

International Journal of Environment and Climate Change

Volume 13, Issue 5, Page 75-93, 2023; Article no.IJECC.97844 ISSN: 2581-8627 (Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)

Breeding Approaches for Quality Improvement in Fruit Crops: Strategies and Achievements

Maneesh Kumar^{a*}, Rajesh Kumar^a, V. P. Singh^a, Sonal Pathak^{b*}, Aakash Deep Kamboj^a, Sajeel Ahamad^c and Amit Kumar^d

 ^a Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar-263145, India.
 ^b Department of Agricultural Communication, G.B. Pant University of Agriculture and Technology,

^c Division of Food Science & Post-harvest Technology, Indian Agricultural Research Institute, New

^d Department of Fruit Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2023/v13i51748

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/97844

Received: 15/01/2023 Accepted: 19/03/2023 Published: 22/03/2023

ABSTRACT

Review Article

As we know that fruit plays important role in the daily human diet for healthy living and is also a commercial commodity in trade and processing industries. The primary factor that customers use to determine whether or not a fruit is acceptable is its quality like appearance, shape, size, colour and

*Corresponding author: E-mail: maneeshk38904@gmail.com, sonalpathak231997@gmail.com;

Int. J. Environ. Clim. Change, vol. 13, no. 5, pp. 75-93, 2023

taste, etc. Success in a breeding program depends upon the overall acceptability of fruit quality because most of the developed varieties having desired traits like resistance to biotic and abiotic stresses could not be commercialized and are not in commercial cultivation owing to their poorquality traits. Therefore, the development of cultivars with desirable quality attributes in fruit crops is challenging. Quality improvement in fruit crops is restricted by several factors such as long juvenility, tall stature, environmental stress and high heterozygosity. Quality traits in fruit crops are polygenic and governed by many genes which makesit difficult to improve particular desirable traits. Many attempts have been made to enhance the qualitative characteristics of annual crops, although perennial fruit crops neatly overlook this issue. Accordingly, the use of both combined conventional and modern breeding techniques could in overcoming these problems. Biotechnological and molecular approaches like marker-assisted selection, transgenics, genomic editing, genomics cis-genics and candidate gene offer precision and reliability to reduce the breeding cycle and are also advantageous when dealing with tedious fruit crops. The challenges with fruit breeding and the state of various breeding techniques for enhancing fruit quality in fruit trees will be the main topics of this review.

Keywords: MAS; fruit quality; resistance; genomics; shelf life.

1. INTRODUCTION

"Fruit breeding programs have a wide range of specific aims regarding abiotic and biotic stress resistance, tree architecture, precocity, and productivity, with a common objective to develop high-quality fruit" [1]. Fruit quality has a different meaning for different fruit species consisting of diverse attributes [2]. "For instance, in some species, the crisp texture is much more acceptable than the soft vice versa. Few fruits require a balance of acidity and sweetness for taste, whereas, for others, it is simply defined by the degree of sweetness" [1]. "However, all commercial cultivar releases must have delicious palatable fruits. It does not matter whether the tree is a disease or insect resistant or highly productive, but if the quality of the fruit is not acceptable, it would be failed in the commercial market" [3].

"It is difficult to define the accurate definition of fruit quality as it varies according to the taste or requirement of the consumer, so the simple definition of fruit quality is: Whatever the consumer desires" [4-6]. "Since the nature of people is different, their desires and ideas of quality are different hence breeders need to provide numerous alternativeforms to meet the market desire. Quality may also refer to aspects like colour, size, nutrients, shelf life, suitability for processing, texture, taste, and sweetness" [1]. "However, breeding for quality improvement in fruit crops as they are perennial in nature is hampered by several limitations including the large size of the plant, long juvenile phase, and environmental problems (e.g., fruit drops due to

natural calamities). Besides, fruit quality is a polygenic trait, which is guantitatively inherited and thus making the breeding program complicated in the quality improvement of fruit crops. Any property of an individual showing heritable variation is known as a character or trait. A trait that defines some aspect ofproduce quality is quality traits. Each crop has a specific and often somewhat completely different set of quality traits. Fruits play a significant role in the nutritiousdiet [7] as it has the potential to provide all the essential elements or compoundswhich are generally deficient in agronomical crops such asfibre, vitamins, minerals, proteins, fats, and carbohydrates which are perfect for curing nutritional disorders".

2. BOTTLENECKS IN FRUIT TREES BREEDING AND QUALITY IMPROVEMENTS

"To date, continuous attempts have been made to improve the quality traits of staple crops, whereas very fewer efforts have been made to the improvement of fruit trees as compared to agronomical crops. In the case of fruits, breeding objectives are mainly focused on tree architecture, precociousness, yield, resistance against biotic, abiotic stresses, and physiological disorders [3]; however, very little attention has been paid to maintaining the quality of fruit". There are many constraints in the breeding of fruit crops such as consumers usually prefer the local or indigenous varieties as compared to improved varieties thereby makingthe breeding program a failure. For example, in the case of mango, many improved selections and hybrids have been developed, which are regular and heavy bearers and are also free from the problem of spongy tissue, however, local farmers tend to prefer Alphonso mango, though it is the shy and alternate bearer, and suffers from the spongy tissue.

"The major constraint in breeding is the large size and perennial behaviourof the fruit trees which makes the breeding program difficult especially while carrying out important operations such as emasculation, bagging, tagging, data recording, harvesting, etc. The majority of fruit trees are propagated through the asexual mean of reproduction, which bears flowers and fruit normally after 5 years of age [8], whereas those derived from seedlings take more than 10 years, prolonging the breeding cycle". thereby "Breeders have to wait for a long time to get the result. In addition, after the long wait, still, the chance of getting undesired results is there and which forced the breeder to be least interested. For example, an apple-breeding program that was undertaken by Dresden-Pillnitz, Germany screened 52,000 seedlings for 26 years and eventually, only three varieties were released at the commercial level" [9]. "Knowledge of genetics is very meagre in the case of tropical fruits as compared to temperate fruits" [8]. "Breeding fruit even trees are made complicated by reproductive biology (diurnal flowering in avocado), polyembryony (zygotic and nucellar seedlings in mango), sexual types (dioeciousness in papaya) and apomixes (obligate apomixes in garcinia)" [8]. In addition to environmental problems and this, natural calamities often result in huge commercial and breeding losses due to flower drops, fruit drops, pest and disease infestations etc.

"Fruit quality improvement needs strong genetic knowledge about its inheritance and variation. Quality characters are inherited quantitatively and regulated by multiple genes. Fruit trees are heterozygous crops, and a mass population is required for screening to identify the promising genotypes for the breeding of quality fruits" [10]. "The biotechnological approaches provide a precise, reliable, and easy way for addressing some of the problems encountered during conventional breeding. Molecular approaches like marker-assisted selection, candidate genes, genomics [11], transgenic, and cis-genicshave shown to be advantageous in terms of time, effort and patience required while dealing with the cumbersome crops". There is a negative correlation between yield and quality of fruits. When quality is enhanced by breeding by applying breeding methods, it affects the total yield of crop plants for instance, if quality is increases yield decreases and vice-versa.

2.1 Source of Fruit Quality Traits

- 1. A cultivated variety: most preferred source.
- 2. A germplasm lines.
- 3. A spontaneous or induced mutant.
- 4. A wild relative.
- 5. A transgene.

2.2 Fruit Quality Traits

2.2.1 Appearance

"The characteristics that affect appearance are primarily size and colour. During consumer surveys on peaches and apples, it was found that the bigger size is more demanding with bright and clear colour and consumers are willing to pay enough more to have it" [6].

2.2.1.1 Size and shape

"Fruit size has a large genetic component, thus selecting for larger fruit is relatively straightforward. Fruit size is a function of cell number, cell volume, and cell density" [12].

