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Abstract: A miniature pneumatic bellows device was designed for in-situ testing inside the scanning
electron microscope. The device uses a pneumatic actuator to load the specimen and displacement
is directly monitored with a linear variable differential transformer sensor. Its application allowed
the direct monitoring of microstructural and defect evolution in materials at the micro scale. The
data produced by this testing device, in combination with measurements from micro digital image
correlation, were successfully used to model the crystal plasticity of a martensitic/bainitic steel at the
microstructural length scale.

Keywords: bellows loading device; pneumatic system; in-situ testing; scanning electron microscopy;
micro digital image correlation; crystal plasticity modelling

1. Introduction

Modern energy production systems, such as those in Generation IV nuclear reactors
and fusion reactors, have greatly influenced the demand for developing advanced materials
which can withstand extreme service conditions, as well as accurate testing techniques
for verifying the strict requirements set on their properties under those conditions [1–3].
Material selection for modern designs requires detailed information on a range of material
parameters from microstructural characteristics to corrosion resistance, fracture toughness,
oxide film formation, and the impact of irradiation on their mechanical properties [4,5].

To acquire the data necessary to define these design parameters in different environ-
ments, it is essential to also consider what is required of the material testing systems. There
is a wide range of possibilities for material testing, such as tensile testing [6], hardness
measuring [7], stress corrosion cracking [8], low and high cycle fatigue [9,10], creep [11,12],
and many variants with combined effect of environmental parameters [13]. The results
of these tests must be accurate for their application in nuclear design, and often custom
solutions must be designed to allow tests of standard and miniature dimensions under
complex loading conditions and hostile environmental factors [14,15].

For that reason, a novel class of multifunctional high precision pneumatically driven
testing systems has been developed to achieve the requirements for testing materials for
nuclear applications. An overview of this flexible concept, the wide spectrum of tests it can
carry out, and results from different tests can be found in reference [16]. Pneumatic bellows
loading devices have been successfully utilized for mechanical testing in several different
purposes and scenarios: in nuclear power plant simulated water environments, such as
three-point bending tests of pre-cracked samples in Boiling Water Reactor (BWR) [17] and
tensile tests in Pressurized Water Reactor (PWR) environments [15]; in Super Critical Water
(SCW) [18,19], on-site nuclear reactor in-pile tensile testing [20] and creep testing [12,21];
tensile testing in liquid lead [22]; and segmented expanded cone-mandrel tests [23]. One
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of the latest applications of this concept is a compact tensile testing device that can be
mounted inside the scanning electron microscope (SEM) for in-situ testing with monitoring
of material microstructural evolution.

A pneumatically controlled device has several advantages compared to a hydraulic
or stepper motor-controlled device, which is the reasoning for choosing this technology
for this specific application. One advantage is that the apparatus in which the specimen is
mounted and tested does not need to be in proximity with the pneumatic servo-controlled
pressure control circuit, and good control accuracy can still be retained. Furthermore,
the pneumatic force control system does not cause vibration in the force output, which
is advantageous when carrying out measurements at the micro length scale. The lack
of moving parts in the pressure interface also improves accuracy, as there are no extra
separate seals in the pressure limit. Furthermore, these devices can also consistently apply
extremely low deformation rates that enable super slow strain rate testing [15] and are
straightforward to apply for testing in hostile environmental conditions [23].

In pursuance of relevant microstructural evolution data during deformation and the
testing of micro components, different systems to enable in-situ mechanical testing inside
the SEM have been proposed by works in the literature [24–27]. Zhu and Espinosa [24]
proposed a system that consists of an actuator and a load sensor that is capable of testing
nanostructures in both SEM and TEM. Ma et al. [25] built a system based on servomotors
and reducers that was able to carry out quasi-static tests while also keeping the specimen
centered. Wang et al. [26] designed a micro-electromechanical system which used piezore-
sistive sensors for measuring both force and displacement. Min and Park [27] proposed a
bidirectional testing system which uses piezo actuators to apply load, and displacement
sensors to measure the elongation of the specimen and load by measuring the change in
length of springs in the system. Nevertheless, there is still room for the development of
such systems, which are greatly dependent on the goal they are meant to achieve, and on
the device and environment which they are planned for.

