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ABSTRACT 
 
Background: Optimizing the process conditions of the crude distillation unit is a main challenge for 
each refinery. Optimization increases profit by producing the required range of distillates at 
maximum yield and at minimum cost. To achieve an acceptable control of product quality an 
artificial neural network (ANN) can be used. ANNs are used for engineering purposes, such as 
pattern recognition, forecasting, and data compression. In the petroleum refinery industry, ANN has 
been used as controller in for the crude distillation unit. The aim of the current study was to                 
use ANN to optimize and achieve control of product quality of crude distillation unit of an oil   
refinery. 
Materials: The research was carried out using the following materials; The design flowchart and 
the operating data of the crude distillation unit of the New Port Harcourt refinery, Simulation 
software (HYSYS 2006.5) and Matlab for the ANN. 
Results: The ANN predicted the optimum operating conditions at which the atmospheric distillation 
unit (ADU) can operate with the least irreversibility and without changing the design and 
compromising the products quality. The corresponding exergy efficiency after optimization with 
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ANN for the input variable combinations was 70.6% which was a great improvement because the 
exergy efficiency increased as compared to the base case of 51.9%. 
Conclusion: Optimization using ANN, improved the efficiency of the ADU with the least 
irreversibility and without changing the design and compromising the products quality. 
 

 

Keywords: Atmospheric distillation unit; artificial neural network; exergy; optimization. 
 

1. INTRODUCTION 
 

Generally, distillation columns are the common 
separation units used in the chemical and 
refinery industry to achieve product separation 
and refining [1]. The crude oil distillation unit 
(CDU) fractionation column in the petroleum 
refinery industry separates the feed which is the 
crude oil into different products that is suitable for 
the different refinery processing units [2]. 
Currently, in other to improve fuel properties, 
quality of products and maximize the yield of the 
products, many CDU operates with different feed 
as compared to their original feed conditions in 
other to fulfil global market demand  and at the 
same time fulfilling environmental laws [2,3]. The 
atmospheric distillation unit (ADU) of the CDU, 
have different physical properties depending on 
the characteristics of the crude oil [4]. Apart from 
the different physical interactions that occur in 
this unit, the unit is also extremely energy 
consuming and the energy requirements are 
strictly linked to the needed separation into the 
different products [1]. Minimizing the energy 
requirements for specific product composition 
can be achieved by controlling a lot of variables 
in the unit [1]. 
 
Optimizing the process conditions of the crude 
distillation unit is a main challenge for each 
refinery. Optimization increases profit by 
producing the required range of distillates at 
maximum yield and at minimum cost. To achieve 
this goal, full and real-time monitoring and control 
of each incoming stream and outgoing products 
is an unavoidable requirement. Controlling 
distillation column starts by identifying controlled 
variable (product composition, column 
temperatures, column pressure, and accumulator 
levels) which must be retained at a specific value 
to satisfy column objectives, manipulated 
variables (reflux flow, coolant flow, heating 
medium flow, and product flows) are those that 
can be altered in order to sustain the controlled 
variables at their values, and load variables (feed 
flow rate and feed composition) are those 
variables that cause instabilities to the column 
[1]. Other disturbances are steam heater 
pressure, feed enthalpy, environmental 
conditions (rain, barometric pressure, and 

ambient temperature), and coolant temperature 
[1]. 
 
Identifying which manipulated variables that can 
be altered in other to sustain the controlled 
variable, Than et al. [5] has proposed a general 
guideline which include: Manipulate the stream 
that has the greatest influence on the associated 
controlled variable; Manipulate the smaller 
stream if two streams have the same effect on 
the controlled variable; Manipulate the stream 
that has the most nearly linear correlation with 
the controlled variable; Manipulate the stream 
that is least sensitive to ambient conditions; or 
Manipulate the stream least likely to cause 
interaction problems. 
 
