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1 Introduction

In this paper, we apply the Sumudu transform to fractional integrals, derivatives, and use it to solve initial value
fractional differential equations. In [1],[2],[3],[4],[5], [6], the authors studied many properties of the Sumudu
transform in light of which they developed efficient and straightforward methodologies for treating ordinary [7]
and partial differential equations. There is evident interest in further studying this transform, and applying
it to various mathematical and physical sciences problems[8]. The Sumudu transform can be used to solve
many types of difference and differential equations problems without resorting to a new frequency domain.The
Sumudu transform was first defined by Watugala in 1993, which is used to solve engineering control problems
[9], [10], [11]. The Weerakoon applied Sumudu transform to solve fractional differential equations [12],[13]. The
fundamental properties of Sumudu transform are also used to solve the fractional differential equations [14],[15].
In this paper,we can find an explicit solution of the fractional diffusion-wave equations with Caputo fractional
derivative by using the Sumudu transform method.

The fractional calculus is a generalization of differentiations and integrations to non-integers orders. We deal
with the multiterm time-fractional partial differential equation involving the Caputo operator associated with the
Laplace operator, which includes the momentum equations of the fractional Oldroyd-B fluid and the fractional
Burgers fluid under some suitable conditions. By using several properties of multivariate Mittag–Leffler functions,
the well-posedness and the long-time behavior for the Dirichlet problem are obtained. In addition, the uniqueness
in inverse problem of determining orders of time-fractional derivatives of the equation is proved. There are many
problems in physics and engineering formulated in terms of fractional differential and integral equations, such
as diffusion, signal processing, electrochemistry, viscosity etc [18],[19]. The exact and approximate solutions
of fractional differential equations are investigated by many authors using different methods. The Sumudu
transform method is applied to obtain the solution of ordinary differential equations [20]. The Sumudu transform
was first defined by Watugala in 1993, which is used to solve engineering control problems[9]. The Weerakoon
applied Sumudu transform to solve fractional differential equations [12]. The fundamental properties of Sumudu
transform are also used to solve the fractional differential equations [1],[14],[15] [16] [17]. In this paper, we can
find an explicit solution of the fractional diffusion-wave equations with Caputo fractional derivative by using the
Sumudu transform method.

2 Preliminary Results, Notations and Terminology

In this section we give definitions and some basic results which are used in the paper.
Consider the general linear fractional partial differential equation

Definition 2.1.

(Dα
o+,tu)(x, t) =

n∑
j=1

ajD
δj
xju(x, t) +

n∑
j=1

bjD
βj
xju(x, t) +

n∑
j=1

cjD
γj
xju(x, t) + du(x, t); (2.1)

n− 1 < α ≤ n, 2 < δj ≤ 3, 1 < βj ≤ 2, 0 < γj ≤ 1, n ∈ N
where x = (x1, x2, . . . , xn) ∈ Rn, aj , bjcj , d are non-negative real constants, o ≤ t < T

The fractional diffusion equation is

(Do+,tu)(x, t) =

n∑
j=1

bjD
βj
xju(x, t) (2.2)

n− 1 < α ≤ n, 1 < βj ≤ 2, n ∈ N

Definition 2.2. [21]The Riemann-Liouville fractional integral of order α, α > 0 of a function u(x, t) is denoted
by Iα0+,tu(x, t) and defined as

Iα0+,tu(x, t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(x, τ)dτ, t > 0, α > 0 (2.3)

69



Bodkhe; Asian J. Math. Comp. Res., vol. 31, no. 2, pp. 68-79, 2024 ; Article no.AJOMCOR.12004

Definition 2.3. [21]The Caputo fractional derivative of order α, α > 0 of a function u(x, t) is denoted by
cDα

0+,tu(x, t) and defined as

cDα
0+,t, u(x, t) =

1

Γ(n− α)

∫ t

0

∂n

∂tn
u(x, τ)

(t− τ)α−n+1
dτ, (x ∈ R, t > 0, n− 1 < α < n, n ∈ N) (2.4)

2.1 Mittag-Leffler Function

The Mittag-Leffler function was introduced by M. G. Mittag-Leffler and is denoted by Eα(z) [22]. It is one
parameter generalization of exponential function and is defined as,