The design of a pneumatic system for in-situ tensile testing in the SEM at high mag-
nifications must take into account that the system must be small-scale to fit inside the
microscope chamber, have precise power control, and the capacity to apply load to a
specimen by the control of pressurized gas. In addition, considering that the environment
inside a SEM requires a vacuum as a working environment, a specific calibration system is
required to properly measure the load which is calculated using the pressure inside the
pneumatic loading unit.

To make the most out of in-situ testing carried out inside the SEM, it is fundamental
for the most amount of microstructural and crystallographic information to be extracted
from the investigated material throughout the test. In general, SEM imaging provides good
microstructural and topographical data that allows for the grain structure and carbide
distribution to be analyzed, while Electron Backscattered Diffraction (EBSD) can provide
a thorough crystallographic description of the microstructure, which is significant for
understanding material state and estimate material defect quantity and distribution. Fur-
thermore, the application of image analysis techniques, such as Digital Image Correlation
(DIC), can also be applied to the SEM images to measure full-field displacements and
strains on a microstructural scale [28–30]. Such analyses are robust and versatile, being
able to obtain quantitative data that are essential to improve our understanding of complex
material phenomena such as banding, damage initiation and strain partitioning [31–33].
The initial microstructural data can be used as inputs for crystal plasticity modelling ap-
proaches and the subsequent crystallographic information and full-field strain data of the
loaded states can be used as validation [32–34]. The combination of mechanical testing,
microstructural characterization, and modelling optimization plays a key role in furthering
our understanding in phenomena which are on a micro and nanoscale.

This paper describes the development of a miniature pneumatic bellows loading
device used to carry out in-situ tensile testing inside a SEM, as well as a cassette loading
system which allow safe specimen mounting and that keeps them loaded for ex-situ
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characterization. The paper also details how this system can be utilized for acquiring
relevant microstructural data during mechanical testing, for measuring displacement and
strain distribution at a grain level, and the importance of such data for the validation of
crystal plasticity modelling in the microstructural length scale.

2. Design and Implementation of the Miniature Pneumatic Bellows Loading Device for
SEM In-Situ Testing
2.1. Development of the Load Frame

A modified in-reactor tensile loading frame was initially used as a first prototype
for the efforts of miniaturizing the device for application inside the microscope [20]. The
model and dimensions of the load frame used for the miniature loading frame for testing
in the SEM is shown in Figure 1. It was built using three supporting posts which work as
an alignment system that is suitable to the SEM space limitations. The design of the load
frame was made so that it would be symmetrical, while ensuring no flexibility throughout
the attachment points of the specimen and the pneumatic loading system. The mechanical
clearance of the system mobile components, such as the columns of the specimen holder
through the alignment holes, is of roughly ±0.01 mm. The maximum diameter and length
of the device are 25 mm and 125 mm, respectively [20].
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2.2. Fastening System of the Thin Tensile Specimen to the Testing Device

The design and nominal dimensions of the miniature tensile specimen used in this
system, as well as the fastening system to fix the specimen to the device are shown in
Figure 2. The specimen fastening system was designed to have proper specimen alignment,
no bending of the specimen during fastening, simplicity to correct the specimen position
and ease of use. The fastening system comprises fairing plates, fixing screws, guide posts,
and carrier pins. The concept limits specimen warping during installation in the system
by using fairing plates. The rotation range of this plate was designed so that it can only
rotate a few tens of micrometers with the initial turns of the fixing screw. Therefore, once
the fairing plate is in contact with the miniature tensile specimen, it can only have forward
movement, which ensures that no bending component is applied to the specimen by the
fixing screw. The specimen and system were designed so that a carrier pin can be used to
obtain the proper vertical alignment between these components, as depicted in Figure 2.
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Figure 2. (a) Tensile specimen geometry and dimensions, and (b) model of fastening system.