In other to optimize production rate with the 
required product quality at low operating cost and 
at an optimized operating conditions of the 
operating variables, artificial neural network 
(ANN) has been proposed [1,2]. Neural networks 
are made up of a number of interconnected 
'nodes' which contain an 'activation function' and 
are typically organized in layers. Patterns are 
presented to the network via the 'input layer', 
which communicates to one or more 'hidden 
layers' where the actual processing is done via a 
system of weighted 'connections'. The hidden 
layers then link to an 'output layer' where the 
answer is output as shown in Fig. 1.  
 
ANN was defined by Robert Hecht-Nielsen as a 
computing system made up of a number of 
simple, highly interconnected processing 
elements, which process information by their 
dynamic state response to external inputs                        
[6].  
 
They are universal approximators, by capturing 
precisely associations or discovering regularities 
within a set of patterns; where the volume, 
number of variables or diversity of the data is 
very huge [6]. Neural network analysis often 
requires a large number of individual runs to 
determine the best solution. Once neural network 
is trained to attain a satisfactory level, it can be 
utilized as an analytical tool on other data without 
training runs in a forward propagation mode only 
[7]. 
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New inputs are presented to the input pattern 
where they filter into and are processed by the 
middle layers as though training were taking 
place, however, at this point the output is 
retained and no back-propagation occurs. The 
output of a forward propagation run is the 
predicted model for the data which can then be 
used for further analysis and interpretation [7], 
this is illustrated in Fig. 2. 
 

Applications of ANN in the chemical industry 
include; estimation of CO2 conversion in falling 
film reactor using artificial neural network where 
it was discovered that ANN model with one 
hidden layer and nine neurons in the hidden 
layer gives a very close estimation of the CO2 
conversion with high potential for absorption [8]. 
Also, ANN models was used to estimate 
contaminant composition in a xylene distillation 
column in a refinery in Japan [9]. 
 

Several studies have used ANN in the design of 
CDU [3,10,11], however, ANN use has not been 

very popular in the optimization of operating 
variables of CDU in the existing refineries. It is 
this void in the literature that the present                     
study hopes to fill by studying the use of ANN in 
the optimization of CDU of an existing                      
refinery. 
 
1.1 Process Description 
 
This research focused on the atmospheric 
distillation unit of crude distillation unit of the New 
Port Harcourt Refinery. The crude distillation unit 
is made up of the pre-flash unit which increases 
the temperature of the crude oil so as to separate 
into different fractions mainly liquid and vapour 
phase after it has passed through cleaning 
process and desalination process. The vapour 
phase is sent straight to the refluxed absorber 
while the liquid phase is sent to heater then to a 
furnace before entering the refluxed absorber 
which then separates it into different products 
Fig. 3. 

 

 
 

Fig. 1. A simple neural network showing nodes [6] 



Fig

Fig. 3. Schematic diagram 

Braimah; JENRR, 5(4): 26-38, 2020; Article no.JENRR.58561

 
29 

 

 
Fig. 2. A single node example [6] 

 

 
diagram of the CDU for New Port Harcourt refinery
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1.2 Exergy 
 
Exergy can be defined as the maximum amount 
of work which can be obtained as a process 
which is changed reversibly from the given state 
to a state of equilibrium with the environment, or 
the maximum work that can be obtained from 
any quantity of energy [12]. Exergy is divided into 
physical and chemical components [13]. 
 

1.3 Physical Exergy 
 
The physical exergy is the maximum useful work 
obtained by passing the unit of mass of a 
substance of the generic state (T, P) to the 
environmental (To, Po) state through purely 
physical processes [14-16]. The reference 
system is defined with a reference temperature 
of 298.15K and a reference pressure of 101.325 
kPa. Thus, if kinetic and potential energy are not 
taken into consideration, the specific physical 
exergy can be determined with the enthalpy and 
entropy values of the stream (characterized by its 
composition), both at the generic state and the 
environmental state temperatures and pressure. 
The Equation 3 can be used to illustrate how to 
calculate physical exergy assuming steady-state 
steady flow conditions and assuming both 
potential and kinetic energy are not contributing 
to the system. 
 

