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Abstract
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1 Introduction
It’s known that many author studied the generalized (r, s, t) sequence. One of these sequences is generalized
Guglielmo numbers. Soykan, [1] defined generalized Guglielmo numbers. Before we present our original study
, we recall some proporities related to generalized Guglielmo numbers such as reccurance relations, Binet’s
formula, generating function .

A generalized Guglielmo sequence , with the initial values W0,W1,W2 not all being zero, {Wn}n≥0

= {Wn(W0,W1,W2)}n≥0 is defined by the third-order recurrence relations

Wn = 3Wn−1 − 3Wn−2 +Wn−3; W0,W1,W2 (n ≥ 2) (1.1)

Moreover, we define generalized Guglielmo sequence given to negative subscripts as follows,

W−n = 3W−(n−1) − 3W−(n−2) +W−(n−3)

for n = 1, 2, 3, .... Thus, recurrence (1.1) is true for all integer n.

In the Table 1 we give the first some generalized Guglielmo numbers with positive subscript and negative
subscript

Table 1. A few generalized Guglielmo numbers

n Wn W−n

0 W0 W0

1 W1 3W0 − 3W1 +W2

2 W2 6W0 − 8W1 + 3W2

3 W0 − 3W1 + 3W2 10W0 − 15W1 + 6W2

4 3W0 − 8W1 + 6W2 15W0 − 24W1 + 10W2

5 6W0 − 15W1 + 10W2 21W0 − 35W1 + 15W2

6 10W0 − 24W1 + 15W2 28W0 − 48W1 + 21W2

If we obtain,respectively, W0 = 0,W1 = 1,W2 = 3 then {Wn} = {Tn} is called the Triangular sequence,
W0 = 3,W1 = 3,W2 = 3 then {Wn} = {Hn} is called the triangular-Lucas sequence, W0 = 0,W1 = 2,W2 = 6
then {Wn} = {On} is called the oblong sequence and W0 = 0,W1 = 1,W2 = 5 then {Wn} = {pn} is called the
pentegonal sequance. Alternatively, triangular sequence {Tn}n≥0 , triangular-Lucas sequence {Hn}n≥0 , oblong
sequence {On}n≥0 and pentegonal sequence {pn}n≥0 are given by the third-order recurrence relations as

Tn = 3Tn−1 − 3Tn−2 + Tn−3, T0 = 0, T1 = 1, T2 = 3, (1.2)

Hn = 3Hn−1 − 3Hn−2 +Hn−3, H0 = 3, H1 = 3, H2 = 3, (1.3)

On = 3On−1 − 3On−2 +On−3, O0 = 0, O1 = 2, O2 = 6, (1.4)

pn = 3pn−1 − 3pn−2 + pn−3, p0 = 0, p1 = 1, p2 = 5. (1.5)
The sequences given above can be extended to negative subscripts by defining, respectively,

T−n = 3T−(n−1) − 3T−(n−2) + T−(n−3),

H−n = 3H−(n−1) − 3H−(n−2) +H−(n−3),

O−n = 3O−(n−1) − 3O−(n−2) +O−(n−3),

p−n = 3p−(n−1) − 3p−(n−2) + p−(n−3),

for n = 1, 2, 3, ... . As a consequence, recurrences (1.2)-(1.5) hold for all integer n.

We can list some important properties of generalized Guglielmo numbers that are needed.
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• Binet formula of generalized Guglielmo sequence can be calculated using its characteristic equation written
as

x3 − 3x2 + 3x− 1 = (x− 1)3 = 0.

The roots of the characteristic equation are

α = β = γ = 1.

By using these roots and the recurrence relation, Binet formula are written below

Wn = A1 +A2n+A3n
2 (1.6)

where

A1 = W0, (1.7)

A2 =
1

2
(−W2 + 4W1 − 3W0),

A3 =
1

2
(W2 − 2W1 +W0).