2.2.1.2 Colour

"This trait is an important aspect of appearance. The overall colour of fruit is reflected by the colour of the outer pericarp and the flesh colour. Pigments responsible for the colours are various modifications of anthocyanins, lycopene, and carotenoids. Predictingcolours is difficult because small modifications or combinations of pigments result in unpredictable colours. Due to that fruit depicts different shades of colour. The degreening process during ripening exposes the colours in both the pericarp and the flesh" [13]. "The de-greening process is the breakdown of chlorophylls, which is usually done by ethylene. The other pigments are no longer masked by chlorophyll and the fruit 'colours. One of the potential problems of some modern cultivars is that brightly coloured blush in the pericarp has been selected that appears before ripening" [12]. This in itself masks the chlorophylls thereby negating the de-greening as an indication of ripeness. For example, the orange colour of mango is due to Beta-carotene and the red and purple colour of Grapes, Pomegranate, Blackberries and Blueberriesaredue to Anthocyanin.

2.3 Taste

"The most important aspect of fruit quality is taste. The fruit may be the most desirable looking, but if it doesn't taste good the consumer will not buy it again. Consumer preference is for higher sweetness, more intense flavors, and firm fruit that soften before consumption" [1].

2.3.1 Sweetness

"Major fruit's TSS ranges from 9-20° Brix (Refractometry measure of soluble solids) when ripe. Brix is highly correlated with the amount of sugar contained in the juice. The levels of sucrose, fructose and glucose are what determines sweetness: however, the level of acidity affects the perception of sweetness such that fruit with high sugar and moderate levels of acid will be perceived to be as sweet as fruit with moderate levels of sugar and low acid" [12]. "The acid levels are primarily based on the concentration of malic or citric acid. Generally, the acid present in fruits is malic acid, tartaric acid, etc. For example, new cultivar development in peach has concentrated on high sugar with low acid to fill a niche in the Asian market" [14]. The fact that sugar accumulation occurs before final ripening makes it easier to harvest at a time with high sugar.

2.3.2 Flavour and aroma

"Flavour and aroma are determined by a combination of volatiles. There are three main pathways for volatile production; cleavage of lipids followed by alcohol dehydrogenase activity to yield short-chain aldehydes and alcohols, the shikimic acid pathway, and the degradation of terpenoids. Interestingly the colour pigments are also derived from these pathways, anthocyanins from the shikimic acid pathway and β-carotene and lycopene from the degradation of terpenoids" [14]. "As fruit ripens there are hundreds of volatiles detected, but only some above threshold levels that taste panels can detect. Of those, a few have been shown to determine the characteristic aroma/flavour of particular fruits. For example, p-hydroxyphenylbutan (raspberry), cinnamate derivatives (strawberry), cyanidin-3rutinoside (litchi), decadienoate esters (pear), ydecalactone, and linalool (peach), Benzaldehyde (Almond), 2-methyl butyrate (Apple) citral (orange), Isopentyl acetate (Banana),etc" [15].

2.3.3 Texture

"The texture of the fruit flesh is based on how cells shear in the chewing process, the mouth feels. Texture ranges from crisp to melting and all the stages inbetween. In melting texture, swelling and softening of the cell wall are evident, but in crisp texture, cell wall swell is not observed during ripening. Three enzymes, polygalacturonase (PG), the β -subunit of PG, and pectin methylesterase (PME) have been associated with texture determination. Their substrate is the homogalacturonans or pectin located primarily in the middle lamella of cell walls" [16].

2.4 Keeping Quality

Fruit can be harvested at various times concerning their peak quality and that time is dependent on the desired texture, the handling process, and the shelf-life of each commodity. Some fruits (non-climacteric such as blueberry, Grape, and strawberry) are harvested eaten ripe and then stored. Climacteric fruit such as Mango, peach, or apricot is harvested at earlier stages for the fruit to withstand the handling. This fruit will finish ripening during storage and transport. The rate at which the fruit ripens and softens determines when it must be harvested to withstand handling and arrive to the consumer either in the process of ripening or eating ripe. These aspects can be modified postharvest but there is also a large genetic component that can be taken into account in a breeding program.

2.4.1 Softening

"Softening is attributed to the disruption of the cellulose/xyloglucan cell. Numerous enzymes have been postulated to be involved including β -galactosidase, expansin (EXP), pectate lyase (PEL), endo-(2-4) β -D-glucanase (EGase), and xyloglucan endotransglycosylase (XET)" [17]. "For example: pectate lyase in strawberries resulted in significantly firmer fruitimplying they do have a role in softening" [18]. Polyuronides are depolymerized to a very small size during ripening in avocado. Matrix glycans become highly depolymerized in strawberries but not in avocado.

Pigments	Example	
Beta-carotene	Mango, Pineapple	
Anthocyanins	Grape, Pomegranate, raspberry	
Caricaxanthin	Papaya	
Lycopene	Papaya, Guava var.Arka Kiran	
Flavonoids	Peach, Papaya, Orange, Tangerine	
Lutein & Zeaxanthin	Avocado	
Chlorophyll	Guava	
Xanthophylls	Guava	
	Beta-carotene Anthocyanins Caricaxanthin Lycopene Flavonoids Lutein & Zeaxanthin Chlorophyll	

Table 1. Pigments responsible for fruit colouration

Source: Singh, J. 2002; Ray, P.K. 2002

Table 2. Aroma compounds in fruits

Fruits	Compound
Apple-Ripe	Ethyle-2 methylebutyrate
Apple-Green	Hexanal, 2 Hexanal
Banana-Green	2 Hexanal
Banana –Ripe	Eugenol
Banana-overripe	Isopentanol
Grapefruit	Nootakatone
Grape	Methyle Anthranilate
Lemon	Citral
Orange	Valencene
Raspberry	1-(p-hydroxyphenyl)-3-
	butanone
Source: Sir	ngh, J. [22]; Ray, P.K. [3]

2.4.2 Control of ripening

"The expression of quality traits normally is coordinately regulated and peaks at ripening. Breeders have been selected for early expression of some of these traits such as skin blush, but the texture, softening flavour development, reduction of acid and phenolic compounds, and colour development peak at the ripe stage" [19]. "Sugar accumulation takes place prior to the ripest stage. The problem with harvesting fruit at the peak of quality and ripeness is that the fruit at that stage has practically no shelf life. The fruit needs to be picked before peak ripe, at a stage that combines the maximum development of desirable traits and the maximum shelf life. For example: in climacteric fruit, the increase in the amount of ethylene synthesized triggers final ripening. Nonclimacteric fruit does not increase ethylene with ripening" [19].

Many of the genes involved in those ripening traits are under the control of ethylene. It is unclear whether or not low levels of ethylene in non-climacteric fruit isenough to induce those ripening-related genes or if there are other mechanisms to control ripening. Such as the discovery of a MADS-box transcription factor as the gene responsible for early ripening in nonclimacteric strawberries [20].

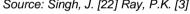
2.5 Nutritional Quality Traits

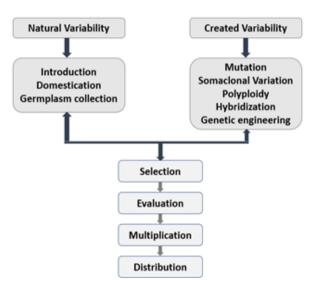
"Fruits are good sources of fiber, minerals, vitamins, and some beneficial phytochemicals such carotenoids. phenolics. as and glucosinolates. Fruits are a major source of both "macro" nutrients such as fiber and carbohydrates, and "micro" nutrients such as Vitamin C, B complex (thiamin, riboflavin, B6, niacin, folate), A, E, minerals, and the lesserstudied polyphenolics, carotenoids, and glucosinolates. Nutrients may be classified as either water or lipid soluble-meaning they dissolve in water or a lipid medium" [7]. "Water soluble nutrients include Vitamin C. B complex. polyphenolics, and glucosinolates. Fat-soluble nutrients include Vitamin A, D, E, K and other carotenoids such as lycopeneand β carotene. Vitamin Cisone of the most sensitive vitamins, being degraded relatively quickly by exposure to heat, light, and oxygen (Vitamin C is unstable)" [21]. For this reason, it is often used as an index of the Nutrients Department of Health and Human Services and the degradation.