Ex�� = Ex� − Ex� = (H� − H�) − T�(S� − S�) =

∆Ex��� = ∆H − T�∆S             (1) 
 

1.4 Chemical Exergy 
 

Chemical exergy is equal to the maximum 
amount of work obtainable when the substance 
under consideration is brought form the 
environmental state to the reference state by 
processes involving heat transfer and exchange 

of substance only with the environment [17,18]. 
For a crude stream, the chemical exergy can be 
calculated from the standard molar chemical 
exergies of all identified components and 
pseudo-components as: 
 

∆Ex�� = ∑ x� x��� + ∑ x� x� + RT� ∑ x�lnx�         (2) 
 
Where, 
 

 x��� is the chemical exergy for pseudo-

components 
 x� is the chemical exergy component i 
x� is the mole fraction of component i 
 

1.5 Exergy Efficiency 
 

The exergy efficiency for each process unit was 
calculated using Equation 3. 
 

η =
������ ��� �� ��������

������ �� �� ����
           (3) 

 

Irreversibility for each process unit was 
calculated using Equation 4. 
 

I= ∑ Ex�� − ∑ Ex���            (4) 
 

2. METHODOLOGY 
 

The software (HYSYS 2006.5) was used for 
modeling and simulation of the crude distillation 
unit. The components that were chosen are from 
the refinery data includes water, methane, 
ethane, propane, i-butane, n-butane, i-pentane 
and n-pentane. The data from the simulation was 
exported to Microsoft Excel for exergy analysis. 
Parametric studies were performed by changing 
the operating variables (liquid inlet temperature, 
liquid inlet pressure, condenser temperature, 
condenser pressure, pump around flow rates 1, 2 
and 3) to determine their effect on energy and

 
Table 1. Bulk crude data 

 
Bulk crude properties Values 
API GRAVITY 
REID VAPOR PRESSURE 38ºCKaf/cm2 
BS and W% VOL 
POUR POINT ºC 
ASH CONTENT %wt 
CONRANDSON CARBON RESIDUE %wt 
SALT CONTENT PTB 
KINEMATIC VISCOSITY at 38ºC 
WATER CONTENT %VOL 
NICKEL ppm 
LEAD ppm 

34.87 
0.3 
0.1 
< 0 
0.00278 
1 
1.04 
3.66 
<0.05 
0.022 
0.027 
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exergy efficiencies. Data from the three most 
sensitive operating variables (liquid inlet 
temperature, liquid inlet pressure and condenser 
pressure) were chosen for optimization. 
 
The fluid package chosen for this process was 
Peng-Robison. The crude oil was characterized 
using experimental assay which include API 
gravity, bulk crude properties, light end volume 
percent, TBP distillation and ASTM distillation. 
The assay data was fed into the data bank of 
HYSYS, the parameters are presented in Table 
1.  
 
The result of the characterization is a set of 
pseudo-components and a detailed chemical 
composition of the identified light end component 
and this is presented in Table 2. 

 
Table 2. Light ends data 

 
Component Percentage (%) 
Propane 
Isobutane 
n-butane 
Isopentane 
n-pentane 

0.17 
0.55 
1.02 
0.33 
0.14 

 
After the assay was calculated, the oil was cut 
and blended to produce hypothetical components 
that could be used in the simulation. This was 
done using the cut/blend tab on the oil manager 
environment. The cut was done using auto cut 
option which generates the hypothetical 
components based on the initial boiling point and 
the temperature ranges available. Once this was 

done, the oil was installed and made ready for 
use in simulation. The process stream 
parameters used in the simulation are as shown 
in Table 3. 
 
3. RESULTS AND DISCUSSION 
 
The Simulation diagram of the crude distillation 
unit is shown in Fig. 4 and the simulation 
diagram of the atmospheric distillation unit is 
shown in Fig. 5. 
 
This is the main environment where the crude 
distillation unit was modeled using the operating 
and design data from the refinery. This was done 
to give a prototype of the actual refinery process. 
The simulation environment was entered and the 
raw crude temperature, pressure and mass flow 
rate values were imputed. After converging, the 
simulation flow diagram of the CDU is as shown 
in Fig. 4, while the simulation diagram of the 
ADU is as shown in Fig. 5. 
 
