load is 1600 kW.

4) The relevant parameters of the equipment are shown in
Table 2 and Table 3.

5.2 Scenario generation and reduction

According to the forecasted wind energy and solar energy
curves, by setting the standard deviation as 20% of the output,
500 original scenarios are generated, and each of them has a
probability of 0.002, as shown in Figure 5.

Using the crowding measure-based scenario reduction method,
the 500 original scenarios are reduced to 30 scenarios as shown in
Figure 6, and the probability of each scenario is shown in Table 4.

5.3 Planning result analysis

5.3.1 Planning scheme analysis
To validate the presented model, the risk preference coefficients

are set as 0.01 (for approximately simulating the deterministic
situation), 0.5, and 0.9 respectively, and the confidence level is set
to 0.9. The corresponding planning schemes are shown in Table 5.

It can be seen from Table 5 that:

FIGURE 4
Load curves, wind energy and solar energy output curves of the three typical days. (A) Typical day inwinter. (B) Typical day in summer. (C) Typical day
in spring and autumn.
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1) Under various settings, the planned capacities of WT, PV, HP,
and ESS all reach the upper bounds of their plannable capacities.
This is because these types of equipment are more economical.
For WT and PV, their service lives are long and the costs of
generating green energy are low. For HP, its service life is also
long, and its electro-thermal conversion efficiency is as high as 4,
so it is also economical. For ESS, although its service life is
relatively short, working together withWT and PV, it can play to
the advantage of low generation cost of renewable energy
effectively through peak-valley arbitrage.

2) With the increase of the capacity of GT, the capacity of GB
decreases. This is because GT is capable of cogeneration. The
increased capacity of GT can supply not only part of the electrical

load, but also part of the thermal load. Therefore, considering the
overall economic efficiency, the capacity of GB that provides heat
only is reduced accordingly.

3) With the increasing risk preference coefficient, the capacities of
GT and FC are gradually increasing as well. Moreover, the load
shedding capacity goes down. Compared to w = 0.1, for w =
0.5 and w = 0.9, although the investment costs respectively
increase by $5049.009 and $12689.153, the CVaR values
decrease by $62127.987 and $77704.403, and the load
shedding costs are reduced by 58.46% and 93.77%. It can be
seen from Table 5 that the load shedding cost is an important
parameter affecting CVaR, which demonstrates that the load
shedding is the main factor of the operational risk. Therefore, to

TABLE 1 Time-of-use electricity prices.

Pricing type Time period Price ($/kWh)

Peak load electricity price 10:00–14:00 0.123

18:00–20:00

Non-peak and non-valley load electricity price 8:00–10:00 0.076

14:00–18:00

20:00–23:00

Valley load electricity price 23:00–7:00 0.040

TABLE 2 Planning parameters of the equipment.

Equipment type Investment cost ($/kW) Min/Max plannable capacity (kW) Service life (year)

WT 488.614 100/1000 20

PV 592.259 100/600 25

GT 1332.583 100/500 10

GB 111.049 200/2000 20

FC 740.324 100/600 5

HP 148.065 100/400 20

ESS 222.097 50/200 5

TABLE 3 Operating parameters of the equipment.

Equipment type Maintenance
cost (¢/kW)

Efficiency Upward and downward ramping rate
(kW/min)

Startup
cost ($)

WT 0.178 —— —— ——

PV 0.192 —— —— ——

GT 0.221 0.35/0.3 (power/heat) 5/10 1.214

GB 0.370 0.8 5/6 2.325

FC 1.333 0.65 10/10 0.681

HP 0.460 4 5/5 0.696

ESS 1.259 0.9 (charging and
discharging)

—— ——

The presented model is implemented in MATLAB, with Yalmip and solved by CPLEX (V12.9.0). Numerical simulations are conducted on a PC, with Intel i5-6500 CPU, and 16 GB, RAM.
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FIGURE 5
500 original scenarios. (A) Typical day in winter. (B) Typical day in summer. (C) Typical day in spring and autumn.

FIGURE 6
30 scenarios after reduction. (A) Typical day in winter. (B) Typical day in summer. (C) Typical day in spring and autumn.
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TABLE 4 Probabilities of 30 scenarios.