2.6 Breeding Methods for Fruit Quality

Breeding for fruit quality can require extended periods, particularly fortree fruits since fruit evaluation cannot be done until the tree is mature and fruiting and the progeny will be in the field for several years before the first evaluations can be done. Secondly, a balance must be achieved to produce beautiful fruit that has the desirable taste and adequate shelf life to get that fruit to the consumer still beautiful with desirable taste. This task requires the combination of multiple complex traits and precise evaluation. General steps involved in the breeding of fruit crops are depicted in Fig. 1.

2.6.1 Domestication


"Domestication is the process of bringing wild species under human cultivation. The process of domestication started when man started superior plants for use" [23]. Domestication of plants is the change of ideotype to adapt them better to manmade environments [24]. It is the first step in the development of cultivated plants. Most of the crops were domesticated by prehistoric man under domestication and the crop species have changed considerably. Examples, Date palm, Olive, Grape, Almond, Fig, and Pomegranate.


2.6.2 Plant introduction

"Plant introduction consists of taking a genotype or a group of genotypes of plants into new environments where they were not being grown before. The introduction may involve new varieties of a crop already grown in the area, wild relatives of the crop species or a totally new crop species. Mostly materials are introduced from other countries or continents" [25]. But the movement of crop varieties s from one environment into another within a country is alsoan introduction.

Table 3. Nutritive value of fruits

Nutrition	Fruits/100gm	
Vitamin A (β-carotene)	Mango (4800IU) > Papaya (2020IU)	
Vitamin B ₁	Cashew nut (630mg)> Walnut (450mg)	
Vitamin B ₂	Bael (1191mg) > Papaya (250mg)	
Vitamin C	Barbados cherry (1000-4000mg)>Aonla (600mg)>Guava(199mg)	
Carbohydrate	Raisins (77.3%)>Dry Apricot (72.2%)	
Protein	Cashew nut (21.2%)>Almond (20.8%)	
Fat	Pecan nut (70.4%)>Walnut (64.5%)	
Fibre	Fig >Guava (6.9%)	
Calcium	Litchi (0.21%)	
Phosphorus	Almond (0.49%)	
Potassium	Banana	
Iron	Dry Karonda (39.1%)	
Calorific value	Walnut (687mg)>Almond (655mg)>cashew (596mg)	

Fig. 1. General steps of fruit breeding program

Fruit	Cultivar	Country
Mango	Tommy Atkins, Sensation, Haden-Coloured	USA, Florida
	varieties	
	Sweet	Thailand
	Carabao- Regular bearer	Philippines
Banana	Lady finger (Resistant to Bunchy top)	Australia
	Grand Naine	France
Citrus	Torocco	USA
	Sunramon	Peru
	Kinnow	USA
	Grapefruit	California and Florida
Grape	Thompson Seedless, Perlette, Beauty	USA
•	Seedless	
	KIshmishBeli, KishmishChorni	USSR
Guava	Beaumont G-135	Australia
Pomegranate	Wonderful	USA
Apple	Red Spur, Oregon Spur	Italy
	Prima, Sir Prize, Jonafree Liberty, Priscilla-	USĂ
	Scab resistant	
	Vance Delicious, Top Red, Royal Red	USA
	Source: Ray, P.K. [3].	

Table 4. Important introductions in different fruit crops

Source: Ray, P.K. [3].

Table 5. Some important varieties with improved fruit quality traits developed through selection

Fruit crop	Varieties	Method of breeding/ Parents	Quality traits improved
Aonla	Kanchan (NA-4)	Selection	Suitable for processing
	Krishna (NA-5)	Selection	Suitable for processing
	Goma Aishwariya	Selection	Suitable for processing and export
Cherry	CITH-Cherry-2	Selection	Bold, attractive
Guava	Allahabad Safeda	Selection from Allahabad	White soft pulp, Sweet
	ArkaMridula	Selection From Allahabad Safeda	Soft seeded sweet, good pectin content, Keeping quality
	L-49	Selection from Allahabad Safead	Highest vitamin C
	Lalit	-do-	Red colour pulp
	Try (G)-1	Selection	Off season, drought, sodicity tolerance
Jackfruit	PLR (J)-2	Selection from Pathirakkotai Local	good quality, fetch more price due to attractive characters and good keeping quality
Litchi	Rose Scented	Selection	Rose Scented, moderately juicy, soft and white flesh
Mandarin	Nagpur mandarin	Selection	Major position in mandarin markets, sweet, juicy and saffron coloured segments
Mango	Alphanso	Selection	Popular variety in domestic and export markets, yellow pleasant pulp, good keeping and processing quality
	Dashehari	Selection	Good keeping and table quality
	Pusa Surya	Selection from Eldon	Apricot yellow peel colour

Fruit crop	Varieties	Method of breeding/ Parents	Quality traits improved
	Langra	Selection	Turpentine flavour,
Papaya	CO-5	Selection	Cultivated mainly for papain production
	Coorg Honey Dew	Selection from Honey Dew	Gynodioecious
Sapota	Kirthabharti	Selection	Pulp is very sweet. Good for transportation to distant places
Walnut	CITH Walnut-1	Selection	Export purpose, bold nuts
Pomegranate	Ganesh	Selection from Alandi	Very soft seed,
0	G-137	Selection from Ganesh	Soft seeded
Apple	Granny Smityh	Sel. From Lady Hamilton	
	Cameo	Sel. From Block of Red	
Peach	Sharbati	Selection	Good flavour

Source: An individual selection and its traits taken from individual institute's website from where these varieties are developed and released and Department of Agriculture and Cooperation, 2012

Table 6. Important selection in different fruits from pantnagar

Fruit crop	Cultivar	Parents
Mango	Pant Chandra	Seedling selection
	Pant Sindhuri	Clonal selection
Guava	Pant Prabhat	
Papaya	Pant Papaya-1,2 & 3	
Bael	Pant Urvashi, Pant sujata, Pant Aparna, Pant Shivani	
Peach	Pant Peach-1	Seedling sel. From Sharbati
Pear	Pant Pear-3	
Plum	Fla-12	Exotic type
	Pant Plum-1	
Aonla	Pant Aonla-1	Seedling selection
Karonda	Pant Manohar, Pant Sudarshan, Pant Suvarna	Clonal selection
Jackfruit	Pant Mahima, Pant Garima	Clonal selection
Lemon	Pant Lemon-1	Clonal sel. from Kagazi Kalan

Source: Individual variety is taken from GBPUAT, Pantnagar Website (www.gbpuat.ac.in).

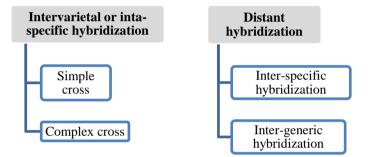
2.6.3 Selection

"Selection is basic to any crop improvement. Isolation of desirable plant types from the population is known as selection. It is one of the two fundamental steps of any breeding program viz., 1. creation of variation and 2 Selection. There are two agencies involvedin carrying out the selection: one is nature itself (natural selection) and the other is man (artificial selection). Though both may complement each other in some cases, they are mostlyopposite in direction since their aims are different under the two conditions (nature and domestication). The effectiveness of selection primarily depends upon the degree to which phenotype reflects the genotype" [3] It involves three basic principles: 1) it works on already existing germplasm, 2) it acts only through heritable alterations and 3) it works

by favouring some individuals over others in reproduction.