Then we present Binet formula of triangular, triangular-Lucas, oblong and pentagonal sequences, respectively,
given below

Tn =
n(n+ 1)

2
,

Hn = 3,

On = n(n+ 1),

pn =
1

2
n (3n− 1) .

• The generating function for Wn is
∞∑

n=0

Wnx
n =

W0 + (W1 − 3W0)x+ (W2 − 3W1 + 3W0)x
2

1− 3x+ 3x2 − x3 . (1.8)

• The Cassini identity for Wn is

Wn+1Wn−1 −W 2
n = −1

2

(
A+Bn+ Cn2) (1.9)

where

A = 2W 2
0 + 6W 2

1 − 6W0W1 − 2W1W2,

B = −3W 2
0 − 8W 2

1 −W 2
2 + 10W0W1 − 4W0W2 + 6W1W2,

C = W 2
0 + 4W 2

1 +W 2
2 − 4W0W1 + 2W0W2 − 4W1W2.

For more details, see [1].

Now, we are presenting information about specific number systems, including the hypercomplex system, which
encompasses complex numbers, hyperbolic numbers, and dual numbers. We note that hyperbolic numbers will
play a crucial role in our work. Moreover hyperbolic functions and numbers find applications in various branches
of engineering, such as electrical engineering (e.g., transmission lines), control systems (e.g., system dynamics),
signal processing (e.g., filter design), and diverse fields of engineering physics, including special relativity, wave
propagation, fluid dynamics, optics, and heat conduction. It’s important to note that while hyperbolic numbers
have interesting mathematical properties, their adoption in practical applications depends on the specific problem
at hand and whether they offer advantages over other number systems in a given context.
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Initially, we discuss hypercomplex number systems, which are extensions of real numbers, for more detail see [2].
In addition that some commutative special cases of hypercomplex number systems include complex numbers,
hyperbolic numbers, and dual numbers. These systems are widely used in various branches of mathematics and
physics. We will now present these number systems sequentially, as outlined below.

• Complex numbers simplest form of hypercomplex numbers. Complex numbers defined as z = a + ib ,
where a and b real numbers and i imaginary unit that satisfy i2 = −1 . In addition that a and b
named, respectively, Re(z) and Im(z) Consequently, the definition of complex numbers given by,

C = {z = a+ ib : a, b ∈ R, i2 = −1}.

• Hyperbolic (double, split-complex) numbers, for more detail see [3], Split-complex numbers, commonly
recognized as hyperbolic numbers, defined as h = a+ jb where a and b real numbers and j hyperbolic
unit that satisfy j2 = 1 . In addition that a and b named, respectively, Re(h) and Hyp(h). Thus, the
definition of hyperbolic numbers given by,

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1},

• Dual numbers, see [4], defined as d = a+ εb where a and b real numbers and ε dual unit that satisfy
ε2 = 0. Furthermore, a and b called, respectively, Re(d) and Du(d). Thus, defination of dual numbers
given by,

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

• A dual hyperbolic number, specifically within the hyperbolic number system, constitutes a distinct type
of hypercomplex number. A dual hyperbolic number is defined by,

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2, a3 ∈ R and the set of all dual hyperbolic numbers are defined by

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

The {1, j, ε, εj} is linear independent and HD = sp{1, j, ε, εj} so that {1, j, ε, εj} is a basis of HD. For more
detail see, [5]

The next properties are true for the base elements {1, j, ε, εj} (commutative multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε satisfy the pure dual unit ( ε2 = 0, ε 6= 0 ), j satisfy the hyperbolic unit ( j2 = 1 ), and εj satisfy the
dual hyperbolic unit ( (jε)2 = 0 ).