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, Re(α) > 0. (2.5)

A two-parameter Mittag-Leffler function introduced by R. P. Agarwal [3], denoted by Eα, β(z), is defined as,

Eα, β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (2.6)

2.2 Wright Function

The Wright function introduced by Wright, denoted by φ(α, β; z) [21] is a generalization of Mittag-Leffler function
and is defined as,

φ(α, β; z) =0Ψ1

 −−−−−−
∣∣∣∣∣z

(β, α)

 =

∞∑
k=0

1

Γ(αk + β)

zk

k!
(2.7)

The more general Wright function pΨq(z) z, al, bj ∈ C and αl, βj ∈ R (l = 1, 2, . . . , p ; j = 1, 2, . . . , q) is
defined by the series

pΨq(z) = 1Ψ1

[(al, αl)1,p

(bl, βl)1,q

∣∣∣∣z] =

∞∑
k=0

Πp
l=1Γ(al + αlk)

Πq
j=1Γ(bj + βjk)

· z
k

k!
(2.8)

The Wright function with p = q = 1 of the form

1Ψ1

[(n+1, n)

(αn+β, α)

∣∣∣∣z] =

∞∑
j=0

Γ(n+ j + 1)

Γ(αn+ β + αj)
· z

j

j!
=

(
∂

∂z

)n
Eα, β(z). (2.9)

Consider a set A defined as [9]

A = {f(t)| ∃M, τ1, τ2 > 0, |f(t)| ≤Me
|t|
τj if t ∈ (−1)j × [0, ∞)}.

Definition 2.4. For all real t ≥ 0, the Sumudu transform of a function ∈ A, with respect to t denoted by
(Stu)(x, p), is defined as

(Stu)(x, p) =

∫ ∞
0

u(x, t)peptdt, u ∈ (−τ1, τ2), where

(
p = − 1

u

)
(x ∈ R; p > 0) (2.10)

and the inverse Sumidu transform with respect to p is

(S−1
p u)(x, p) =

1

2π

∫ γ+i∞

γ−i∞
eptu(x, p)dp, (x ∈ R; γ = <(p) > σu). (2.11)

[8]The Sumudu transform of the Caputo fractional derivative of order α, α > 0 of a function u(x, p) is denoted
by (SctD

α
0+,tu)(x, p) and defined as

(SctD
α
0+,tu)(x, p) = pα(Su)(x, p)−

l−1∑
k=0

pα−j−1

(
∂ku(x, 0)

∂tk

)
(2.12)

with x ∈ R, l − 1 < α ≤ l and n ∈ N.
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Definition 2.5. [21]The Fourier transform with respect to x ∈ R denoted by (Fxu)(σ, t) is defined as

(Fxu)(σ, t) =

∫ ∞
−∞

u(x, t)eixσdx, (σ ∈ R; t > 0) (2.13)

and the inverse of the Fourier transform of u(x, t) with respect to σ is

(F−1
σ u)(x, t) =

1

2π

∫ ∞
−∞

u(σ, t)e−iσxdσ, (σ ∈ R; t > 0) (2.14)

the relation with respect to x ∈ R

F [Dkφ(t)](x) = (−ix)k(Fφ) (k ∈ N) (2.15)

and the Fourier convolution operator of two functions f and g is defined by the integral

f ∗ g = (f ∗ g)(x) =

∫ ∞
∞

f(x− t)g(t)dt, (x ∈ R) (2.16)

3 Solution of Cauchy Type Problems for Fractional Diffusion-
Wave Equations With Caputo derivatie

In this section we apply the Sumudu transform method to the fractional diffusion-wave equations with Caputo
fractional derivative. we can derive the explicit solution to the fractional diffusion-wave equations of the form
In this section we consider a fractional differential equation of the form

(cDα
0+,tu)(x, t) = λ(4xu)(x, t) (x ∈ R; t > 0; 0 < α < 2;λ > 0) (3.1)

involving the partial Caputo fractional derivative (cDα
0+,tu)(x, t) with respect to t > 0,and the Sumudu (4xu)(x, t)

with respect to x ∈ Rn given by

(4xu)(x, t) =
∂2u(x, t)