2.6.4 Hybridization

"Hybridization involves the crossing of desired parents and a further selection of progenies. These desired parents are generally obtained after an appropriate screening of the natural populations and crop wild relatives being conserved under in-situ and ex-situ conditions hence, germplasm conservation is the most important step, particularly for the utilization of wild species in breeding programs" [26]. "It helps in the selection of elite parents for the crossing and development of superior varieties. Conventional breeding involving approaches like bridge hybridization, crossing, distant hybridization, sibmating, half-sib mating, etc. had


been advantageous in framing breeding strategies for various crops and perennial fruit crops. Also, an admirable approach like doubled haploids could overcome some of the breeding limitations and is extremely useful for genetic studies such as gene mapping and genomics" [11]. "However, suitable technology for the development of superior fruit quality has to be adopted. Conventional breeding has contributed tofruit quality improvement with quite a good number of fruit trees. Many improved varieties

2.6.6 Types of hybridization

have evolved through inter-specific hybridization or polyploidization or a combination of both" [27].

2.6.5 Objectives

- To create genetic variation.
- Transfer of one or few qualitative characters.
- To develop biotic and abiotic resistant varieties.

Table 7. Some important varieties with improved fruit quality traits developed through hybridization breeding approaches

Fruit crop	Varieties	Method of breeding/	Quality traits improved
		parents	
Mango	Amrapali	Dashehari x Neelum	Fibreless, excellent taste, high carotenoids
	ArkaAnmol	Alphonso x Janardhan Pasand	Attractive skin colour, free from spongy tissue, good keeping quality, good sugar/acid blend
	Sindhu	Ratna x Alphonso	Seedless
	Konkan Ruchi	Neelum x Álphonso	Suitable for pickle making
	Arka Puneet	Alphanso x Banganpalli	Free from spongy tissue
Papaya	Arka Surya	Sunrise Solo x Pink Flesh Sweet	Red pulp, sweet
	CO-4	CO-1 x Washington	Purple pigment Variety
Pomegranate	Phule Arakta	Ganesh x Gul-e-shah Red	Dark red aril
-	Amlidana	Ganesh x Nana	Suitablr for anardana
	Mridula	Ganesh x Gulshah Red	Rose Pink, blood red aril, red rind, soft seeded
	Ruby	Ganesh x Kabul x Yercaud x Gulshah Rose Pink	The rind is pinkish yellow to reddish yellow. Fruit contains red and bold aril. It is soft seeded variety.
Lime	Rasraj	Kagzi Lime x Nepali Round	Good quality, juicy
Guava	ArkaAmulya	Allahabad Safeda x triploids	Round, firm, white fleshed, soft seeded, good keeping quality
Sapota	PKM-3	Guthi x Cricket Ball	Cluster Bearing habit
·	Hisar Surkha	Apple Colour x BanarsiSurkha	Pink flesh
	ArkaKiran	Kamasari x purple local	Soft, yellow peel

Fruit crop	Varieties	Method of breeding/ parents	Quality traits improved
Custard apple	ArkaSahan	A. Atemoya x A. Squomosa	Waxy skin, pleasant aroma
Apple	Ambred Honeycrisp	Red Delicious x Ambri 157 MN447 x Northern Spy x unknown	Crisp, aromatic, juicy, shelf life Red peel, Rich flavor

Source: Individual hybrid is taken from their respective institutional website from where these varieties are developed and released

Table 8. Inter-generic hybrids of citrus	Table 8.	Inter-generic	hybrids:	of citrus
--	----------	---------------	----------	-----------

Crop	Parent	Name of hybrid
Citrange	C.sinensis x P. trifoliata	Troyer, Morton, Carrizo, Rusk
Citrumelo	C.paradisii x P.trifoliata	Swingle
Lemonimes	C.limon x C.aurantifolia	Parrine
Tangor	C.reticulata x C.sinensis	Temple, Clementine, Monreal
Tangerin	Robinson x Osceola	Sunbrust
Tangelo	C.reticulata x C.paradisii	Orlando, Sampson, Minneola

Source: Individual hybrid is taken from their respective institutional website from where these varieties are developed and released

2.6.7 Mutation breeding

"Mutations are the heritable changes in the DNA sequence that are not derived from genetic segregation or recombination" [28]. "The occurring mutations might be spontaneous or induced. The majority of mutation studies were concentrated upon annual crops, mainly flowers and ornamental crops and special attention is required for attempting mutation in woody perennial crops. Induced mutations are highly effective in enhancing natural genetic resources, and have significantly assisted in developing improved fruit cultivars. Many commercial varieties have evolved mainly from spontaneous mutations and chance seedlings. Bud mutations are a valuable source of variation [29], which could result in variants having characteristics, including good fruit quality". "Spontaneous mutants are reported in citrus [30] and mango" (Medina 1997). For example, the variety Rosica has been reported in mango, which is the bud mutant of the Rosado-de-Ica variety and has large and good quality fruits.

2.7 Mutagens

A. Physical mutagens

1. Ionizing radiations

(a) Particulate radiations- α -rays, fast neutrons, thermal neutrons.

(b) Non-Particulate radiations- X-rays, γ-rays.

2. non-ionizing radiations- UV rays.

B. Chemical mutagens

- 1. Alkylating agents Sulphur mustard, EMS (Ethyl Methyl Sulphonate), Ethylene Imine.
- 2. Acridine dyes Acridine orange, ethidium bromide, acriflavine.
- 3. Base analogues 5- bromouracil, 5- chlorouracil.
- 4. Others Nitric acid, hydroxyl amine.

2.7.1 Steps in mutation

- Well defined objective of the program.
- Selection of a variety of treatments.
- Part of a plant treated- seed, pollen grain, bud, cutting.
- Dose of mutagen- LD50
- Treatment- method and treatment.

2.8 Polyploidy Breeding

"Polyploidy refers to the presence of more than two complete sets of chromosomes per cell nucleus, which has been considered a ubiquitous plant phenomenon in evolution and diversification" [3]. "A polyploid individual arising within one or between populations of a single species is denominated autopolyploid, while the term allopolyploid refers to individuals of hybrid origin. Allopolyploids are often divided into two sub-classes: true and segmental allopolyploids. The formation of true allopolyploids involves hybridization between distantly related species. In this case, the divergent chromosome

complements do not pair with each other, resulting in the formation of bivalents during meiosis and a disomic inheritance pattern. On the other hand, segmental allopolyploids originate from hybridization between closely related species with partially differentiated genomes" [32]. Therefore, segmental allopolyploids may undergo univalent, bivalent and/or multivalent pairing during meiosis, being considered intermediate types between true

Table 9. Important varieties with improved fruit quality traits developed through Mutation Breeding