Scenario # Probability Scenario
#

Probability Scenario
#

Probability Scenario
#

Probability Scenario
#

Probability

1 0.0710 7 0.0334 13 0.0352 19 0.0167 25 0.0453

2 0.0222 8 0.0148 14 0.0322 20 0.0242 26 0.0437

3 0.0356 9 0.0242 15 0.0374 21 0.0320 27 0.0383

4 0.0204 10 0.0742 16 0.0157 22 0.0514 28 0.0216

5 0.0311 11 0.0514 17 0.0215 23 0.0186 29 0.0341

6 0.0451 12 0.0268 18 0.0220 24 0.0304 30 0.0284

TABLE 5 Planning schemes with different risk preference coefficients.

S = 30, α = 0.9 w = 0.01 w = 0.5 w = 0.9

Planning scheme WT/kW 1000 1000 1000

PV/kW 600 600 600

GT/kW 290 340 370

GB/kW 780 760 750

HP/kW 400 400 400

FC/kW 300 320 390

ESS/kWh 200 200 200

The expected value of operating cost (Million $) Energy purchase cost 59.005 58.916 59.207

Maintenance cost 4.719 4.794 5.122

Energy curtailment penalty 0.317 0.326 0.341

Load shedding penalty 1.497 0.622 0.093

Investment cost (Million $) 11.527 12.032 12.796

CVaR (Million $) 72.534 66.321 64.764

Total cost (Million $) 77.087 77.521 77.852

FIGURE 7
The distribution of operating cost.
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avoid the risk of load shedding caused by the uncertainty of wind
and solar energies during the operation phase, the value of w
should be set as relatively large, which indicates that the decision
maker will be more inclined to plan more energy resources to
deal with the uncertainty of renewable energy.

Figure 7 shows that with the increase of risk preference
coefficient, the load shedding will gradually decrease, approaching
zero.

4) The above results and analysis verify the effectiveness of the
presented model and show that the model can reduce the risk of
the system operation through adjusting the planning scheme.

To further validate the presented planning model and analyze
the rationality of the planning results, based on the planning scheme
of w = 0.5, the operating costs under the 500 original scenarios are
calculated and plot the results as in Figure 8A. To make it clear, the
expected value of operating cost, VaR values, and CVaR values are
shown in Figure 8B.

Table 6 shows the comparison of the results before and after
scenario reduction. It can be seen that with 30 scenarios, the
expected value of operating cost, VaR, CVaR and the total cost
all merely slightly deviate from the results with 500 scenarios. In
other words, the scenarios after reduction are still
representative. In terms of computational efficiency, using
merely 30 scenarios can significantly reduce the
computational intensity.

5.3.2 Analysis of the impact of renewable energy
forecast error on planning results

To discuss the impact of renewable energy forecast error on the
planning results, the forecast error is set to increase from 0.1 times
the standard deviation to 0.5 times the standard deviation in steps of
0.1. Under the condition of w = 0.5, the results calculated are shown
in the following table:

It can be seen from Table 7 that with the rise of prediction error,
the maintenance cost, renewable energy curtailment penalty, load
shedding penalty, investment cost, cost of operational risk, and total
cost, in the planning results increase. The reason is that after the
prediction error increases, the volatilities of WT and PV output
mount up, and more extreme scenarios appear. Correspondingly,
the cost of operational risk, renewable energy curtailment penalty,
and load shedding penalty goes up. Consequently, to avoid frequent
load shedding and power curtailment, the system supplements the
capacity of the equipment. Thus, the investment cost and
maintenance cost increase.

5.3.3 The study of confidence level
To study the impact of the confidence level on the planning

results, α is set as 0.8, 0.85, 0.9, 0.95, and 0.99. In these cases, w =
0.5 and the 30 scenarios are employed. The planning results,
including the total costs, VaR values, and CVaR values, are
compared in Figure 9.

As can be seen from Figure 9, with the increasing confidence
level, the values of VaR and CVaR are getting larger, indicating that
the risk faced by the multi-energy microgrid during the operation
phase is gradually increasing. In addition, the difference between
CVaR and VaR gradually shrinks as the confidence level increases
until they finally become equal. This is because the wind and solar
energy outputs follow normal distribution to some extent. From
Figure 8, it can be seen that the operating cost corresponding to each
output scenario is approximately normally distributed. The increase
of α makes the operational risk gradually approach the tail of the
normal distribution. As the probability density of the tail of the
normal distribution is small, CVaR and VaR values are getting
closer.

FIGURE 8
The distribution of operating cost. (A) The scatter chart of
operating cost, (B) The chart of operating cost distribution, VaR and
CVaR.

TABLE 6 Comparison of the results before and after scenario reduction.