∂x1
2

+ . . .+
∂2u(x, t)

∂xn2
(n ∈ N) (3.2)

In definition Caputo fractional derivative (2.4) of order α > 0 and l− 1 < α ≤ l(l ∈ N) is defined in terms of the
Riemann-Liouville partial fractional derivative eqrefcdrl by

(cDα
0+,tu)(x, t) =

(
Dα

0+,t

[
u(x, τ)−

l−1∑
k=0

∂ku(x, 0)

∂tk
τk

k!

])
(x, t) (3.3)

When, for any fixed x ∈ R, u(x, t) ∈ Cl(R+) as a function of t > 0, then (cDα
0+,tu)(x, t) has the representation

(2.4). In this section we apply the Fourier and Sumudu transform to obtain an explicit solution to the equation
(3.1) with Cauchy initial conditions

∂ku(x, 0)

∂tk
= fk(x) . (x ∈ R; k = 0 for 0 < α ≤ 1; k = 1 for 1 < α < 2). (3.4)

∂0u(x, 0)

∂t0
= u(x, 0) (3.5)

Example 3.1. Solve the following partial differential equation of order α, 0 < α < 2

(cDα
0+,tu)(x, t) = λ2 ∂

2u(x, t)

∂x2
(x ∈ R; t > 0; 0 < α < 2;λ > 0). (3.6)

∂ku(x, 0)

∂tk
= fk(x) . (x ∈ R; k = 0 for 0 < α ≤ 1; k = 1 for 1 < α < 2). (3.7)
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Applying the Sumudu transform (2.10) to equation (3.6) using the initial condition (3.7) with respect t

S[(cDα
0+,tu)(x, p)] = λ2

(
∂2

∂x2
Stu

)
(x, p) (l = 1, 2) (3.8)

Using (3.13) with x ∈ R, l − 1 < α ≤ l and n ∈ N. If l = 1 and l = 2 in respective cases 0 < α ≤ 1 and
1 < α < 2,and the initial conditions in (3.7), we have

pα(Stu)(x, p) =

l−1∑
k=0

pα−k−1fk(x) + λ2

(
∂k

∂xk

)
(l = 1, 2) (3.9)

Now, applying the Fourier transform (2.13) and using the formula (2.15) with k = 2, we have(
Fx[

∂2u(x, t)

∂x2
]

)
(σ, t) = −|σ|2(Fxu)(σ, t), (3.10)

By applying Fourier transform on equation (3.9) and using equation (3.10), we obtain

pα(FxStu)(σ, p) =

l−1∑
k=0

pα−k−1(Fxfk)(σ)− λ2|σ|2(FxStu)(σ, p)

(FxStu)(σ, p) =

l1∑
k=0

pα−k−1

pα + λ2|σ|2 (Fxfk)(σ), , (σ ∈ R, t > 0, l = 1, 2). (3.11)

Now, we obtain the explicit solution u(x, t) by using the inverse Fourier transform (2.14) with respect to σ and
the inverse Sumudu transform (2.11) with respect to p.

(Fxe
−c|x|)(σ) =

2c

c2 + |σ|2 (σ ∈ R; c > 0)

and

(Fe−
|x|
λ
p
α
2 ) =

2λp
α
2

pα + λ2|σ|2
From these equations, we have(

Fx
[ 1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2
])

=
pα−k−1

pα + λ2|σ|2 (σ) (k = 0, 1)

Hence equation (3.11) becomes

(FxStu)(σ, p) =

(
Fx
[ 1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2
])

(σ)(Fxfk)(σ) (l = 1, 2).

By using the Fourier transform convolution property, we have

(FxStu)(σ, p) =

(
Fx
[ 1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2 ∗ xfk

])
(σ) (l = 1, 2).