In addition that the other number sytems are quarternions, octonions and sedenions given below, respectively,

• Quaternion numbers, non-commutative examples of hypercomplex number systems, are a four-dimensional
extension of complex numbers. They are expressed as a0 + ia1 + ja2 + ka3 , where a0, a1, a2, a3 ∈ R , and
i , j , and k are the quaternion units that satisfy specific multiplication rules. For more detail see [6].
Quaternion numbers are defined by

HQ = {q = a0 + ia1 + ja2 + ka3 : a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1},

• Octonions is a set, every element of the set linear combinations of unit octonions {ei : i = 0, 1.2, ..., 7} ,
doneted as O . Octonions are defined by,

O = {
7∑

i=0

aiei : ai ∈ R, e0ei = eie0 = ei, eiej = −δije0 + εijkek }
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where ee = 1 , δij is Kroneker delta (equal to 1 if and only if i = j ), εijk is anti-symetric tensor. For more
detaıl see [7, 8]

• Sedenions is a set, every element of the set linear combinations of unit sedenions {ei : i = 0, 1.2, ..., 15} ,
denoted by S. It can be seen from here that ever sedenion can be written as

15∑
i=0

aiei

where ai is real number. For more detail see, [9, 8].

Next we give some proporties on two hyperbolic numbers, h1 = a+ jb and h2 = c+ jd , as

h1 + h2 = (a+ b) + j(c+ d),

h1.h2 = (ac+ bd) + j(ad+ bc),

h1 = a− jb
h1

h2
=

(ac− bd) + j(cb− ad)
c2 − d2 ,

h1 = h2 if only if a = c and b = d,

〈h1, h2〉 = (ac+ bd) + j(bc+ ad),

‖h1‖ =
√
|a2 − b2|, called norm of h1,

if
∣∣a2 − b2∣∣ > 0, h1 is named spacelike vector,

if
∣∣a2 − b2∣∣ < 0, h1 is named timelike vector,

if
∣∣a2 − b2∣∣ = 0, h1 is named null(light-like) vector.

Note that{R2, H, 〈, 〉 } is called Lorentz plane and denoted as R2
1. There is an isomorphism relationship between

the Lorentz plane and hyperbolic numbers. For more detail, see [8].

Hence the algebras C (complex numbers), HQ (quaternions), O (octonions) and S (sedenions) are real algebras
attained from the real numbers R by a doubling procedure known as the Cayley-Dickson Process. This doubling
process can be extended beyond the sedenions to form what are known as the 2n -ions (see for example [10, 6,
11, 12, 13].

Some authors have conducted studies about the dual, hyperbolic, dual hyperbolic and other special numbers.
Now we give some information published papers in litarature.

• Cockle [14] studied the hyperbolic numbers with complex coefficients.

• Eren and Soykan [15] studied the generalized Generalized Woodall Numbers.

• Cheng and Thompson [16] introduced dual numbers with complex coefficients.

• Akar, Yüce and Şahin [5] presented the dual hyperbolic numbers.

Next, we present some information on hyperbolic numbers presented in literature.

• Aydın [17] presented hyperbolic Fibonacci numbers given by
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Body Math
F̃n = Fn + hFn+1,

where Fibonacci numbers are given by Fn+2 = Fn+1 + Fn, with the initial conditation F0 = 0, F1 = 1.

• Soykan and Taşdemir [18] studied hyperbolic generalized Jacobsthal numbers given by

Ṽn = Vn + hVn+1

where generalized Jacobsthal numbers are Vn+2 = Vn+1 + 2Vn with the initial conditation V0 = a, V1 = b.

• Taş [19] studied hyperbolic Jacobsthal-Lucas sequence written by

HJn = Jn + hJn+1

where Jacobsthal-Lucas numbers given by Jn+2 = Jn+1 + 2Jn with the inintial conditation J0 = 2, J1 = 1.