2.3. Pneumatically Driven Testing Device and Calibration of the Loading Unit

The fundamental concept behind the working of the pneumatically testing device is
its load applying ability by controlling the pressurized gas inside the metal bellows. A
servo-controlled pressure regulation system controls the pressure inlet that leads the gas to
the bellows. The load applied by the device can be calculated by utilizing the metal bellows
internal pressure and its cross-sectional area. The system for fixing the device to the SEM is
designed so that the device can be rotated, as shown in Figure 3.
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To accurately measure the relationship between gas pressure in the bellows and ap-
plied load, a calibration procedure was carried out. The exact same load frame, mobile
parts, and loading system were used inside a calibration system. The calibration of the
device was carried out at room temperature in a gaseous environment inside a calibration
frame, as depicted by Figure 4. The load frame posts connected to the bellows were trans-
ported to another location and then reassembled inside the calibration system. This system
comprised a main calibration frame, a Linear Variable Differential Transformer (LVDT)
sensor, and a load sensor. The calibration process consisted of two separate procedures and
was performed using a CuCrZr specimen to find the bellows effective cross sectional area
and stiffness. The first calibration is used to define the self-stiffness of the bellows, which
already includes the friction losses of the moving parts in the system. In the second calibra-
tion, the effective cross-sectional area is measured. These can then be used to calculate the
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applied force considering the inherent stiffness and friction in the system. According to
its results, the stiffness of the bellows was of 3.76 bar/mm and its effective cross section
of 106 mm2. An example plot of the raw data obtained in a load-pressure calibration is
shown in Figure 5. According to these results and the loading unit stiffness measurement,
a precise calibration was obtained for load applied in the system as a function of pressure
inside the bellows.
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The comparison between the load as quantified by the calibration system load cell
during the calibration procedure and the calculated load is shown in Figure 6. The maxi-
mum load measured by the load sensor during the calibration was of 210.9 N while the
calculated load was of 212.1 N, which means that the deviation of the calculated load was
of roughly 0.5%. The deviation of between both measured load and load obtained from
the pressure calibration in the tested displacement extent (0–1.3 mm) was approximately
±1%. The largest deviation of the calculated load occurred at the onset of the calibration
procedure and is related to compliance early on during the calibration. The compliance of
the calibration system and sliding fit of the mobile parts marginally impact the results of
the procedure, but to such a small extent that the calibration was still considered accurate.
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In the final design of the device, the highest pressure within the pneumatic loading
unit ranged from 3 to 7 MPa and displacements of 1.2 mm were achievable. These were
considered appropriate to reach the largest load level required for the designed specimen
geometry during the tensile testing inside the SEM.

2.4. Design and Operation of the Pneumatically Driven Pressure Regulation System

The fundamental components and functioning of the pneumatically driven regulation
system used to control the movement of the bellows are depicted in Figure 7. The pressure
regulation system comprises four different pressure interfaces as shown in Figure 7. At
the pressure interface (A), the gas pressure required for servo valve (6) is supplied by a
fully automatic high-pressure compressor (1), which produces a working pressure level
of 20 MPa. The pressure range at the pressure interface (A) in a tensile test is within
17.5–20 MPa.

The gas is led from the pressure accumulator (2) to a pressure reducer (3) and then fur-
ther across a flow valve (4) via piping that are 6 mm in diameter. The interface pressure (B)
is dependent on where the test is carried out and specimen geometry, and it is adjustable
via the pressure reducer (3). According to the manufacturer, the highest pressure handled
by the servo valves is of 20 MPa.

The gas is then directed from valve (4) to the bellows (5) and then to the servo valve (6)
(pressure interface (C)). The gas pressure from the servo valve is released from the pressure
interface (C). The appropriate initial pressure necessary for distinct tests conditions are
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achievable (pressure interface (C)) with precise control of pressure regulator (3) and the
flow valve (4).

The pressure adjustment of the metal bellows (5) and the pressure interface (C) de-
pends on an uninterrupted gas flow across both the flowing valve (4) and the servo valve
(6). The adjustable pressure for the pressure interface (C) is achieved with an electronically
controlled valve (6) together with the mechanical flow control valve (4). A two-way pres-
sure regulating system can be established with such pressure interface circuit. The servo
valve (6) can be used to adjust the gas flow to the required pressure level in the bellows
(5). Ultimately, the load which is applied to the tensile specimen is in direct proportion
to pressure in the bellows (5) (pressure interface (C)). A LVDT-sensor (7) is responsible
for measuring the displacement in the system and relaying a feedback signal to the servo
controller. The servo controller then examines this feedback to a pre-set user defined signal
and controls the servo valve to regulate the gas flow if there is a difference between the
feedback and pre-set signal, as described in detail in [16].

Metals 2024, 14, x FOR PEER REVIEW 8 of 23 
 

 
Figure 7. Diagram on the functional mechanism of the pneumatically driven pressure regulation 
system [16]. 