Now applying the inverse Fourier transform (2.14), we obtain

(Stu)(x, p) =
1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2 ∗ xfk (l = 1, 2). (3.12)

When 0 < α < 2, then the function p
α
2
−k−1e− |x|

λ
p
α
2 (k = 0, 1) are expressed through sumudu transform of the

Wright function φ(−α
2
, b; z) as follows.(

St

[
t
α
2
−kφ(−α

2
; k + 1− α

2
;−|x|

λ
t−

α
2 )

])
(p) = p

α
2
−k−1e−

|x|
λ
p
α
2 for(k = 0, 1) (3.13)

Applying the inverse Sumudu transform to (2.11) and using (3.13), we can obtain the solution.

u(x, t) =
1

2λ
t
α
2
−kφ(−α

2
; k + 1− α

2
;−|x|

λ
t−

α
2 ) for(k = 0, 1)
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Theorem 3.1. If 0 < α < 2 and λ > 0, then the Cauchy type problem (3.6) and (3.7) is solvable and its solution
is given by

u(x, t) =

l∑
k=1

∫ ∞
−∞

Gαk (x− τ, t)fk(τ)dτ (3.14)

(l = 1 for 0 < α ≤ 1; l = 2 for 1 < α < 2)

where

Gαk (x, t) =
1

2λ
tk−

α
2 φ

(
− α

2
; k + 1− α

2
;−|x|

λ
t−

α
2

)
for (k = 0, 1)

provided that integral in the right-hand side of (3.14) are convergent.

Proof: Applying the Sumudu transform (2.10) to equation (3.6) using the initial condition (3.7) with respect t

S[(cDα
0+,tu)(x, p)] = λ2

(
∂2

∂x2
Stu

)
(x, p) (l = 1, 2) (3.15)

Using (3.13) with x ∈ R, l−1 < α ≤ l and n ∈ N. If l = 1 and l = 2 in respective cases 0 < α ≤ 1 and 1 < α < 2,
and the initial conditions in (3.7), we have

pα(Stu)(x, p) =

l−1∑
k=0

pα−k−1fk(x) + λ2

(
∂k

∂xk

)
(l = 1, 2) (3.16)

Now, applying the Fourier transform (2.13) and using the formula (2.15) with k = 2, we have(
Fx[

∂2u(x, t)

∂x2
]

)
(σ, t) = −|σ|2(Fxu)(σ, t), (3.17)

By applying Fourier transform on equation (2.13) and using equation (3.17), we obtain

pα(FxStu)(σ, p) =

l−1∑
k=0

pα−k−1(Fxfk)(σ)− λ2|σ|2(FxStu)(σ, p)

(FxStu)(σ, p) =

l1∑
k=0

pα−k−1

pα + λ2|σ|2 (Fxfk)(σ), (σ ∈ R, t > 0, l = 1, 2). (3.18)

Now, we obtain the explicit solution u(x, t) by using the inverse Fourier transform (2.14) with respect to σ and
the inverse Sumudu transform (2.11) with respect to p.

(Fxe
−c|x|)(σ) =

2c

c2 + |σ|2 (σ ∈ R; c > 0)

and

(Fe−
|x|
λ
p
α
2 ) =

2λp
α
2

pα + λ2|σ|2

From these equations, we have(
Fx
[ 1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2
])

=
pα−k−1

pα + λ2|σ|2 (σ) (k = 0, 1)

Hence, equation (3.18) becomes

(FxStu)(σ, p) =

(
Fx
[ 1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2
])

(σ)(Fxfk)(σ) (l = 1, 2).
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By using the Fourier transform convolution property (2.16) we have

(FxStu)(σ, p) =

(
Fx
[ 1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2 ∗ xfk

])
(σ) (l = 1, 2).

Now applying the inverse Fourier transform (2.14), we obtain

(Stu)(x, p) =
1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2 ∗ xfk (l = 1, 2). (3.19)

u(x, t) =

l∑
k=1

∫ ∞
−∞

Gαk (x− τ, t)fk(τ)dτ

(l = 1 for 0 < α ≤ 1; l = 2 for 1 < α < 2)

where Gα(x, t) is the green function can be written as

Gα(x, t) =
1

π

∫ ∞
−∞

l−1∑
k=0

1

2λ
p
α
2
−k−1e−

|x|
λ
p
α
2 xfk(x)dp (l = 1, 2). (3.20)