Fruit crops	Cultivar	Year	Mutagens	Improved fruit traits
Mango	Rosica	1966	Spontaneous	Large and good quality
			mutation	
Apple	Golden Haidegg	1986	γ-rays	Fruit size
	McIntosh 8F-2-32	1970	γ-rays	Skin colour
	Senbatsu-Fuji-2-Kei	1985	γ-rays	Fruit colour
Grapefruit	Rio Red	1984	thN	Fruit colour
	Star Ruby	1970	thN	Seedless
Indian jujube	Mahong	1986	thN	Round, pink rose sweeter taste
Loquat	Shiro-mogi	1981	γ-rays	Fruit size
Orange	Xuegan 9-12-1	1983	γ-rays	Seedless
0	Hongju 420	1986	γ-rays	Seedless
	Eureka 22	1987	X-rays	Fruit set, fruit quality
	Valencia 2	1987	X-rays	Fruit quality
Peach	Magnif	1968	γ-rays	Large, red skin
	Plovdiv	1981	γ-rays	Large, fruit quality
Sweet cherry	Lapins	1983	X-rays	Larger size, firmer
	Compact Lambert	1964	X-rays	Compact growth
	Ferrovia spur	1992	X-rays	Dwarfness
Pear	Fuxiangyanghongdli	1983	γ-rays	Eating, cooking quality
Almond	Supernova	1987	γ-rays	Late maturity
Fig	Bol	1979	γ-rays	Not specified
Banana	Novaria	1993	γ-rays	Earliness
	Al-beely	2007	γ-rays	High yield
Japanese pear	Gold Nijisseiki	1993	γ-rays	Disease resistance
Papaya	PusaNanha	1986	γ-rays	Dwarfness
Plum	Spurdente-Ferco	1988	γ-rays	Earliness
Pomegranate	Karabakh	1979	γ-rays	
Sea buckthorn	zyriank			

Source: [31]

Table 10. Other important varieties developed through mutation breeding

Fruit crop	Variety	Parents	Nature of mutation
Mango	Rosica	Rosa-do-delca (Peru)	Natural
-	Davis Haden	Haden	Natural
Grape	Marvel Seedless	Delight	Induced
Banana	High Gate	Gros Michel	Natural
	Motta Poovan	Poovan	Natural
	Krishna Vazahi	Virupakshi	Natural
Orange	Washington Novel	Navel Orange	Natural
Grape fruit	Foster	Walter	Natural
-	Red Blush	Thompson	Natural
	Thompson	Marsh Seedless	Natural
	Star Ruby	Hudson	Induced
	Sc	ource: Ray, P.K. 2002 [3]	

allopolyploids and auto-polyploids. Now day Colchicine @ 0.2-0.8% is mostly used for the induction of polyploids.

2.8.1 Morphological and cytological aspects of polyploids

- 1. Slow growth and delayed flowering.
- 2. Increased flesh weight, but reduced dry weight.
- 3. Increase in size but the decrease in the number of leaves, flowers, and fruits.
- 4. Larger cell size.
- 5. Stomatal gourd cell larger (stomata count/unit area lesser).
- 6. Variation in ploidy from species to species.

2.8.2 Application of polyploidy

- Quality improvement: e.g., Seedlessness
- Direct use as new var. or species.
- Inter-specific gene transfer.
- Widening genetic base of existing allopolyploids.

Tracking the origin of natural allopolyploids.

2.9 Somatic Hybridization

"Somatic hybridization involves the fusion of partial and complete genome exchange, which might result in the development of novel varieties" [33]. "That means a combination of the nuclear, chloroplast and mitochondrial genomes in a novel arrangement (Singh and Rajam 2009) might aid in the development of novel varieties with desirable fruit quality traits". "Since the transgenic approaches are limited by social barriers, these approaches might be useful to surpass this limitation in the development of new cultivars particularly having improved polygenic fruit quality.Somatic hybridization has widely been attempted for developing interspecific/inter-generic crosses in the Citrus group, to overcome problems like sexual incompatibility, polyembryony and pollen or ovule sterility" [34]. Loredana et al. [33] developed "a hybrid and two cybrids by protoplast fusion of sweet orange (Citrus sinensis L. Osbeck) and lemon

Ploidy level	Autopolyploidy type	Сгор
3x	Auto triploid	Banana, Apple, Tahiti lime
4x	Auto tetraploid	Aonla, beal, Litchi, Phalsa, Jackfruit, grapes, Ber (cv. Umran)
6x	Auto hexaploid	Kiwifruit, Persimmon
8x	Auto octaploid	Ber (cv. Gola, Illaichi)
	Allo-polyploidy types	Crop
	Amphidiploids/Allo-tetraploid	Mango
	Allo-hexaploid	European plum
	Allo-octaploid	Strawberry
Aneuploidy	·	-
	Aneuploid-82	PusaSrijan (Guava dwarf rootstock)
	Source: Ra	ay. P.K. 2002 [3]

Table 11. Varieties developed through polyploidy breeding in fruit crops

Table 12. Ploidy level of varieties and their origin in different fruit crops

Fruit crop	Common interest	Polyploidy level	Origin	Reference
Banana	Edible fruit	Autopolyploidy/ allopolyploidy	Synthetic/natural	Silvaet al.,(2001)
Grape	Edible fruit	Autopolyploidy/ allopolyploidy	Synthetic/natural	Motosugiet al.,(2002)
Apple	Edible fruit	Autopolyploidy/ allopolyploidy	Synthetic/natural	Janick and Moore, 1996
Strawberry	Edible fruit	Allopolyploidy	Natural	Whitaker(2011)
Kiwifruit	Edible fruit	Autopolyploidy	Natural	Hopping(1994)
Tahiti Lime	Edible fruit	Allopolyploid	Natural	Morton(1987)
Plum	Edible fruit	Allopolyploid	Natural	BennettandLeitch(1995)

Source: Ray. P.K. 2002 [3]

(*C. limon* L. Burm.). These cybrids exhibited improved essential oil composition, responsible for imparting aroma in citrus".

2.10 Molecular Approaches

"The work related to molecular biology in the case of perennial crops is very scarce as annuals" "Molecular compared to [35]. approaches have proved to overcome some of the breeding problems in fruit trees. Prediction of colour, taste, shelf-lifebehaviour, texture, and nutrition characteristics by detection of marker genes before the tree even starts to bear fruit would be of much practical utility. Germplasm maintenance and evaluation, an integral part of conventional breeding, is more expensive in terms of time, labour, money and other inputs" [9]. "The approaches of genomics and marker-(MAS) assisted selection are more advantageous, particularly in woody perennials, including fruit crops" [36]. "Besides, advanced technologies in genetic transformation have been proven to shorten the juvenile phases of the tree, resistance to biotic stresses. and phytoremediation perennial trees" [35]. in Some of the major molecular based technologies and significant attempts made for fruit quality improvement are discussed hereunder.

2.11 Marker Assisted Selection and QTLs (Quantitative Traits Loci)

The term QTL was first coined by Gelderman [37]. "The markers tightly linked with the trait of interest are very informative in utilizing them in the identification and further selection process. Molecular markers have been in vogue for identifying the trait of interest, SSR and SNPs being the most preferred. QTLs provide this information with manifold applications in breeding for complex fruit quality traits. The close linkage with the other quality parameters is advantageous when both are of superior and acceptable traits by breeders. However, if one is not acceptable in hybrids then it becomes difficult to segregate them apart in the progeny. To know this, series of crosses between cultivars with superior and poor traits are made and their population information provides QTL, which could be used as markers in MAS. Such analyses for fruit texture were conducted by Longhi et al. [38], wherein the located QTLs by SSR and SNP markers. The most common method of QTL is interval mapping". For examples:

- 1. Costa et al. [39] in their study, utilized gene-specific molecular markers (ACS genes) for studying their effects on ethylene production and shelf life in apple and could position them on a linkage map. They reported the marker for the identification of apple cultivars having a good shelf life.
- 2. Huan et al. [40] developed SSR and AFLP markers linked to major gene loci involved in the fruit shape index of apples (*Malus domestica*).It was also reported that the fruit shape is controlled by five genes.
- 3. Davey et al. [41] identified QTLs related to ascorbic acid in fruit skin and flesh in apple.