2.5. Schematic View of the Test System 
The pneumatic control equipment was mounted onto a moving rack for transporta-

bility and ease-of-use, and an overview of the system and its mounting inside the stage of 
a Zeiss Ultra Plus SEM (Zeiss, Oberkochen, Germany) is shown in Figure 8. The program-
mable logic for the control and monitoring of the system was created using Codesys pro-
gramming. A new type of lead-trough for the SEM vacuum chamber had to be designed 
and manufactured, so that the pressure piping and for the LVDT sensor cable could be 
connected to the in-situ tensile testing device inside the SEM. The lead-through performed 
well and made it possible to operate the device while maintaining the vacuum in the SEM 
chamber. 

 
Figure 8. Overview of the pneumatic control system and the mounting of the in-situ tensile testing 
device inside the SEM. (a) Pneumatic control mounted on moving rack, (b) SEM device with at-
tached piping, and (c) in-situ tensile device mounted on SEM. The red arrow highlights the bellows 
position in the system. 

  

Figure 7. Diagram on the functional mechanism of the pneumatically driven pressure regulation
system [16].

2.5. Schematic View of the Test System

The pneumatic control equipment was mounted onto a moving rack for transporta-
bility and ease-of-use, and an overview of the system and its mounting inside the stage
of a Zeiss Ultra Plus SEM (Zeiss, Oberkochen, Germany) is shown in Figure 8. The pro-
grammable logic for the control and monitoring of the system was created using Codesys
programming. A new type of lead-trough for the SEM vacuum chamber had to be designed
and manufactured, so that the pressure piping and for the LVDT sensor cable could be
connected to the in-situ tensile testing device inside the SEM. The lead-through performed
well and made it possible to operate the device while maintaining the vacuum in the
SEM chamber.
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Figure 8. Overview of the pneumatic control system and the mounting of the in-situ tensile testing
device inside the SEM. (a) Pneumatic control mounted on moving rack, (b) SEM device with attached
piping, and (c) in-situ tensile device mounted on SEM. The red arrow highlights the bellows position
in the system.

3. Experimental Results and Applications
3.1. Performance Assessment of the Device

The performance of the newly developed equipment was evaluated using six tests
with printed high entropy alloys, a quench and tempered martensitic (QT) steel, and a JRQ
reactor pressure vessel (RPV) steel. These tests were performed in different conditions and
used to determine its functionality, accuracy, and capability of working inside the SEM.
The miniature specimens manufactured for this work were made using Electro Discharge
Machining (EDM). The specimens used for the initial tests and calibration were not polished
and had a surface roughness Ra of 1.6 µm. A polishing procedure was developed for the
final specimens tested in the SEM, which is described in Section 3.2. The first test was
performed outside the SEM at a constant displacement rate of 0.001 mm/s. The second
test was carried out inside the SEM device at a 0.001 mm/s displacement rate and with the
holding times of approximately 100 s. After each holding period, SEM images were taken
from the gauge length of the specimen. The third test was carried out with an annealed
specimen and smaller displacement steps of 10 µm, and the fourth test was carried with
a more resistant QT steel and displacement steps 50 µm. The fifth and sixth tests were
carried out with RPV steel, one under a stereo optical microscope to investigate the strain
distribution in the specimen geometry, and the other inside the SEM for obtaining high
magnification images of the microstructural evolution. Table 1 summarizes the different
displacement steps used for the different displacement ranges during the second test. The
load-displacement results of the first and second tests are shown in Figure 9. The load
difference between the two curves is plausibly related to the difference in the thicknesses
of the two initial specimens which were polished separately with the newly developed
system and had different final thicknesses. Another factor that affected material behavior
is that one of the tests was carried out with continuous loading, while the other in steps
with 100 s holding times, which lead to some relaxation between deformation steps.

The load of the last two loading steps in response to displacement in the second tensile
test is shown in Figure 10. The loading relaxation between the steps and beginning of
necking in the specimen are marked with arrows. The magnitude of the load relaxation
increases with load and reached a maximum of roughly 15 N in the last step prior to
fracture. The precision of the load signal was evaluated by measuring its fluctuation during
the tests and was of roughly ±0.6 N in the vicinity of maximum load.

Table 1. Displacement step per displacement range in the second tensile test.

Displacement Range/mm Displacement Step/mm

0–0.03 0.005

0.03–0.25 0.02

0.25–0.97 0.05
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Figure 9. Load as a function of displacement curves for the tests caried out inside and outside of the
SEM device.