When 0 < α < 2, then the function p
α
2
−k−1e− |x|

λ
p
α
2 (k = 0, 1) are expressed through sumudu transform of the

Wright function φ(−α
2
, b; z) as follows.(

St

[
t
α
2
−kφ(−α

2
; k + 1− α

2
;−|x|

λ
t−

α
2 )

])
(p) = p

α
2
−k−1e−

|x|
λ
p
α
2 for(k = 0, 1) (3.21)

Applying the inverse Sumudu transform to (3.19) and using (3.21), we can obtain the solutin.

u(x, t) =
1

2λ
t
α
2
−kφ(−α

2
; k + 1− α

2
;−|x|

λ
t−

α
2 ) for (k = 0, 1)

Corollary 3.1. If 0 < α < 1 and λ > 0, then the Cauchy problem

(cDα
0+,tu)(x, t) = λ2 ∂

2u(x, t)

∂x2
(x ∈ R; t > 0)

u(x, 0) = f(x) (3.22)

is solvable, and its solution has the form

u(x, t) =

∫ ∞
−∞

Gα1 (x− τ, t)f1(τ)dτ (3.23)

where

Gα1 (x, t) =
1

2λ
t−

α
2 φ

(
− α

2
, 1− α

2
;−|x|

λ
t−

α
2

)
(3.24)

provided that the integral in the right-hand side of (3.23) is convergent.

Corollary 3.2. If 0 < α < 2 and λ > 0, then the Cauchy problem

(cDα
0+,tu)(x, t) = λ2 ∂

2u(x, t)

∂x2
, (x ∈ R; t > 0) (3.25)

u(x, 0) = f0(x)

∂u(x, 0)

∂t
= f1(x) (x ∈ R) (3.26)
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is solvable, and its solution has the form

u(x, t) =

∫ ∞
−∞

Gα1 (x− τ, t)f0(τ)dτ +

∫ ∞
−∞

Gα2 (x− τ, t)f1(τ)dτ (3.27)

where

Gα1 (x, t) =
1

2λ
t−

α
2 φ

(
− α

2
, 1− α

2
;−|x|

λ
t−

α
2

)
(3.28)

and

Gα2 (x, t) =
1

2λ
t1−

α
2 φ

(
− α

2
, 2− α

2
;−|x|

λ
t−

α
2

)
(3.29)

provided that the integral in the right-hand side of (3.27) is convergent.

Example 3.2. Solve the following Cauchy problem with α = 1
2

(cD
1
2
0+,tu)(x, t) = λ2 ∂

2u(x, t)

∂x2
(x ∈ R; t > 0)

u(x, 0) = f(x) (3.30)

is solvable, and its solution has the form

u(x, t) =

∫ ∞
−∞

G
1
2
1 (x− τ, t)f1(τ)dτ (3.31)

where

G
1
2
1 (x, t) =

1

2λ
t−

1
4 φ

(
− 1

4
,

3

4
;−|x|

λ
t−

1
4

)
(3.32)

Applying the Sumudu transform (2.10) to equation (3.30) and using the initial condition with respect t

S[(cD
1
2
0+,tu)(x, p)] = λ2

(
∂2

∂x2
Stu

)
(x, p) (l = 1) (3.33)

Using (2.12) with x ∈ R, l−1 < α ≤ l and n ∈ N. If l = 1 in respective cases 0 < α ≤ 1 and the initial conditions
in (3.30), we have

p
1
2 (Stu)(x, p) = p−

1
2 f0(x) + λ2

(
∂k

∂xk

)
(l = 1) (3.34)

Now, applying the Fourier transform (2.13)to equation (3.30) and using the formula (2.15) with k = 2, we have(
Fx[

∂2u(x, t)

∂x2
]

)
(σ, t) = −|σ|2(Fxu)(σ, t) (3.35)

By applying Fourier transform on equation(3.34) and using equation(3.35), we obtain

p
1
2 (FxStu)(σ, p) = p−

1
2 f0(x)(σ)− λ2|σ|2(FxStu)(σ, p), (σ ∈ R, t > 0, l = 1, 2)