2.12 Candidate Genes Approach

According to the concept that a molecular polymorphism is directly connected to phenotype, the candidate gene technique includes breeding in reverse, going from the gene to the trait of interest [42]. The candidate gene approach for understanding the signalling mechanism and biosynthetic pathway might be a useful approach because fruit quality is directly proportional to the metabolites present in it. Flavonoids, antioxidants, phenolics. active ingredients, pigments, etc. give the goodflavour, and colourto the fruits. Secondary taste metabolites are produced using particular or common metabolic pathways. Enzymes that are connected to these pathways are encoded by structural and regulatory genes. Source-to-sink relation is very complicated for improving the traits [43]. Biosynthetic pathways of pigments have been extensively studied in fruit crops like apple [44], peach [45], sweet cherry [46], litchi [47], mangosteen [48] and citrus [49]. For examples:

- 1. Anthocyanin-related gene expressions in fruit pericarp of many cultivars of litchi [47].
- 2. The integrated approach of metabolomics and transcriptomics related to mango fruit peel colouration.
- 3. Candidate genes involved in sugar and organic acid metabolism in apple and 12 candidate genes were allocated to 4 linkage groups of the peach genome [50].
- 4. Candidate genes are involved in taste development in the citrusfruit [49].
- Candidate genes are responsible for the texture, ethylene production Costa et al. [39], sugar and organic acid content [50]

and polyphenols (Chagne et al., 2012) in apple have been studied.

2.13 Genomics Approach

Genomics includes study of whole genetic information related to particular fruit crop. The term genomics werecoined by Dr.T. Roderick. It can be used forselection of better parents and for hybrid development. Genomic selection (GS) is a type of marker-assisted selection in which genetic markers available on the whole genome expresses its phenotypic variation Myles, [9]. The application of genomics and its function in battlingfew of the breeding difficulties has also been studied in apple and grapes by Myles [9]. The Apple Breed Data Base offers easy admittance for the documentation of molecular markers linked to fruit quality traits (e.g., skin colour, shape, or taste) [51]. Genomic analysis relatid to produce quality at developmental stages has been assessed in fruit trees like bayberry, citrus, apple and peach [52- 54].

2.14 Transgenic Approach

Transgenic or genetically alteredfruit crops involve introduction ofdesired genes [55] principally for the development of elite varieties with improved quality traits. *Agro-bacterium*mediated transformation, fruit quality gene was successfully transferred through protoplast transformation with the retrieval of transgenic plants in citrus [56]. The first transgenic plant was developed is Tobacco in 1983.

Table 13. Transgenic varieties in fruit crops

Fruit crop	Variety	Trait	Year	References
Papaya	Rainbow, Sunup	Rainbow, Sunup Resistant to papaya ring spot virus	1998	Gonsalves et al. [57]
Grapes	Pinot Noir			Franks et al. [58]
Banana	DH-Pahang	Hepatitis B	-	Kumar et al. [36]
Plum	Honey Sweet	Resistant to Plum Pox Virus (PPV)	2009	Scorza et al. [59] Richard, H. [60]
Apple	Arctic Apple Artic golden delicious	Resistant to browning Resistant to browning	2015	Murata et al. [61]
	Artic granny smith	Resistant to browning		
Strawberry	Apel	fruit firmness	-	Jimenez-Bermudez et al. [62]

Table 14. Transgenic fruit crops developed by Agro-bacterium mediated transformation

Species	Traits	Plasmid	Transgenes	References
Orange				
Citrus sinensis	Method optimization	pGA482GG	gusA, nptll	Oliveira et al. [63] 2009
Citrus aurantifolia	Resistance to virus	pBin19-sgfp	nptll, sgfp, p23	Fagoaga et al.[64]
Poncirustrifoliate	Enhanced salt tolerance	pBin438	nptII, AhBADH	Fu. et al. [65]
Papaya				
Carica papaya	Resistance to PRSV pRPTW	pRPTW	<i>PRSV</i> replicase gene, neo	Chen et al. [66]
Pomegranate				
Punica granatum	Method optimization	pBIN19-sgfp	nptII, gfp	Terakami et al. [67]
Fragaria spp.	Modulation of	pBI121	antisense of	Lee & Kim, [68]
(Strawberry)	fruit softening	-	endo- <i>b1</i> ,4- glucanase	

Crop	Trait	Genes
Apple	Reduced polyphenol oxidase	PPO suppression transgene, nptll
	Non-browning reduced polyphenol oxidase	Polyphenol oxidase antisense, PGAS1, PGAS2
Banana	Bunchy top resistance	Replicase associated protein, replicase inverted repeat, nptll
Grape rootstock	Grapevine fan leafneo virus resistance	Coat protein gene,heat shock 90 homologous genes, nptII
Grapefruit	Aphid resistance	Agglutin coat protein, GUS.
Papaya	Female to male (or) hermaphrodite	EST116, ESTS, FSH11, FSH19

Table 15. Permits and notifications of transgenic fruits approved	Table 15	Permits and	I notifications	of transgenic	fruits approved
---	----------	-------------------------------	-----------------	---------------	-----------------

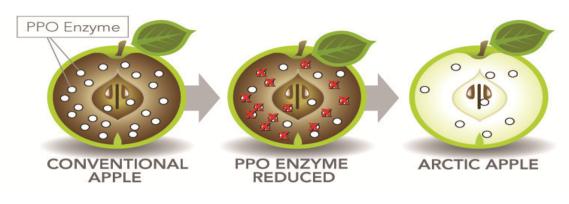


Fig. 2. Pro-enzyme induced apple

3. PROBLEMS AND PROSPECTS

The intake of fresh market fruits in the United Nationlike stone fruits and apple, has been stable or decreasing [69]. Surveys propose that, primary reason is that the consumers are not pleased with quality offruits [70]. Our present strategy for quality as breeders has been to choose subtle alterations in a high-quality cultivar to fill a specific niche. A little alteration that will solve an issue in the consumer market may be a different ripening duration, a change in colour, or a greater sugar to acid ratio. Although this breeding strategy has had great success, it hasn't necessarily improved customer access to fruit of the utmost quality. Our understanding of the factors influencing fruit quality has improved from the use of molecular approaches to the study of fruit ripening [71] yet, it is not sufficient to make molecular selection and modification at practical level as a primary approach to improve quality traits for consumers. Long juvenile phases, prolonged gestation periods, plant architecture and inadequate planting material are the key issues with fruit breeding programmes aimed at enhancing the qualitative attributes of fruit crops.

Breeders may have to think outside the box, at least until we have a better knowledge of fruit quality traits. Fruit quality traitsare defined by cultivars that may perhaps be centuries old such as 'Montmorency' cherry (17th century), 'Bing' cherry (1800s), 'Golden Delicious', 'Delicious', 'Granny Smith', and 'Jonathan' apples (18th and 19th century) [72], 'Chinese Cling' peach (18th century), 'Belle of Georgia', and 'Elberta' peach (1850s), 'Bartlett' and 'Bosc' Pear (18th century), Smooth Cayenne pineapple (1819) and 'Fuerte' avocado (1911), all are very dominant germplasm in breeding programs. One strategy for breeding for better fruit quality is to diligently screen for better fruit quality and not be deterred by poor appearance [12]. Perhaps we should have to select quality attributes as per future thrust to improve. More varieties of small, firm fruit, like the recently released "Pixie Crunch" apple, or fruit that can be consumed without creating a mess, like the Zee Sweet series of peaches, nectarines, and pluots, which can be consumed while still crisp due to their high sugar and low acid ratios, may be included in successful releases. In present, fruit processing industry is growing and now major challenges for fruit breeder is to improve the variety in way that have good flavour, texture and taste after cut into the pieces and lightly processed [73-80].