Metals 2024, 14, x FOR PEER REVIEW 10 of 23 
 

Figure 9. Load as a function of displacement curves for the tests caried out inside and outside of the 
SEM device. 

The load of the last two loading steps in response to displacement in the second ten-
sile test is shown in Figure 10. The loading relaxation between the steps and beginning of 
necking in the specimen are marked with arrows. The magnitude of the load relaxation 
increases with load and reached a maximum of roughly 15 N in the last step prior to frac-
ture. The precision of the load signal was evaluated by measuring its fluctuation during 
the tests and was of roughly ±0.6 N in the vicinity of maximum load. 

 
Figure 10. Load as a function of displacement from the second tensile test in the SEM. 

A non-polished specimen was used in the first test and SEM images were taken after 
each loading step with different magnifications. The last image was taken after the onset 
of necking, when load began to drop, as shown in Figure 10. The specimen surface showed 
large cracks after the onset of necking as it is shown on Figure 11. 
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A non-polished specimen was used in the first test and SEM images were taken after
each loading step with different magnifications. The last image was taken after the onset of
necking, when load began to drop, as shown in Figure 10. The specimen surface showed
large cracks after the onset of necking as it is shown on Figure 11.

A polished specimen was used for the third test and 10 µm steps were used, as
shown in the load-displacement curve in Figure 12. The material chosen for this test was
purposefully more ductile so that more images could be taken after the maximum load level.
The test was continued until complete failure of the specimen, as depicted by Figure 13.

A QT steel specimen with considerably higher mechanical resistance with a 50 µm
displacement step was used for the fourth test, whose force-displacement plot is shown in
Figure 14. The change in the topography of the microstructure with plastic deformation is
clearly observable in the last series of images at higher displacements.
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3.2. Specimen Preparation and Complementary Imaging Techniques

To fully explore the application of the described in-situ testing device, it is fundamental
that the specimens are prepared so that not only the material can be visualized but that
both crystallographic data and clear monitoring of microstructural features are possible.
For this reason, it was important for specimens to be well polished so that EBSD could be
used to map the gauge length of the specimen and allow a quantitative microstructural
analysis of the material. The polishing of particularly thin specimens was found to be
complex and traditional techniques would often end up damaging the specimens. These
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challenges were overcome by designing a new type of polishing adapter for a VibroMet 2
vibratory polisher (Buehler, Lake Bluff, IL, USA), as shown in Figure 15. With the custom
adapter for the small tensile specimens and a 60 nm suspension in the vibratory polisher,
the surface quality after polishing was adequate for EBSD data acquisition. An example of
a mounted specimen for EBSD, its positioning inside the SEM for EBSD analysis, and an
inverse pole figure map of a thin tensile specimen is shown in the Figure 16.
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3.3. Cassette System for Loading Specimens

The first prototype device worked well inside the SEM and fit the requirements of being
small, having precise power control and the ability to load a specimen using pressurized
gas. Load and displacement were considered accurate during the strain controlled tensile
tests. However, the design of the device made it challenging to mount a specimen without
scratching its surface. As a result, the following device was designed so that the specimen
can be fixated to the loading frame using a removable cassette as depicted by Figure 17.
This system made attaching the specimen to the in-situ testing device considerably easier
and allows EBSD scans to be performed ex-situ with the specimen still attached to the
cassette in the same conditions and load as during testing.
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3.4. Full-Field Displacement Measurements Using Micro Digital Image Correlation

To better understand the strain distribution during testing in the geometry designed
for use with the testing system, an in-situ test with a RPV steel (JRQ) specimen was carried
out under a Zeiss Axio Zoom v16 stereo microscope (Zeiss, Oberkochen, Germany). The
specimen was carefully patterned for DIC with fine spray painting. The main parameters of
this DIC analysis can be summarized as the following: image resolution, 2464 by 2056 pixels;
scale factor, 5.5 µm/pixel; subset size, 45 pixels; step size, 11 pixels; pattern feature size,
6 ± 2 pixels. Figure 18 shows an image of the patterned specimen prior to testing and a
map of the axial strain distribution showing how the area in which uniform deformation
occurred was measured. Plastic deformation occurred uniformly roughly in a 1.2 mm
region in the central portion of the specimen, although deformation was still observed to a
smaller degree in a 3 mm region. Strains are understandably lower in the region outside
the 1.2 mm due to its increasing cross-section.