(FxStu)(σ, p) =
p−

1
2 f0(x)

p
1
2 + λ2|σ|2

(Fxfk)(σ), (σ ∈ R, t > 0, l = 1). (3.36)

The Fourier transform are

(Fxe
−c|x|)(σ) =

2c

c2 + |σ|2 (σ ∈ R; c > 0)

and

(Fe−
|x|
λ
p

1
4 ) =

2λp
1
4

p
1
2 + λ2|σ|2
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Hence equation (3.36) becomes

(FxStu)(σ, p) =

(
Fx[

1

2λ
p−

3

4
e−
|x|
λ p

1
4 ]

)
(σ)(Fxf0)(σ) (l = 1)

By the convolution property of Fourier transform (2.16) we have

(FxStu)(σ, p) =

(
Fx[

1

2λ
p−

3

4
e−
|x|
λ p

1
4 xf0]

)
(σ) (l = 1)

Now applying the inverse Fourier transform, we obtain

(Stu)(σ, p) =

(
[

1

2λ
p−

3

4
e−
|x|
λ p

1
4 xf0]

)
(σ) (l = 1) (3.37)

Thus, we get

u(x, t) =

∫ ∞
−∞

G
1
2
1 (x− τ, t)f1(τ)dτ

where G
1
2
1 (x, t) is the Green function can be written as

G
1
2
1 (x, t) =

1

π

∫ ∞
−∞

1

2λ
p−

1
4 e−
|x|
λ
p

1
4 ∗ xf(x)dp (3.38)

To obtain the solution of G
1
2
1 (x, t), when 0 < α ≤ 1 then the function p− 3

4
e−
|x|
λ p

1
4 can be expressed through

Sumudu transform of the Wright function φ(− 1
4
, b; z) as follows(

St[t
− 1

4
φ(−1

4
,

3

4
;−|x|

λ
p−

1

4
)]

)
(p) = p−

3

4
e−
|x|
λ p

1
4 (k = 0) (3.39)

Applying the inverse Sumudu transform to (3.37) and using (3.38), we get where

G
1
2
1 (x, t) =

1

2λ
t−

1
4 φ

(
− 1

4
;

3

4
;−|x|

λ
t−

1
4

)
for (k = 1)

Example 3.3. Solve the following Cauchy problem with α = 3
2

(cD
3
2
0+,tu)(x, t) = λ2 ∂

2u(x, t)

∂x2
(x ∈ R; t > 0) (3.40)

u(x, 0) = f0(x) . (x ∈ R)

∂u(x, 0)

∂t
= f1(x) . (x ∈ R). (3.41)

has its solution is given by

u(x, t) =

∫ ∞
−∞

G
3
2
1 (x− τ, t)f0(τ)dτ +

∫ ∞
−∞

G
3
2
2 (x− τ, t)f1(τ)dτ (3.42)

where

G
3
2
1 (x, t) =

1

2λ
t−

3
4 φ

(
− 3

4
;

1

4
;−|x|

λ
t−

3
4

)
(3.43)

and

G
3
2
2 (x, t) =

1

2λ
t
1
4 φ

(
− 3

4
;

5

4
;−|x|

λ
t−

3
4

)
(3.44)
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Applying Sumudu transform (2.10) to (3.40) and using the initial condition (3.41), with respect to t, we obtain

S[(Dα
0+,tu)(x, p)] = λ2

(
∂2

∂x2
Stu

)
(x, p) (l = 1, 2) (3.45)

Using (2.12) with x ∈ R, l − 1 < α ≤ l and n ∈ N. If l = 1, 2 in respective cases 0 < α ≤ 1 and1 < α < 2 the
initial conditions in (3.41), we have

p
3
2 (Stu)(x, p) = p

1
2 f0(x)− p−

1
2 f1(x) + λ2

(
∂2u(x, 0)

∂x2

)
(l = 1, 2) (3.46)

Now, applying the Fourier transform (2.13) to equation (3.46) and using the formula (2.15) with k = 2, we have(
Fx

[
∂2u(x, t)

∂x2

])
(σ, t) = −|σ|2(Fxu)(σ, t), (3.47)