Table 4 shows the summarized state parameters 
from the simulation and the streams that were 
considered in the analysis. Equations 1 and 2 
were used to calculate exergy analysis, equation 
3 was used in calculating exergy efficiency while 
equation 4 was used to calculate irreversibility. 
The exergy efficiency result of the ADU was 
51.9%. Every process has an element of 
irreversibility that makes it deviate from 
theoretical ideal performance and this is why 
exergy analysis of a process gives a better 
performance of a process than energy analysis 
[19,20]. 

 
Table 3. Process stream data 

 
Streams Temperature [K] Pressure [kPa] Molar flow [kgmole/h] 
Raw Crude 396.15 2210 4846.267 
Hot Raw Crude 475.15 493.4323 4846.267 
Preflash Vapour 475.15 493.4323 270.0916 
Preflash liquid 475.15 493.4323 4576.176 
Pumped Liquid 475.7579 1915.55 4576.176 
Heated liquid 2 510.15 1719.4 4576.176 
Liquid IN 626.15 395.5 4576.176 
Steam 1 530.15 210 310.8503 
Steam 2 581.15 202.33 58.28444 
Steam 3 599.15 210.17 367.4695 
Off Gas 334.4193 121 6.97E-03 
Naphtha 334.4193 121 2265.652 
Waste water 334.4193 121 721.9591 
Residue 666.4272 210 768.2184 
Kerosene 518.8966 179.8404 722.6215 
LDO 560.821 191.0426 957.7515 
HDO 561.3861 199.6596 146.6618 
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Fig. 4. Simulation diagram of the CDU for New Port Harcourt refinery [19] 
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Fig. 5. Simulation diagram of the atmospheric distillation unit [19] 
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Table 4. State parameters from the simulation [19] 
 

Streams 
 

Temperature 
[K] 

Pressure 
[kPa] 

Molar flow 
[kgmole/h] 

Molar enthalpy 
[kJ/kgmole] 

Molar entropy 
[kJ/kgmole-K] 

Physical 
Exergy (MW) 

Total exergy 
(MW) 

Enthalpy 
(MW) 

Raw Crude 396.15 2210 4846.267 -346137 254.2901 7.352417 7.3875456 48.35482 
Hot Raw Crude 475.15 493.4323 4846.267 -311267 335.2233 21.8103 21.845424 95.29649 
Preflash Vapour 475.15 493.4323 270.0916 -130255 183.9727 1.063672 1.289169 4.400336 
Preflash liquid 475.15 493.4323 4576.176 -321951 344.1503 20.58496 20.60887 90.90949 
Pumped Liquid 475.7579 1915.55 4576.176 -321467 344.3255 21.13343 21.157339 91.52435 
Heated liquid 2 510.15 1719.4 4576.176 -304836 378.1802 29.44346 29.467369 112.6652 
Liquid IN 626.15 395.5 4576.176 -220477 529.3757 79.37454 79.398448 219.8988 
Steam 1 530.15 210 310.8503 -233896 187.3189 1.078273 1.0809121 4.518121 
Steam 2 581.15 202.33 58.28444 -232048 190.9534 0.214548 0.2171865 0.877063 
Steam 3 599.15 210.17 367.4695 -231392 191.7497 1.395352 1.3979904 5.596587 
Off Gas 334.4193 121 6.97E-03 -148192 158.3043 2.71E-06 0.4290047 3.43E-05 
Naphtha 334.4193 121 2265.652 -207746 51.03373 0.261046 0.3362186 4.534764 
Waste water 334.4193 121 721.9591 -283398 62.635 0.031969 0.0346081 0.565984 
Residue 666.4272 210 768.2184 -438986 1117.176 25.89994 25.899937 69.63923 
Kerosene 518.8966 179.8404 722.6215 -269029 309.5246 4.49242 4.4924584 16.88083 
LDO 560.821 191.0426 957.7515 -328185 496.6708 10.62238 10.622379 35.42203 
HDO 561.3861 199.6596 146.6618 -418314 672.9251 2.044832 2.0448267 6.82418 
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3.1 Artificial Neural Network (ANN) 
Results 

 
The ANN was used to determine the optimum 
operating parameters that were obtained from 
the simulation results in other to get highest 
exergy efficiency without compromising the 
products qualities. 
 