The expected value of
operating cost (million $)<

VaR (million $) CvaR (million $) Total cost (million $)< Computational time

500 scenarios 64.718 66.069 66.682 77.339 7265.9s

30 scenarios 64.658 65.689 66.321 77.521 68.6s

Deviation 0.09% 0.58% 0.54% 0.24% ——
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5.3.4 Analysis of planning schemes with different
combinations of plannable equipment

To study the planning schemes with different combinations of
the plannable equipment, three cases are set:

Case 1. WT, PV, GT, GB, FC, HP, ESS are the equipment to be
planned.

Case 2.WT, PV, GT, GB, FC, HP are the equipment to be planned.

Case 3. WT, PV, GB, FC are the equipment to be planned.
Table 8 shows the Comparing the planning schemes and costs in

different cases. In Case 1 and Case 2, it can be seen that with the ESS
being planned in Case 1, the energy purchase cost, the load shedding
penalty, the energy curtailment penalty, and CVaR all decrease
significantly. This is mainly because the ESS can store the electrical
energy generated by the renewable energy resources during the low
electricity price period and discharge during the peak load period

with high electricity prices. Through peak load shifting, the ESS can
effectively relieve energy supply pressure, which reduces the total
operating cost and helps to deal with the uncertainty.

TABLE 7 The cost under the different renewable energy forecast errors.

Prediction errors (X times the standard deviation) 0.1 0.2 0.3 0.4 0.5

Energy Purchase Cost/Million $ 0.588 0.587 0.584 0.588 0.583

Maintenance Cost/Million $ 0.046 0.048 0.049 0.050 0.051

Renewable Energy Curtailment Penalty/Million $ 0.002 0.003 0.004 0.005 0.007

Load Shedding Penalty/Million $ 0.006 0.006 0.008 0.008 0.011

Investment Cost/Million $ 0.118 0.120 0.122 0.122 0.123

Cost of Operational Risk/Million $ 0.659 0.660 0.666 0.669 0.707

Total Cost/Million $ 0.768 0.772 0.777 0.782 0.802

TABLE 8 Planning schemes with different combinations of plannable equipment.

S = 30, α = 0.9 Case 1 Case 2 Case 3

Planning scheme WT/kW 1000 1000 1000

PV/kW 600 600 600

GT/kW 340 360 ——

GB/kW 760 750 1510

HP/kW 400 400 ——

FC/kW 320 360 600

ESS/kWh 200 —— ——

The expected value of operating cost (Million $) Energy purchase cost 58.916 59.008 66.117

Maintenance cost 4.794 4.663 4.984

Energy curtailment penalty 0.326 0.383 0.210

Load shedding penalty 0.622 0.817 2.727

Investment cost (Million $) 12.032 9.532 9.532

CVaR (Million $) 66.321 75.706 75.706

Total cost (Million $) 77.521 78.322 84.404

FIGURE 9
Total costs, VaR values, and CVaR values with different
confidence levels.
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Comparing Case 2 and Case 3, it can be seen that the total cost
of Case 3 is significantly higher than that of Case 2. This is
because in Case 3, only the coupling on natural gas input between
GB and FC exists, and the overall multi-energy complementation
is weak. The dealing of the uncertainty of wind and solar energies
merely relies on FC and the power injection from the external
power grid. This shows that the multi-energy microgrid lacks
operational flexibility. The GT planned in Case 2 can build
electricity-gas-thermal coupling, and the HP can build
electricity-thermal coupling. Compared to Case 3, the multi-
energy complementation between multiple energy is stronger,
which ultimately reduces the operating cost considerably.

5 Conclusion

Focusing on the risk brought by the uncertainty of wind and
solar energy in multi-energy microgrids, this paper introduces
CVaR to quantify the cost of the operational risk. On this basis, a
multi-energy microgrid planning model that minimizes the
investment cost, the operating cost, and the cost of the
operational risk, while considering the physical limitations of
the equipment, is presented. The following conclusions can be
drawn through the case study:

1) The presented model can reduce the risk of the excessive
operating costs by appropriately increasing the planned
capacities of the energy resources and effectively balance
the investment costs and the cost of the operational risk.

2) Decisionmakers can obtain either conservative or aggressive planning
schemes through adjusting the risk preference coefficient w.

3) Energy storage systems in the multi-energy microgrid and a
higher degree of multi-energy complementation can effectively
mitigate the impact of the uncertainties from wind and solar
energies and significantly reduce the operating cost and the cost
of the operational risk.

The future research of this paper can be considered from the
following two aspects:

1) The consideration of load side uncertainty can be added.
2) The thermal network in the multi-energy microgrid has heat

storage performance. The constraints of the multi-energy
network can be added to the model.
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