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ABSTRACT 
 

Twenty advanced wheat genotypes were evaluated for yield and yield-contributing traits in six field 
trials over two cropping seasons (Rabi 2020-21 and 2021-22) using a completely randomized block 
design (RBD) at two locations: the N.E. Borlaug Crop Research Centre (NEBCRC), G.B.P.U.A&T, 
Pantnagar, U.S. Nagar district, and the Agriculture Research Center Majhera, Nainital, Uttarakhand. 
The study aimed to assess genetic diversity among the genotypes via principal component analysis 
(PCA) and cluster analysis, offering insights into genetic variations. Three clusters were formed, 
with the maximum number of genotypes occurring in the second cluster. A lower p-value indicates 
that the clusters are statistically significant, suggesting that the observed diversity is not random. 
High estimates of cophenetic distance (.79) specify a high genetic distance between clusters, 
indicating that diverse genetic material is under study. The maximum genetic distance observed 
was 144.9 between genotypes G5 and G11. These findings suggest that these two genotypes are 
the most genetically diverse among all the studied genotypes and can be used as parents to 
develop high genetic variation in the studied traits. The PCA results yielded 18 principal 
components, with the first seven components accounting for approximately 83% of the total 
variance, indicating significant genetic diversity. The scree plot affirmed the robustness of the 
study’s results by suggesting that the first eight principal components accounted for a substantial 
portion of the variance.The findings of current study could be exploited in planning and execution of 
future breeding programme in wheat. 
 

 
Keywords: Wheat; genetic diversity; PCA; cluster and cophenetic distance; staple food. 
 

1. INTRODUCTION 
 
Wheat (Triticum aestivum L.) is a globally 
importantcrop that contribute ssignificantlyto food 
security worldwide, including India. Wheat is a 
staple food for millions of people and provide 
approximately 20% of the total dietary calories 
and proteins worldwide [1]. It is the most widely 
cultivated crop in the world, with an area of 220 
million hectares and a total production of 788.5 
million tones [2]. Global wheat production has 
increased by 1.4 million tonnes, reaching a total 
of 788.5 million tonnes in 2023. 
 
It is cultivated in a wide range of environmental 
conditions, with temperatures ranging from 21 to 
24°C. Wheat crop is affected by many abiotic 
stresses such as terminal heat, drought, salinity, 
waterlogging, lodging, etc. Therefore, it is 
essential to identify the genotypes/line for 
consistent performance under these 
stresses.Unfortunately, genetic diversity is of 
paramount importance in any crop improvement 
program. The presence of genetic diversity 
provides the opportunity for plant breeders to 
select promising genotypes with desirable traits 
that enhance crop yield, disease resistance, and 
environmental adaptability. However, the use of 
breeding lines with narrow genetic bases can 
lead to significant yield losses (Kumar et al., 
2022). Occurrence of continuous mutationsin 
pest populations or uncertainly changes in 
environmental conditions restrict the real 

performance of the genotypes and potentially 
leading to severe crop yield losses. Therefore, 
maintaining and utilizing a broad genetic base 
breeding materials in crop improvement is crucial 
for sustainable agriculture and food security. 
 
Different algorithmic methods, such as 
multidimensional scaling, clustering, principal 
component analysis, and principal coordinate 
analysis, are currently employed in the 
assessment of genetic diversity (Rohlf, [3], 
Thompson et al., [4] Melchinger, [5] Brown-
Guedira et al., [6]. Principal component analysis 
(PCA), a dimensionality reduction technique 
introduced by Karl Pearson in [7], identifies the 
largest variations in the data. Cluster analysis, a 
method of grouping objects based on similarity, 
is often used in conjunction with PCA. These 
techniques play a pivotal role in crop 
improvement strategies, including in wheat, by 
determining germplasm variability. These 
methods assist in identifying lines for desirable 
traits, segregating progenies with maximum 
genetic variability for further selection, and 
introducing desirable genes from diverse 
germplasms into the available genetic base. 
These techniques ensure continued 
improvement in plant selection programs and 
have been used to study the genetic diversity 
and relationships of wheat genotypes, which is 
crucial for planning crosses, assigning lines to 
specific heterotic groups, and precisely 
identifying plant varietal protection (Govindaraj et 
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al., [8] Szczepanik et al., [9]. The significance of 
genetic diversity in wheat is well documented 
(Gruet et al., [10], Khan et al., [11], Yadav et al., 
[12]. The genetic variability among plants 
dictates their potential for improving efficiency 
and consequently, their suitability for breeding 
programs, which could ultimately result in 
increased food production [13]. This diversity 
paves the way for plant breeders to cultivate 
improved varieties with desirable traits such as 
high yield potential, large grains, and resistance 
to biotic and abiotic stresses [14]. Therefore, the 
exploration and utilization of genetic diversity in 
wheat genetic resources are vital for sustainable 
production. Genetic diversity is a cornerstone of 
crop breeding because it augments yield 
potential by integrating desirable traits from 
diverse parents Joshi et al., [15] Chaudhary et 
al., [16], Elahi et al., [17]. Moreover, a diverse 
genetic base endows crops with enhanced 
resilience against climatic changes, thereby 
ensuring sustainable agricultural production 
amidst environmental uncertainties. This 
resilience has gained particular importance as 
climate change poses an increasing threat to 
agricultural production [15]. In this study, we 
employed cluster analysis and principal 
component analysis (PCA) to probe the genetic 
diversity of advanced wheat lines, focusing on 
their agronomic traits. Our research aimed to 
identify elite wheat breeding lines, thereby 
enriching the understanding of wheat genetic 
diversity and paving the way for future 
advancements in wheat breeding. 