3.2 Artificial Neural Network Model 
 
The ANN was trained to represent the knowledge 
data base of the ADU operating system using the 
ADU simulated runs from HYSYS. 2840 data set 
as used in training the ADU. 15% of the data set 
was used to test the trained model. The relative 
error of the trained model and tested data was 
below 1x10

-4
 which shows that the ANN model 

was quite reliable in describing the input-output 

relationship of the ADU. The ANN model was 
able to adequately represent the complex 
process of the ADU due to non-linear 
characteristics of the ANN structure. Fig. 6 
illustrate the best linear regression fit of the 
training, testing, and validation and their 
combination for output and the target data of the 
ADU which is equals to 1. Fig. 7 presents the 
validation performance of the ADU which is 
0.37143. 

 
All of this showed that the trained model for the 
refinery predict accurately and it determines the 
outcome of changes in any of the input 
parameters. It also correlates the relationship 
between the input and output variables of the 
refinery. It also predicts and point out the effects 
of the operating variables on the products as well 
as the efficiency. 

 

 
 

Fig. 6. Correlation between the predicted values and simulated values [19] 
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Fig. 7. Validation performance [19] 
 

Table 5. Operating variables with minimum and maximum values before optimization 
 
 Minimum operating value Maximum operating value 
Liquid inlet temperature 586.1 ºK 706.1 ºK 
Liquid inlet pressure 345.5 kPa 595.5 kPa 
Condenser temperature 304.4 ºK 394.4 ºK 
Condenser pressure 115 kPa 133 kPa 
Pump-around flow rate 1 520.6 m3/h 920.6 m3/h 
Pump-around flow rate 2 607.9 m3/h 1007.9 m3/h 
Pump-around flow rate 3 278.8 m

3
/h 678.8 m

3
/h 

 
3.3 Optimum Operating Conditions 
 

The optimization problem which consists of an 
objective function (exergy efficiency of 51.9% 
which was calculated with Equation 3) was 
maximized with constraints from design and 
operating conditions. The operating variables 
liquid inlet temperature, liquid inlet pressure, 
condenser temperature, condenser pressure, 
pump-around flow rate 1, 2 and 3 with maximum 
and minimum values within which the simulation 
of the refinery will converge on the HYSYS 
software were as shown in Table 5. 
 

The knowledge database of the neural network 
model was used in the optimization procedures. 
About 96 generations were made and the output 
with the least error was returned as optimum. 

The optimum operating variables derived after 
ANN optimization were liquid inlet temperature, 
liquid inlet pressure, condenser temperature, 
condenser pressure, pump-around flow rate 1, 2 
and 3 were as shown in Table 6. 

 
Table 6. Operating variables values after 

optimization with ANN 

 
 Operating value 
Liquid inlet temperature 586.1 ºK 
Liquid inlet pressure 410.0 kPa 
Condenser temperature 332.6 ºK 
Condenser pressure 127.5 kPa 
Pump-around flow rate 1 696.3 m

3
/h 

Pump-around flow rate 2 799.0 m
3
/h 

Pump-around flow rate 3 585.8 m3/h 
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The corresponding exergy efficiency for these 
combinations was 70.6%. This was a great 
improvement because the exergy efficiency 
increased as compared to the base case of 
51.9%. The ANN predicted the optimum 
operating conditions at which the ADU can 
operate with the least irreversibility and without 
changing the design and compromising the 
products quality. This can assist the operators in 
the decision making of running the column 
efficiently and thus reduce the environmental 
implications of unutilized energy. 
 

4. CONCLUSION 
 
The corresponding exergy efficiency for the 
combinations using ANN as optimization tool was 
70.6% as compared to the base case of 51.9%. 
Optimization using ANN, improved the efficiency 
of the ADU with the least irreversibility and 
without changing the design and compromising 
the products quality. 
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