The strain distribution observed in DIC was used to define different lengths for virtual
extensometers which were used to evaluate what would be the calculated engineering
strain for those given gauge lengths. Virtual extensometers with a length of 1 mm, 1.2 mm,
and 3 mm, as well as a 0.25 mm2 virtual strain gauge were used to measure the strain
during the test. The resulting engineering stress-strain plots is shown in Figure 19. The
aim of this analysis was to evaluate what would be the correct gauge length to be used
with this specimen geometry to obtain comparable results to results from standard tests,
obtained from more traditional testing methods that use standard specimens and exten-
someters. The strain gauge clearly captures well the strain localization from the midsection
of the specimen, but strain understandably becomes much larger than that which would
be measured by an extensometer once necking starts. The 3 mm virtual extensometer
underestimates strain from the onset of the test, as it contains large portions of the specimen
with bigger cross-sectional areas which deform much less than the region where most
deformation is taking place. Both 1 mm and 1.2 mm led to similar results, as both are within
the region where mostly only uniform deformation occurred in the specimen. Ultimately,
the 1.2 mm virtual extensometer was chosen as being the best choice among these to extract
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engineering stress-strain curves from these tests. It is noteworthy that once strain starts to
localize, a single value representation of strain does not fully convey what occurs during
deformation and full-field approaches would then be more appropriate to describe the
complex material behavior.
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Figure 19. Stress-strain plots of RPV steel (JRQ) considering extensometers of different length and a
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Although focusing on singular points of interest, such as triple grain boundary junc-
tions and larger defects, is also useful in understanding the role those play in material
behavior, one of the objectives of the current work was to enable the characterization of
the strain evolution during deformation at a grain level over large areas. The reasoning
behind this choice is that the data obtained from these analyses can be essential for val-
idating and improving crystal plasticity models at a microstructural scale. To achieve a
large image of the material microstructure and minimize issues, several small images need
to be taken at very high magnification in a grid like manner so that they can be stitched
and merged afterwards. SEM images of RPV steel were taken with 10% overlap to enable
identification of common features between images and stitching. A workflow to automate
grid imaging in the SEM and to merge the high-resolution images was created to ensure
accuracy and repeatability of this process. The stitching procedure was carried out using the
Grid/Collection stitching function of Fiji [35,36]. The resulting image from the automated
imaging, positioning, and stitching from a RPV steel microstructure is shown in Figure 20.
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Figure 20. Stitched and merged SEM images of a RPV steel microstructure at high magnification.

A second in-situ test with RPV steel was carried out inside the SEM for investigating
the strain evolution in this material at a microstructural level. The fine carbide distribution
and other microstructural features of the material were used as a natural pattern for tracking
the displacements within the microstructure during in-situ testing with micro DIC. An
area of 250 µm by 250 µm was demarcated using microindentation to enable the accurate
analysis of the same area with SEM and EBSD at different deformation steps. A grid of
9 by 10 images was taken to cover the entirety of demarcated area before the test and after
each strain increment, which resulted in images of roughly 27,000 by 27,000 pixels after
merging. DIC analysis was carried out with the stitched images, and it is noteworthy that
this was a very computationally intensive and time-consuming procedure due to the very
high resolution of the images. The feasibility assessment and optimization of the DIC
parameters were initially completed using a small portion of the images, prior to running it
for the whole analysis area. The main parameters of this DIC analysis can be summarized
as the following: image resolution, 27,975 by 27,419 pixels; scale factor, 11 nm/pixel; subset
size, 149 pixels; step size, 50 pixels. Sufficient correlation between the images was achieved
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in the whole analysis area. The obtained displacement fields were continuous and had
reasonable magnitude and very few outliers. Figure 21 shows the x and y displacement
maps obtained at the point in which the specimen was deformed to a global engineering
strain of 1.4%.
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Figure 21. Digital image correlation maps depicting the full-field (a) x displacement and (b) y
displacement at a global engineering strain of approximately 1.4%.