 
2. EXPERIMENTAL DETAILS 
 
With a completely randomized block design 
(RBD), twenty advanced wheat genotypes were 
assessed with three replications across six field 
trials during two cropping seasons, Rabi 2020-21 
and 2021-22. These trials took place at the N.E. 
Borlaug Crop Research Centre (NEBCRC), G.B. 
Pant University of Agriculture and Technology, 
Pantnagar, District U.S. Nagar, and another 
location, the Agriculture Research Center 
Majhera, Nainital, Uttarakhand. 
 
The plants of each genotype were planted in a 4-
row plot, each of which was 4 meters long, with 
rows spaced 20 cm apart. All recommended 
wheat cultivation practices were followed for a 
healthy crop. Eight quantitative traits were 
observed from five randomly selected plants in 
each entry. These traits included flag leaf length 
(FLL), flag leaf width (FLW), exposed peduncle 
length (EPL), total peduncle length (TPL), spike 

length (SL), awn length (AL), plant height (PH), 
and spikelets per spike (SPS). On a plot basis, 
observations were recorded for germination 
percentage (GP), seedling vigor (SV), days to 
anthesis (DA), days to heading (DH), and days to 
maturity (DM). The total number of                      
productive tillers (TPM)counted from area                        
of one meter in row. 1000-grain weight (TGW) 
and yield per plot (YPP) were recorded                      
from clean harvest. Brown and yellow rusts               
were observed as described by Peterson               
et al. [18]. 
 
Cluster analysis was performed using the 
unweighted pair group method with arithmetic 
mean (UPGMA), as proposed by Sokal and 
Michener [19], to assemble a phylogenetic tree 
from a distance matrix. Genetic distances 
between the genotypes were calculated using 
the Euclidean method [20]. 
 
Principal component analysis (PCA), a statistical 
tool commonly used in plant breeding to identify 
trends in multidimensional data (Pearson, [7] and 
Hotelling, [21], was employed. This approach 
aids in studying the morphological characteristics 
of germplasm, assessing population differences 
and breeding potential and reducing data 
redundancy (Khodadadi et al. [22] Sewell [23]. 
PCA and cluster analysis, as well as 
visualization, were performed using R script 
(Mojena, [24], Kassambara, 2016; Le et al. [25], 
Husson et al [26]. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Cluster Analysis 
 
The results of the cluster dendrogram for 
genotypes with P values (AU is an approximately 
unbiased P value computed by multiscale 
bootstrap resampling, and BP is the bootstrap 
probability value computed by normal bootstrap 
resampling) are shown in Fig.1. The 20 
genotypes were grouped into clusters based on 
their genetic similarity for the agronomic 
characteristics under study. The results showed 
that the whole genotypes were grouped into two 
groups and that genotype 11 was an outlier. The 
cophenetic distance was 0.79, which represents 
the distance between two clusters, indicating that 
the studied genotypes are highly diverse in terms 
of their traits. p values of 7 and 18 for clusters 
two and three, respectively, inferred that clusters 
are not formed by chance and that there is 
genuine diversity in the variables used between 
them. 
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Fig. 1. Hierarchical clustering dendrogram illustrating the genetic diversity among 20 wheat 
genotypes 