• Dikmen and Altınsoy, [20] studied On Third Order Hyperbolic Jacobsthal Numbers given by

Ĵ(3)
n = J(3)

n + hJ
(3)
n+1,

ĵ(3)n = j(3)n + hj
(3)
n+1

where Jacobsthal numbers, respectively, given by J
(3)
n = J

(3)
n−1 + J

(3)
n−2 + 2J

(3)
n−3, J

(3)
0 = 0, J

(3)
1 = 1,

J
(3)
2 = 1, j

(3)
n = j

(3)
n−1 + j

(3)
n−2 + 2j

(3)
n−3, j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5.

Following this, we provide details on dual hyperbolic sequences as they are presented in literature.

• Soykan, Gümüş, Göcen [21] presented dual hyperbolic generalized Pell numbers given by

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

where generalized Pell numbers, with the initial values V0 , V1 not all being zero, are given by Vn = 2Vn−1 +
Vn−2 , V0 = a , V1 = b (n ≥ 2) .

• Cihan, Azak, Güngör, Tosun, [22] studied dual hyperbolic Fibonacci and Lucas numbers given by,
respectively,

DHFn = Fn + jFn+1 + εFn+2 + jεFn+3,

DHLn = Ln + jLn+1 + εLn+2 + jεLn+3

where Fibonacci and Lucas numbers, respectively, given by Fn = Fn−1 + Fn−2 , F0 = 0 , F1 = 1 , Ln =
Ln−1 + Ln−2 , L0 = 2 , L1 = 1 .

• Soykan, Taşdemir and Okumuş [18] studied dual hyperbolic generalized Jacopsthal numbers given by

125



Yılmaz and Soykan; Asian Res. J. Math., vol. 19, no. 12, pp. 120-147, 2023; Article no.ARJOM.111283

Ĵn = Jn + jJn+1 + εJn+2 + jεJn+3

where Jn = Jn−1 + 2Jn−2 , J0 = a , J1 = b .

• Bród, Liana, Włoch [23] studied dual hyperbolic generalized balancing numbers as

DHBn = Bn + jBn+1 + εBn+2 + jεBn+3

where Bn = 6Bn−1 −Bn−2 , B0 = 0 , B1 = 1.

Next section, we define the hyperbolic generalized Guglielmo numbers and some special properties, generating
function and Binet’s formula , of these numbers.

2 Hyperbolic Generalized Guglielmo Numbers and their
Generating Functions and Binet’s Formulas

In this section, we define hyperbolic generalized Guglielmo numbers then we present some special cases generating
functions and Binet’s formulas.

We now define hyperbolic generalized Guglielmo numbers over the set of H . The n th hyperbolic generalized
Guglielmo number is defined as follows

HWn =Wn + jWn+1 (2.1)

with the initial values HW0, HW1, HW2 . The hyperbolic Guglielmo numbers ,which is defined above, can be
written to negative subscripts by defining,

HW−n =W−n + jW−n+1 (2.2)

so that (2.1) is true for all integers n .

Now we define some extraordinary cases of hyperbolic generalized Guglielmo numbers named the n th hyperbolic
triangular numbers, the n th hyperbolic triangular-Lucas numbers, the n th hyperbolic oblong numbers and the
n th hyperbolic pentegonal numbers and give them as, respectively,

hyperbolic triangular numbers HTn = Tn + jTn+1, with the initial values as

HT0 = T0 + jT1,

HT1 = T1 + jT2,

HT2 = T2 + jT3,

hyperbolic triangular-Lucas numbers HHn = Hn + jHn+1 with the initial values as

HH0 = H0 + jH1,

HH1 = H1 + jH2,

HH2 = H2 + jH3,

hyperbolic oblong numbers HOn = On + jOn+1 with the initial values as
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HO0 = O0 + jO1,

HO1 = O1 + jO2,

HO2 = O2 + jO3,

hyperbolic pentegonal numbers Hpn = pn + jpn+1 with the initial values as

Hp0 = p0 + jp1,

Hp1 = p1 + jp2,

Hp2 = p2 + jp3,

for hyperbolic triangular numbers (taking Wn = Tn, T0 = 0, T1 = 1, T2 = 3 ) we obtain