Once the x and y displacement fields were calculated, strain maps were obtained from
analyzing the gradients in the displacement field. The full-field maps of axial strain (εxx),
transverse strain (εyy), and shear strain (εxy) at a global strain of roughly 1.4% are shown
in Figure 22. The analysis shows that, although the specimen is overall axially deformed
in 1.4%, the strain distribution does not occur uniformly throughout the microstructure.
These full-field maps are effective tools for investigating microstructural phenomena in
in-situ tests and can be valuable for the optimization and validation of crystal plasticity
modelling approaches, as it will be shown in the next subsection.
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3.5. Crystal Plasticity Modelling at Micron Scale

A crystal plasticity model was developed to analyze the deformation behavior of the
selected RPV steel. The model is based on finite strain formalism with a multiplicative
decomposition of the deformation gradient with F = FE·FP, where FE and FP are the elastic
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and plastic parts, respectively. A total of 24 dislocation slip systems of type [110]<111> and
[112]<111> were used to describe plastic deformation in the BCC material. Non-Schmid
effects were not applied in the present study [37]. The main components of the model are
presented in this subsection.

This model contains certain simplifications over the model proposed in [38]. For
example, the flow rate is presented only with its thermally activated part, assuming to
capture both dislocation drag and frictional behavior in the same flow rule. The model
does not contain strain gradient extension [39], which could be used to study local scale
defects, such as inclusions and carbides with a very small size. This was chosen due to
the analysis being focused on the polycrystal behavior of the material in the scope of the
current work. The slip rate

( .
γ
)

of a slip system s is defined with a thermally activated
dislocation flow rule:
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where H is the attack frequency, ρm is the mobile dislocation density (set to constant) in the
flow rule, bs is the length of Burgers vector, lsc is the the minimum length of screw segment,
F is activation energy, k is the Boltzmann constant, T is the temperature, τs is the resolved
shear stress on a slip system, τs

c is the slip resistance, τs
0 is the lattice friction, and p and q

are the energy profile parameters. The slip resistance can be written as a sum of different
hardening contributions:

τs
c = τHP + µbs

√√√√ Ns

∑
s=1

as
e f f ρs + acarbρcarb (2)

where τHP = µ
µ300K

K√
d

is the Hall-Petch effect with a coefficient K and the average grain size
d. The effective dislocation interaction matrix is denoted by as

e f f and dislocation density
of a slip system is ρs. Since the material contains carbides, the carbide related interaction
coefficient is denoted by acarb and the carbide defect density is defined by ρcarb = CcarbDcarb
with Ccarb being the number density of carbides and the average size of the carbides Dcarb.
The effective dislocation interaction coefficient as

e f f evolves with the existing dislocation
density to reach saturation more easily, following ref. [38], and can be described as

as
e f f =

0.2 + 0.8
ln
(
0.35bs√ρobs

)
ln
(

0.35bs√ρre f

)
2

as
const (3)

where ρre f is the reference dislocation density, and as
const are the constant interaction matrix

coefficient defining different dislocation interactions. In the present model, only collinear
and self/latent interactions are distinguished with two coefficient values in total for sim-
plicity. The dislocation density evolution is defined by:

.
ρ

s
=

∣∣∣ .
γ

s
∣∣∣

bs

[
1
d
+

αsλsρobs
Kobs

− yρs
]

(4)

where αs = 1/ρs
obs

√
∑ as

e f f ρs+acarbρcarb is the average obstacle strength, λs is the obstacle

spacing defined below, and Kobs is a dislocation multiplication parameter. Total defect is
defined as ρs

obs = ∑ ρs+ρcarb. The dislocation annihilation process is controlled with an
annihilation distance y. The mean spacing for obstacles, λs−1, can be defined as follows:

λs−1 = min(
√

ρobs;
µbs

τs
e f f

ρs
obs) (5)
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where effective stress is defined by τs
e f f = |τs| − τc, which is always positive when the slip

resistance of a slip system is exceeded. Otherwise, dislocation slip is not allowed, and the
dislocation density evolution rate is set to zero, since the slip rate is also zero. The average
length of screw dislocation is computed as follows:

ls
sc = max{λs − αs µbs

τs
e f f

; lsc−min} (6)

Once those have been defined, the plastic velocity gradient can be defined as follows:

.
L

p
=

Ns

∑
s=1

.
γ

sNs (7)

where Ns is the orientation tensor for a slip system s, and Ns is the number of slip systems.
The model parameters were determined using tensile experimental test data that

included experiments carried out at 288 ◦C with standard cylindrical tensile specimens
with gauge length and diameter of 36 mm and 6 mm, as well as a small-scale sample
tested in the system described in this work at room temperature. A summary of the
model parameters is shown in Table 2. The experimental and model predicted stress-strain
plots of the RPV steel at room temperature and 288 ◦C are shown in Figure 23a. The
curve at the higher temperature (288 ◦C) is an averaged curve of three experiments. The
model shows a good agreement with respect to the stress-strain behavior of the material
in the described temperatures. In both cases, the yield behavior is well captured and the
strain hardening response follows the saturation behavior of the material even up to peak
stress. The deformation analysis is mainly limited to small strains in the present context,
therefore non uniform deformation and necking has not been considered in this work. The
initial EBSD data of the RPV steel specimen tested inside the SEM was used to model the
microstructural evolution of the material in roughly the same area analyzed by micro DIC
in Figure 22. In total, 48,278 quadratic reduced integration brick elements were used with a
nominal edge length of 1.19 microns. Kinematic uniform boundary conditions were used,
i.e., left side of the domain is set with U1 = 0, deformation is applied on the right side of
the domain, bottom edge is bounded with U2 = 0, and multi-point-constraint is used for
the top edge/surface to retain horizontal planarity during deformation. The back side of
the domain is set U3 = 0 and the front surface is free to deform (extruded 3D mesh with
one element thickness).

Table 2. Summary of crystal plasticity model elasticity and dislocation slip parameters.

Elasticity Parameters

C11 216,000 [MPa]

C12 134,000 [MPa]

C44 119,000 [MPa]

µ
82.3 [GPa] (22 ◦C),
77.9 [GPa] (288 ◦C)

Dislocation Slip Parameters

H 2 × 1011 s−1

ρm 1 × 1013 [1/m2]

ρ0 7.0 × 1012 [1/m2]

ρre f 1 × 1012 [1/m2]

lsc−min 10 [nm]

bs 0.248 [nm]
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Table 2. Cont.

Dislocation Slip Parameters

p 0.5

q 1.5

τs
0 122 [MPa]

K 5.3754
[
MPa/

√
mm ]

d 5.2 [µm]

F 4.4204 × 10−19 [J]

acarb 1.0

Dcarb 200 [nm]

Ccarb 7.6000 × 108 [1/mm3]

Kobs 3.8

y 2.48 [nm]

asel f /latent 0.1

acollinear 0.7
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4. Summary

A miniature pneumatic bellows loading device was developed and successfully ap-
plied for in-situ testing of small tensile specimens inside the SEM. The lack of vibrational
parts in the pneumatic system worked properly within the SEM and valuable images
were obtained during testing. A custom tool was designed for vibratory polishing of the
thin tensile specimen, which allowed for higher quality polished surfaces to be obtained
and EBSD measurements to be carried out for quantitative microstructural analysis of the
specimens. A removable cassette system was designed to permit easier specimen mounting
and ex-situ EBSD mapping of the specimen under the same conditions as during the tests.
Initial tests were made using printed high entropy alloy and QT steel specimens.

During the tests, the overall measured load noise level was of ±0.6 N and displacement
accuracy smaller than 0.5 µm. This permitted an accurate examination of the interaction
between the applied force to the material and its microstructural response. The in-situ tests
were performed in a displacement control at a speed of 0.0007 mm/s and displacement
steps from 5 to 50 µm. SEM images were taken at different magnifications after each step to
monitor the evolution of the specimen throughout deformation.

The strain distribution in a RPV steel specimen was investigated under a stereo
microscope, and micro DIC at high magnification was used to measure the displacements
and strains in the microstructure during testing. A crystal plasticity model was developed
for the RPV steel, and both its mechanical and microstructural results were consistent with
the experimental data. The developed testing device is effective for testing inside the SEM,
and if coupled with image analysis and modeling approaches, can be used to further our
understanding of material behavior at the micro scale.

Future efforts are planned towards investigating localized plasticity in different types
of materials under relevant engineering conditions. It is still essential to develop and
apply appropriate micro-patterning techniques for obtaining higher spatial resolution
measurements of displacement and strain. The model results obtained in this work could
be used to aid definition of length-scale parameters related to strain gradient methods,
for example micromorphic strain gradient models. The magnitude and diffusivity of the
strains measured by DIC can be used to define the magnitude and finite thickness of slip
localization regions controlled by the micromorphic regularization [40]. Furthermore, in
the future, similar arrangements could be used for crack growth experiments with in-situ
monitoring of the crack tip and propagation, which would be beneficial in the validation
process of a chosen damage enriched crystal plasticity model.
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