 
The first branch of the dendrogram included 
genotypes G11, G7, G5, G13 and G4, which 
formed cluster one with genotypes G13 and G4. 
These genotypes are closely related, as 
indicated by the short branch lengths and second 
branch again grouping into two subgroups, which 
form two additional clusters. Cluster two 
contained G1, G19, G17, G6, G2, G14 and G3 
and had the highest number of genotypes in this 
cluster. Genotypes 12 and 16, which form the 
third cluster indicating 20 advanced genotypes, 
are genetically diverse. Other genotypes form 
individual pairs or small clusters, indicating 
specific close relationships between those 
genotypes. The results of the dendrogram 
inferred that there was a great amount of genetic 
diversity among the 20 genotypes. The three 
main clusters (cluster one, cluster two and 
cluster three) represent groups of genotypes  
that are genetically similar within the                   
group but distinct from each other. This genetic 
diversity could be leveraged in breeding 
programs to introduce new traits or improve 
existing traits. The cluster genotypes,                   
including G13or G4, can be used as                       
parents to cross genotypes from cluster two (G1, 
G19, G17, G6, G2, G14 and G3) or from                      
the third cluster (G12 and G16) to maximize 
genetic diversity and potentially introduce 
beneficial traits that are present in one cluster but 
not the other. Alternatively, genotypes                      
within the same cluster could be crossed to 
reinforce specific traits that are common within 
that cluster. 

The maximum genetic distance observed was 
144.9 between G5 and G11 (Table 1;Fig. 2). 
These findings suggested that these two 
genotypes are the most genetically diverse 
among all the studied genotypes and can be 
used as parents to explain large amounts of 
genetic variation in the studied traits. On the 
other hand, the minimum non-zero genetic 
distance was 12.32 between G3 and G14, 
indicating that these two groups are the most 
genetically similar among all the studied 
genotypes. The second largest genetic distance 
was 128.1 for genotype pairsG4 and G11, 
followed by 113.7, 110.1 and 102.4 for genotype 
pairs G11 & G7, G10 & G5 and G13 & G10, 
respectively. The second lowest value of genetic 
distance was 13.0 for genotype pairs G13 and 
G4, followed by G17 and G6 (13.2), G3 and G2 
(13.4), G12 and G18(13.7). The present findings 
were also supported by several previously 
reported results (Chaudhary et al [16], Santosh 
et al. 2019 Jaiswal et al. [27]. Therefore, based 
on the present findings, the genetically diverse 
genotypescould be used in the crossing program 
to maximize genetic diversity in the offspring. 
Conversely, if the goal is to maintain certain 
traits, breeders might choose to cross genetically 
similar groups. The present study helps the 
breeders to understand the role of genetic 
diversity, crop improvement, how genetic 
distance is essential in the selection of 
genotypes as a parent for further utilization, and 
also helps to make decisions and develop more 
effective breeding strategies in the future. 
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Fig. 2. Heatmap representing the genetic distance of 20 advanced lines of wheat 
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Table 1. Genetic distance matrix of 20 wheat genotypes showing genetic diversity for yield and yield-contributing traits 