By applying Fourier transform on equation (3.46) and using equation(3.47), we obtain

p
3
2 (FxStu)(σ, p) = p

1
2Fxf0(x)(σ) + p−

1
2Fxf1(x)(σ)− λ2|σ|2(FxStu)(σ, p)

(FxStu)(σ, p) =
p

1
2 f0(x)

p
3
2 + λ2|σ|2

+
p−

1
2 f0(x)

p
3
2 + λ2|σ|2

(Fxfk)(σ), (σ ∈ R, t > 0, l = 1, 2). (3.48)

The Fourier transform are

(Fxe
−c|x|)(σ) =

2c

c2 + |σ|2 (σ ∈ R; c > 0)

and

(Fe−
|x|
λ
p

3
4 ) =

2λp
3
4

p
3
2 + λ2|σ|2

Hence equation (3.48) becomes

(FxStu)(σ, p) =

(
Fx[

1

2λ
p
−3
4 e
−|x|
λ p

1
4 ]

)
(σ)(Fxf0)(σ) (l = 1, 2)

By the convolution property of Fourier transform (2.16) we have

(FxStu)(σ, p) =

(
Fx[

1

2λ
p−

1

4
e−
|x|
λ p

3
4 xf0]

)
(σ) +

(
Fx[

1

2λ
p−

5

4
e−
|x|
λ p

3
4 xf1]

)
(σ) (l = 1, 2).

Now applying the inverse Fourier transform,we obtain

(Stu)(x, p) =

(
[

1

2λ
p−

1

4
e−
|x|
λ p

3
4 xf0(x)]

)
+

(
[

1

2λ
p−

5

4
e−
|x|
λ p

3
4 xf1(x)]

)
(l = 1, 2) (3.49)

Thus we get

u(x, t) =

∫ ∞
−∞

G
3
2
1 (x− τ, t)f0(τ)dτ +

∫ ∞
−∞

G
3
2
2 (x− τ, t)f1(τ)dτ

Where G
3
2
1 (x, t) and G

3
2
2 (x, t) are the Green’s functions can be written as

G
3
2
1 (x, t) =

1

π

∫ ∞
−∞

1

2λ
p−

1
4 e−
|x|
λ
p

3
4 ∗ xf(x)dp (3.50)

and

G
3
2 (x, t) =

1

π

∫ ∞
−∞

1

2λ
p−

5
4 e−
|x|
λ
p

3
4 ∗ xf(x)dp (3.51)
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To obtain the solution of G
3
2
1 (x, t) and G

3
2
2 (x, t) when 0 < α ≤ 1 and 1 < α < 2 then the function p− 1

4
e−
|x|
λ p

3
4

and p− 5
4
e−
|x|
λ p

3
4 can be expressed through Sumudu transform of the Wright function φ(− 3

4
, b; z) and φ(− 3

4
, b; z)

as follows (
St[t

− 3

4
φ(−3

4
,

1

4
;−|x|

λ
p−

3

4
)]

)
(p)+

(
St[t

1
4 φ(−3

4
,

5

4
;−|x|

λ
p−

3

4
)]

)
(p)

= p−
1

4
e−
|x|
λ p

3
4 + p−

5

4
e−
|x|
λ p

3
4 (k = 0, 1)

(3.52)

Applying the inverse Sumudu transform to (3.49) and using (3.50) and (3.51),we get where

G
3
2
1 (x, t) =

1

2λ
t−

3
4 φ

(
− 3

4
;

1

4
;−|x|

λ
t−

3
4

)
and

G
3
2
2 (x, t) =

1

2λ
t
1
4 φ

(
− 3

4
;

5

4
;−|x|

λ
t−

3
4

)

4 Conclusion

In this paper, Sumudu transform of Caputo fractional derivatives have been used to solve fractional diffusion-wave
equations. The solution of fractional diffusion-wave equations is obtained in terms of Mittag-Leffler function and
generalized Wright function. The Sumudu transform and Fourier transform is an useful operational transform
method which is an important in treating fractional diffusion-wave equations. The Sumudu transform and
Fourier transform technique can be used to solve many types of initial value problems in applied and engineering
fields.
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