4. CONCLUSIONS

Fruit crops need integrated techniques that combine traditional and non-conventional methods for breeding varieties with positive characteristics since they are constrained by a variety of restrictions compared to short-lived and seasonal crops. As polygenes are in control of controlling fruit quality, integration becomes essential for achieving the desired improvement. The biotechnological approaches deliver an accurate, reliable and easy way for breeding fruit trees for improvement of fruit quality. Also, it lessens the time, effort and patience of the breeder, when dealing with breeding related activities of fruit trees. These methods might aid in the development of high-quality fruits to fulfil both domestic and global fruit demand.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Kader AA. Fruits in the global market. In:M. Knee (ed.), Fruit Quality and its Biological Basis. Sheffield Academic Press, Sheffield, UK. 2002;1-16.
- Callahan MA. Breeding for fruit quality. Acta Horticulture. 2003;622:255-302. DOI:http://dx.doi.org/10.17660/ActaHortic.2 003.622.27.
- 3. Ray PK. Breeding tropical and subtropical fruits. Springer Berlin, Heidelberg publishers, ISBN, 978-3-540-42855-8. 2002;56-67.
- 4. Barritt BH. Apple quality for consumers. International Dwarf Fruit Tree Association. 2001;34:54-46.
- 5. Elia L. Producing a profitable peach. Fruit Grower. June: 2001;6-10.
- Kupferman E. Critical aspects of harvest and quality management. Postharvest Information Network. Available:www.postharvest.tfrec.wsu.edu/ EMK2002A.pdf. 2002;14-18.
- Wargovich MJ. Anticancer properties of fruits and vegetables. Horticulturae Scientia. 2000;3557-3575.
- 8. Arias RS, Borrone JW, Tondo CL, Kuhn DN, Irish BM, Schnell RJ. Genomics of

Tropical Fruit Tree Crops. Genomics of Tree Crops. 2012:209–239.

- DOI:doi.org/10.1007/978-1-4614-0920-57.
- 9. Myles S. Improving fruit and wine:What does genomics have to offer? Trends in Genetics. 2013;29(4):190–196.
- Kenis K, Keulemans J, Davey MW. Identification and stability of qtls for fruit quality traits in Apple. Tree Genetics & Genomes. 2008;4(4):647–661.
- Murovec J. Bohanec B. Haploids and doubled haploids in plant breeding. Plant Breeding. 2012;4(1):364-369. DOI:https://doi.org/10.5772/29982
- 12. Janick J, Moore JN. Fruit breeding tree and tropical fruits. Wiley India Pvt. Ltd. 1996;1:4-9.
- Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, Cell Biology, and biotechnology. Plant Physiology. 2001;126(2):485–493.
- Baldwin EA. Fruit flavour, volatile metabolism and consumer perceptions. In: M. Knee (ed.), Fruit Quality and its Biological Basis. Sheffield Academic Press, Sheffield, UK. 2002;89-106
- 15. Kumar A, Ellis BE. The phenylalanine ammonia-lyase gene family in raspberry. structure, expression, and evolution. Plant Physiology. 2001;127(1):230–239.
- Redgwell RJ, Fischer M. Fruit texture, cell wall metabolism and consumer perceptions. In: M. Knee (ed.), Fruit Quality and its Biological Basis. Sheffield Academic Press, Sheffield, UK. 2002; 46– 88.
- 17. Brummell DA, Harpster MH. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology. 2001;47(1-2):311–340.
- Smith DL, Abbott JA, Gross KC. Downregulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiology. 2002;129(4):1755–1762.
- 19. Seymour GB, Manning K. Genetic control of fruit ripening. In: M. Knee (ed.), Fruit Quality and its Biological Basis. Sheffield Academic Press, Sheffield, UK. 2002;p. 253–274.
- Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002;296(5566):343–346.

- Oguntibeju OO, Truter EJ, Esterhuyse AJ. The role of fruit and vegetable consumption in human health and disease prevention. Diabetes Mellitus - Insights and Perspectives. 2013;4-9. DOI:https://doi.org/10.5772/50109
- 22. Singh J. Basic Horticulture. Kalyani Publishers, New Delhi; 2002.
- 23. Simmonds NW. Principles of Crop Improvement. Longman, London; 1979b.
- 24. Harlan JR. Agricultural Origins: Centers and noncenters. Science. 1971;174 (4008):468–474. DOI:https://doi.org/10.1126/science.174.40 08.468
 25. Gineth DV. Chand D. Tunni V. Singh AV.
- Singh RV, Chand D, Tyagi V, Singh AK, Singh SP, Singh S, Binda PC. Priorities for introduction of fruit crops in India. Indian Journal of plant genetic resources. 2005;18(1):67-68.
- 26. Sharma TVRS, Singh S, Singh AK, Singh PK. A note on possibility of utilizing wild relatives of crop plants present in Andaman & Nicobar Islands for creating new variability. Souvenir of lead papers and abstracts of National meet on Distant Hybridization in Horticultural Crop Improvement. 2015;1-1.
- Jalikop SH. Allied species utilization in fruit improvement-way forward. Souvenir of lead papers and abstracts of National meet on distant hybridization in horticultural crop improvement. 2015:25–35.
- Van Harten AM. Mutation breeding: theory and practical applications. Cambridge Univ. Press, Cambridg. 1998.
- 29. Usman M, Fatima B, Muhammad JJ. Breeding in mango. International Journal of Agriculture and Biology. 2001;4:522– 526.
- Liu YZ, Tang P, Tao NG, Xu Q, Peng SA, Deng XX, Xiang KS, Huang RH. Fruit coloration difference between Fengwan, a late-maturing mutant and its original cultivar Fengjie 72-1 of navel orange (*Citrus sinensis* Osbeck). Journal of Plant Physiology and Molecular Biology. 2007;32:31-36.
- Predieri S, Gatti E. Effects of gamma radiation on plum (*Prunus salicina*Lindl.) "Shiro". Advances in Horicultural Science. 2001;14:215–223.
- 32. Shukla AK, Shukla BB. Fruit Breeding: Approaches and Achievements. International Book Distribution Co., CharbagRh, Lucknow. 2004.

- Loredana A, Nicasio T, Sergio B, Tonia S, Agatino R, Giuseppe R. Genetic improvement of Citrus fruits:new somatic hybrids from *Citrus sinensis* (L.) Osb. And *Citrus limon* (L.) Burm. F. Fd. Res. Intl. 2012;48:284–290.
- 34. Singh S, Rajam MV. Citrus biotechnology: Achievements, limitations and Future Directions. Physiology and Molecular Biology of Plants. 2009;15(1):871-884.
- 35. Pena L, Seguin A. Recent advances in the genetic transformation of trees. Trends Biotechnology. 2001;19(12):500–506
- Kumar GBS, Srinivas L, Ganapathi TR, Bapat VA. Hepatitis B surface antigen expression in transgenic tobacco (*Nicotiana tabacum*) plants using four different expression cassettes. Plant Cell, Tissue and Organ Culture. 2006; 84(3):315–323.
- Geldermann H. Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theoretical Applied Genetics. 1975; 46:319–330.
- LonghiS, Moretto M, Viola R, Velasco R, Costa F. Comprehensive QTL mapping survey dissects the complex fruit texture physiology in Apple (*Malus X domestica*borkh.). Journal of Experimental Botany. 2012;63(3):1107–1121.
- Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B,Sansavini S. Role of the genes MD-ACO1 and MD-ACS1 in ethylene production and shelf life of Apple (*Malus domestica* Borkh). Euphytica. 2005;141(1-2):181–190.
- Huan H, Yong Z, Chun M, Dong M, Yi W, Xin Z,Zhen H. Identification of markers linked to major gene loci involved in determination of fruit shape index of apples (*Malus domestica*). Euphytica. 2012; 185:185–193.
- 41. Davey MW, Kenis K, Keulemans J. Genetic control of fruit vitamin C contents. Plant Physiology. 2006;142(1):343– 351.