 
 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 41.3 

G1 0.0 26.5 20.1 51.2 71.4 25.8 39.5 34.6 31.1 52.0 85.1 27.9 60.1 22.8 50.0 38.6 32.5 32.8 17.6 41.3 
G2  0.0 13.4 32.1 50.5 29.6 24.2 46.2 47.3 70.8 103.3 40.4 41.1 20.4 51.6 50.5 31.3 31.2 32.5 44.5 
G3   0.0 36.9 56.3 20.2 26.8 38.3 38.1 60.2 93.8 30.3 46.7 12.3 43.9 40.4 23.0 26.7 23.1 35.9 
G4    0.0 24.7 48.8 21.9 70.8 71.3 92.4 128.1 64.4 13.0 38.5 64.0 72.4 42.3 37.7 55.6 52.1 
G5     0.0 64.7 34.5 86.8 89.6 110.1 144.9 81.4 20.7 56.1 74.3 88.7 56.1 55.5 73.8 68.2 
G6      0.0 34.4 24.5 27.8 46.9 80.6 18.5 58.9 13.4 26.7 25.6 13.2 30.8 16.2 26.4 
G7       0.0 55.6 57.3 78.5 113.7 49.7 29.5 24.7 50.0 58.3 27.9 31.3 41.1 43.6 
G8        0.0 14.5 31.1 60.1 13.7 81.0 33.4 31.3 15.1 35.7 48.8 21.8 37.9 
G9         0.0 25.6 59.1 14.6 81.1 34.9 40.4 18.3 39.3 47.6 19.6 37.2 
G10          0.0 39.4 32.9 102.4 56.1 49.6 26.6 55.8 65.3 40.6 49.9 
G11           0.0 64.7 138.3 90.7 78.0 57.0 90.2 100.0 74.9 85.2 
G12            0.0 74.4 26.7 32.3 13.0 29.3 40.4 13.9 33.2 
G13             0.0 48.6 74.3 82.9 52.4 45.9 65.1 61.8 
G14              0.0 34.8 36.0 15.0 23.1 18.8 27.2 
G15               0.0 30.0 26.3 47.0 36.7 30.9 
G16                0.0 34.8 48.1 24.9 35.4 
G17                 0.0 28.2 25.6 26.5 
G18                  0.0 30.4 27.7 
G19                   0.0 29.6 
G20                    0.0 
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Studies conducted previously by Khalid et al. 
[28], Braved et al. (2022), Vus et al. [29], and 
Shimelis et al. [30] also implied similar results, 
suggesting that the variation in genotypes across 
clusters resulted from the minor impact and 
cumulative influence of several characteristics 
and had the potential for hybridization programs 
to design crosses for the manifestation of 
heterosis and for improving quality traits (Very 
long sentence).The utilization of cluster analysis 
in assessing the genetic resources has proven 
instrumental in identifying valuable starting 
material for priority breeding areas.The detailed 
breakdown of clusters in the previous studies 
highlights the relevance of cluster analysis in 
delineating distinct groups with specific trait 
combinations. This knowledge can be applied to 
wheat breeding, allowing researchers to prioritize 
and select cultivars with optimal trait 
combinations for targeted environments. 

 
3.2 Principal Component Analysis 
 
Principal component analysis (PCA) revealed 
that a certain amount of diversity was present in 
the studied genotypes for the yield and yield-
contributing traits, resulting in 18 principal 
components (Table 2). The first seven 
components captured a significant portion of the 
genetic diversity among the wheat genotypes for 
the studied traits. These seven components 
explain approximately 83% of the total variance 
in the data, suggesting that they account for the 
majority of the genetic diversity in the wheat 
genotypes studied. The first principal component 
explained 20.54% of the total variance, with an 
eigenvalue of 3.70, while the second principal 
component accounted for an additional 17.46% 
of the variance. As a result, the cumulative 
variance explained 37.99% of the variance by the 
addition of principal component three, thereby 
reaching half of the cumulative variance present 
in the genotypes. Similar results for PCA were 
also observed by Abdelghany et al. [31], Adilova 
et al. [32], Shivramakrishnan et al. [33] and 
Poudel et al. (2017). 
 
The contributions of the various variables to the 
top five principal components for the variation in 
the 20 advanced lines of wheat are listed in 
Table 3. In principal component (=Dimension) 1, 
the spike length had the highest contribution 
(13.44), while the germination percentage had 
the lowest (0.14), suggesting that spike length is 
a significant factor in differentiating the wheat 
lines along this dimension compared to 
germination percentage. After spike length, 

peduncle length (both exposed and total) was the 
major contributing variable in principal 
component 1. Days to maturity were the leading 
contributor, while spikelets per spike were the 
least contributing factor. Similarly, in PC3, PC4, 
and themajor contributing variables were brown 
rust, flag leaf length, and yield per plot 
respectively, suggesting that these variables are 
deciding factors for variation among genotypes 
and that targeting improvements in these 
characteristics could lead to improvements in the 
genotypes. The same analysis can be applied to 
the other dimensions. It is also worth noting that 
the variables contributing the most to each 
dimension are different. Earlier studies of 
principal components in wheat were performed 
by Shamuyarira et al. [34], Sharma et al. [35], 
Singh et al [36] and Riaz et al. [37], who 
concluded that principal component analysis isan 
excellent tool for determining genetic diversity. 
This suggests that each dimension captures a 
different aspect of the variation in the data. 
Overall, these results provide valuable insights 
into the genetic diversity of wheat lines, which 
could be useful for future breeding programs. By 
understanding which traits contribute most to the 
variability, breeders can focus on these traits 
when selecting lines for cross-breeding. 
Variables such as spike length (0.50), total 
peduncle length (0.47), and exposed peduncle 
length (0.41) had high communalities, indicating 
that these variables werewell represented by the 
extracted factors. 
 
The exploration of Principal Component Analysis 
(PCA) in wheat research has garnered 
considerable attention, with several studies 
delving into its application and implications.Piro 
et al. [38], illustrated the potential application of 
rye chromatin introgression in wheat quality 
breeding, with the arabinoxylan content of wheat 
white flour, demonstrating the use of PCA in 
assessing quality traits in wheat breeding Kumar 
et al. [39], found variability in yield contributing 
traits and physiological traits by PCA, suggesting 
that identified genotypes can be used for 
hybridization and improved cultivar development. 
Saleh et al. [40] emphasized the use of PCA in 
assessing genetic variations among wheat 
genotypes to enhance selection efficiency in 
breeding programs.Moreover, Ahmad et al. [41] 
conducted PCA to examine the suitability of 
wheat varieties for cookie-making quality, 
demonstrating the use of PCA in correlating 
physical and rheological parameters of wheat 
varieties.These studies collectively demonstrate 
the diverse applications of PCA in wheat 
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research, including assessing wheat variety 
suitability for specific products, comparing wheat 
genotypes, and analyzing wheat flour refinement. 
The use of PCA in these studies highlights its 

effectiveness in providing valuable insights into 
the composition, properties, and genetic diversity 
of wheat, thereby contributing to advancements 
in wheat breeding and product development. 

 

Table 2. Eigenvalues, proportions of variance and cumulative proportions of 20 wheat 
genotypes 

 

Principal 
Components 

Eigen value Percentage of 
Variance 

Cumulative Percentage  
of Variance 

comp1 3.70 20.54 20.54 
comp2 3.14 17.46 37.99 
comp3 2.38 13.22 51.22 
comp4 1.72 9.56 60.77 
comp5 1.63 9.04 69.81 
comp6 1.22 6.79 76.60 
comp7 1.14 6.32 82.92 
comp8 0.92 5.09 88.01 
comp9 0.51 2.85 90.86 
comp10 0.49 2.73 93.58 
comp11 0.41 2.30 95.88 
comp12 0.33 1.84 97.72 
comp13 0.23 1.28 99.01 
comp14 0.11 0.64 99.64 
comp15 0.05 0.28 99.92 
comp16 0.01 0.07 99.98 
comp17 0.00 0.01 100.00 
comp18 0.00 0.00 100.00 

 
Table 3. Contribution of the top five principal components to the variation in 20 

advanced lines of wheat 
 

Variable Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

GP 0.14 7.80 14.19 4.89 0.43 
SV 3.56 6.86 8.75 2.08 0.21 
DA 7.26 14.18 5.06 0.72 2.80 
DH 8.50 13.21 4.07 1.72 2.07 
DM 3.21 16.31 1.34 1.28 0.12 
FLL 6.99 0.00 1.22 21.71 0.28 
FLW 9.63 0.94 2.61 12.29 2.76 
EPL 11.08 8.51 0.16 2.84 0.84 
TPL 12.60 7.56 3.33 0.80 3.69 
SL 13.44 0.74 3.93 8.99 0.00 
AL 0.14 3.52 0.35 6.67 5.03 
PH 7.03 0.17 3.01 7.83 18.69 
SPS 10.44 0.01 13.58 1.79 0.02 
TPM 0.43 15.25 3.77 0.14 0.33 
TGW 0.00 3.85 0.04 6.50 24.26 
YPP 0.22 0.01 7.77 0.65 35.36 
YR 4.57 0.48 8.05 18.20 1.88 
BR 0.76 0.60 18.77 0.92 1.24 
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The scree plot (Fig. 3) graphically represents the 
percentage of variance explained by different 
principal components. The results indicate that 
the first principal component explains 20% of the 
variance, while the second principal component 
accounts for slightly less than 20%. The scree 
plot suggests that considering the first eight 
principal components would capture a substantial 
amount of the variance in the study. These 
results are consistent with those of Ambati et al. 
[42], Mishra et al. [43], and Sarfraz et al. [44]. 
Therefore, the robustness of the study’s results 
can be attributed to these eight principal 
components. 