DOI:https://doi.org/10.1104/pp.106.083279

- 42. Pflieger S, Lefebvre V, Causse M.The candidate gene approach in plant genetics:a review. Molecular Breeding. 2001;7(4):275–291.
- 43. Nookaraju A, Upadhyaya CP, Pandey SK, Young KE, Hong SJ, Park SK, Park SW. Molecular approaches for enhancing

sweetness in fruits and vegetables. Scientia Horticulturae. 2010;127(1):1–15.

- Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in Apple Skin. Plant Physiology and Biochemistry. 2002; 40(11):955–962.
- 45. Li L, Ban ZJ, Li XH, Wu MY, Wang AL, Jiang YQ, JiangYH. Differential expression of anthocyanin biosynthetic genes and transcription factor PCMYB10 in Pears (*Pyrus communis* L.). PLoS ONE. 2012;7(9):48-56.
- Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (*Prunus avium* L.). PLOS ONE. 2015;10(3):133-141.
- 47. Zan-Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of *Litchi Chinensis*sonn. PLoS ONE. 2011;6(4):1-11.
- Palapol Y, Ketsa S, Lin-Wang K, Ferguson IB, Allan AC. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (*Garcinia mangostana* L.) fruit during ripening. Planta. 2009;229(6):1323– 1334.
- Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology. 2004; 134(2):824–837.
- Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E. Candidate genes and qtls for sugar and organic acid content in peach [*Prunus persica* (L.) Batsch]. Theoretical and Applied Genetics. 2002;105(1):145–159.
- 51. Antofie A, Lateur M, Oger R, Patocchi A, Durel, CE, Van de Weg WE. A new versatile database created for geneticists and breeders to link molecular and phenotypic data in perennial crops: The applebreed database. Bioinformatics. 2007;23(7):882–891.
- 52. Zhu C, Feng C, Li X, Xu C, Sun C, Chen K. Analysis of expressed sequence tags from Chinese bayberry fruit (*Myrica rubra*sieb.

and zucc.) at different ripening stages and their association with Fruit Quality Development. International Journal of Molecular Sciences. 2013;14(2):3110– 3123.

- Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, Talón M. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Molecular Biology. 2006;62(4-5):513– 527.
- 54. Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo F, Agustí J, Alos E, Andres F. The areas of flavor, health, color and ripening. BMC Genomics. 2008;9:351.
- 55. Dias JS, Ortiz R. Advances in transgenic vegetable and fruit breeding. Agricultural Sciences. 2014;05(14):1448–1467.
- Guo W, Duan Y, Olivares-Fuster O, Wu Z, Arias CR, Burns JK, Grosser JW. Protoplast transformation and regeneration of transgenic valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Reports. 2005;24(8):482–486.
- 57. Gonsalves D, Gonsalves C, Ferreira C, Fitch M. Transgenic virus-resistant papaya:From hope to reality in controlling papaya ringspot virus in Hawaii. APSnet Feature Articles. 1988;8-10.
- Franks T, He DG, Thomas MR. Regeneration of transgenic *Vitis vinifera* L. Sultana plants: genotypic and phenotypic analysis. Molecular Breeding. 1988;4:321– 333.
- Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D. Transgenic plums (*Prunus domestica* L.) express the plum pox virus coat protein gene. Plant Cell Reports. 1994;14(1):18– 22.
- 60. Richard H. GMO fruit crops. Extension Pecan & Pistachio Specialist; 2014. Available:https://mvd.iaea.org/
- 61. Murata M, Nishimura M, Murai N, Haruta M, Homma S, Itoh Y. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential. Bioscience, Biotechnology, and Biochemistry. 2001;65(2):383–388.
- Jiménez-Bermúdez Silvia, Redondo-Nevado José, Muñoz-Blanco Juan, Caballero José L, López-Aranda José M, Valpuesta V, Pliego-AlfaroF, Quesada MA, Mercado José A. Manipulation of

strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiology. 2002;128(2):751–759.

- de-Oliveira ML, Febres VJ, Costa MG, Moore GA, Otoni, WC. High-efficiency agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Reports. 2009; 28(3):387–395.
- 64. Fagoaga C, López C, de Mendoza AH, Moreno P, Navarro L, Flores R, Peña L. Post-transcriptional gene silencing of the p23 silencing suppressor of citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Biotechnology and Sustainable Agriculture. 2007;211– 213.
- 65. Fu XZ, Khan EU, Hu SS, Fan QJ, Liu JH. Overexpression of the betaine aldehyde dehydrogenase gene from atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (*Poncirus Trifoliata* L. Raf.). Environmental and Experimental Botany. 2011;74:106–113.
- 66. Chen G, Ye CM, Huang JC, Yu M, Li BJ. Cloning of the papaya ringspot virus (PRSV) replicase gene and generation of PRSV-resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Reports. 2001;20(3):272–277.
- Terakami S, Matsuta N, Yamamoto T, Sugaya S, Gemma H, Soejima J. Agrobacterium-mediated transformation of the dwarf pomegranate (punica granatum L. var. nana). Plant Cell Reports. 2007;26(8):1243–1251.
- Lee YK, Kim IJ. Modulation of fruit softening by antisense suppression of endo-β-1,4-glucanase in strawberry. Molecular Breeding. 2011;27(3):375–383.
- 69. Perez Α, Lin BH. Allshouse .1 Demographic profile of apple consumptionin the United States. Fruit and Nuts S&O/FTS. 2001:292:37-Tree 47.
- 70. Stockwin W. Boost stone fruit quality. Fruit Grower. 1996;13–16.
- 71. Giovannoni J. Molecular biology of fruit maturation and ripening. Annual Review

Plant Physiology, Plant Molecular Biology. 2001;52:725–49.

- Sun HH, Zhao YB, Li CM, Chen DM, Wang Y, Zhang XZ, Han ZH. Identification of markers linked to major gene loci involved in determination of fruit shape index of Apples (*Malus domestica*). Euphytica. 2011;185(2):185–193.
- 73. Bennett M, Leitch. Nuclear DNA amounts in angiosperms. Annals of Botany. 1995;76(2):113–176. Available:https://doi.org/10.1006/anbo.199 5.1085.
- 74. Breeding of fruits and plantation crops researchgate. (n.d.). Retrieved March 2, 2023, Available:https://www.researchgate.net/pu blication/361410582_Breeding_of_Fruits_a nd_Plantation_Crops
 75. Chapter D. Kripper C. Desser M. Sulliver
- Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA. QTL and candidate gene mapping for polyphenolic composition in Apple Fruit. BMC Plant Biology. 2012; 12(1):12. DOI:https://doi.org/10.1186/1471-2229-12-

12. DOI:https://doi.org/10.1186/1471-2229-12-

- Hopping ME. Flow cytometric analysis of Actinidia species. New Zealand Journal of Botany. 1994;32(1):85–93.
- 77. Morton JF. Fruits of warm climates. University of Miami, Florida USA. 1987;446-483. ISBN 0961018410.
- Motosugi H, Okudo K, Kataoka D, Naruo T. Comparison of growth characteristics between diploid and colchicine-induced tetraploid grape rootstocks. Engei Gakkai Zasshi. 2002; 71(3):335–341.
- 79. Silva SO, Souza Junior MT, Alves ÉJ, Silveira JRS, Lima MB. Banana breeding program at Embrapa. Crop Breeding and Applied Biotechnology. 2001;1(4):399– 436.
- Whitaker VM. Applications of molecular markers in strawberry. Journal of Berry Research. 2011;1(3):115–127.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/97844

^{© 2023} Kumar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.