 
Dimension 1 explained 20.5% of the variance in 
genotypes for traits, while dimension 2 
accounted for 17.6% of the variance (Fig 4 and 
Fig 5). The biplot features multiple vectors, each 
representing all the characters under study. The 

direction and length of each vector indicate how 
each variable contributes to the two principal 
components. A longer vector indicates a variable 
that strongly influences the score of the 
individuals on the corresponding principal 
component. The results showed that day to 
anthesis, heading and maturity were positively 
correlated, and selecting one characteristic 
directly improved the other characteristics. 
Similar tiller per meter and germination 
percentage values are positively associated, 
suggesting that improving the germination 
percentage directly benefits the tiller per                  
meter. However, the number of tillers                          
per meter was negatively correlated with awn 
length and thousand-grain weight. The                       
color scale indicates the contribution of each 
variable to the principal components, with              
darker colors representing greater contributions 
(Fig.4). 

 

 
 

Fig. 3. Shows a scree plot diagram built based on eleven principal components 
 

 
 

Fig. 4. Principal component biplot for variables in 20 advanced genotypes of wheat 
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The PCA biplot for individual plots represents an 
individual, labeled from 1 to 20. The distribution 
of points across all four quadrants indicates 
variation among the individuals along these two 
principal components. The exact position of each 
point provides information about the individual’s 
scores on the two components. For 
instance,Genotype 7 was located in the top right 
quadrant, in which higher values were observed 
for both dimensions (Fig 5). This finding 
suggested that genotype G7 had high scores for 
both Dim1 and Dim2. The contributions of 
genotypes G20, G5, G18, and G4 were negative, 
and likewise, their contributions were lower. 
Genotypes G1, G2 and G10 positively 
contributed to dimension 1. This PCA plot can 
provide valuable insights into the underlying 

structure of the data, helping to identify                  
patterns and relationships among individuals who 
might not be apparent from the raw data alone. 
 

3.3 Rotated Component Matrix Analysis 
 

The rotated component matrix scores for 
Principal Component 1 (PC1) across the 20 
wheat genotypes revealed a diverse set of 
characteristics (Fig. 6). The scores ranged                 
from a high of 1.94 (G1) to a low of -1.79                 
(G20). These scores represent the                 
correlation of each genotype with the first 
principal component, which is a linear 
combination of the original variables                             
that captures the maximum variance in                      
the data. 

 

 
 

Fig. 5. PCA biplot for individuals in 20 advanced genotypes of wheat 
 

 
 

Fig. 6. Rotated component metrics (PCs)1 of 20 wheat genotypes 



 
 
 
 

Kumar et al.; Int. J. Plant Soil Sci., vol. 36, no. 3, pp. 427-440, 2024; Article no.IJPSS.113695 
 
 

 
437 

 

Positive scores on PC1 (e.g., G1, G2, G6, G7, 
G9, G10, G11, and G17) suggested that these 
genotypes shared certain traits or characteristics. 
In contrast, genotypes with negative scores on 
PC1 (e.g., G3, G4, G5, G12, G16, G18, G19, 
and G20) indicate different or opposing traits 
compared to those with positive scores. Similar 
results were observed by Sheela et al [45], Singh 
et al. [46], and Nachimuthu et al. [47]. These 
results highlight the genetic diversity among the 
studied wheat genotypes, which is crucial for 
crop improvement strategies [48-50]. The 
variability in PC1 scores can be used to identify 
specific traits for further selection and to 
introgress desirable genes from diverse 
germplasms into the available genetic base [51-
53]. 

 
4. CONCLUSION 
 
The study successfully classified 20 wheat 
genotypes into three clusters based on their 
genetic similarity, with a high cophenetic distance 
of 0.79 and low values for the clusters 
suggesting high diversity for the studied traits. 
This diversity can be harnessed in breeding 
programs to introduce new traits or enhance 
existing traits and can be further elucidated 
through principal component analysis (PCA). The 
PCA revealed considerable diversity among the 
studied wheat genotypes for yield and yield-
contributing traits, with the first seven 
components accounting for approximately 83% 
of the total variance, indicating significant genetic 
diversity. The scree plot affirmed the robustness 
of the study’s results by suggesting that the first 
eight principal components accounted for a 
substantial portion of the variance. Notably, 
Genotype G7, located in the top right quadrant, 
demonstrated high scores on both dimensions, 
indicating its significant contribution to genetic 
diversity, while genotypes G20, G5, G18, and G4 
contributed less to genetic diversity, with 
negative values. Genotypes G1, G2, and G10 
positively contributed to dimension 1. These 
genetic distances between genotypes provide 
valuable insights for crop improvement, aiding in 
developing more effective breeding strategies. 
Consequently, PCA yields valuable elucidations 
regarding the genetic heterogeneity within wheat 
cultivars, presenting potential benefits for 
forthcoming breeding initiatives. 
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