HT0 = j

HT1 = 1 + 3j

HT2 = 3 + 6j,

for hyperbolic triangular-Lucas numbers (taking Wn = Hn, H0 = 3, H1 = 3, H2 = 3 ) we obtain

HH0 = 3 + 3j,

HH1 = 3 + 3j,

HH2 = 3 + 3j,

for hyperbolic oblong numbers (taking Wn = On, O0 = 0, O1 = 2, O2 = 6 ) we obtain

HO0 = 2j,

HO1 = 2 + 6j,

HO2 = 6 + 12j,

and for hyperbolic pentegonal numbers (taking Wn = pn, p0 = 0, p1 = 1, p2 = 5 ) we obtain

Hp0 = j,

Hp1 = 1 + 5j,

Hp2 = 5 + 12j.

So, using (2.1) the following identity can be expressed for every integers n ≥ 0 ,

HWn = 3HWn−1 − 3HWn−2 +HWn−3. (2.3)

Hence for every integers n < 0 the sequence {HWn}n≥0 can be written as

HW−n = 3HW−(n−1) − 3HW−(n−2) +HW−(n−3),

for n = 1, 2, 3, ... by using (2.2).

Consequently, recurrence (2.3) are true for every integer n.

In the Table 2, taking with positive subscript and negative subscript, we present the first few hyperbolic
generalized Guglielmo numbers.
Note that

HW0 = W0 + jW1,

HW1 = W1 + jW2,

HW2 = W2 + jW3.
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Table 2. Some hyperbolic generalized Guglielmo numbers

n HWn HW−n

0 HW0 HW0

1 HW1 3HW0 − 3HW1 +HW2

2 HW2 6HW0 − 8HW1 + 3HW2

3 HW0 − 3HW1 + 3HW2 10HW0 − 15HW1 + 6HW2

4 3HW0 − 8HW1 + 6HW2 15HW0 − 24HW1 + 10HW2

5 6HW0 − 15HW1 + 10HW2 21HW0 − 35HW1 + 15HW2

6 10HW0 − 24HW1 + 15HW2 28HW0 − 48HW1 + 21HW2

Table 3. hyperbolic triangular numbers

n HTn HT−n

0 j
1 1 + 3j 0
2 3 + 6j 1
3 6 + 10j 3 + j
4 10 + 15j 6 + 3j
5 15 + 21j 10 + 6j

Table 4. hyperbolic triangular-Lucas numbers

n HHn HH−n

0 3 + 3j
1 3 + 3j 3 + 3j
2 3 + 3j 3 + 3j
3 3 + 3j 3 + 3j
4 3 + 3j 3 + 3j
5 3 + 3j 3 + 3j

Table 5. hyperbolic oblong numbers

n HOn HO−n

0 2j
1 2 + 6j
2 6 + 12j 2
3 12 + 20j 6 + 2j
4 20 + 30j 12 + 6j
5 30 + 42j 20 + 12j

Table 6. hyperbolic pentegonal numbers

n Hpn Hp−n

0 j
1 1 + 5j 2
2 5 + 12j 7 + 2j
3 12 + 22j 15 + 7j
4 22 + 35j 26 + 15j
5 35 + 51j 40 + 26j

By taking with positive subscript and negative subscript, we present a few hyperbolic triangular numbers,
hyperbolic triangular-Lucas numbers, hyperbolic oblong numbers and hyperbolic pentegonal numbers in the
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following Table 3, Table 4, Table 5 and Table 6.

Now, we will present Binet’s formula for HWn and in the remainder of the study the following notations are
needed:

α̂ = 1 + j, (2.4)

β̂ = j. (2.5)

Observe that the following identities are obtained:

α̂2 = 2 + 2j,

β̂2 = 1,

α̂β̂ = 1 + j.

Theorem 1. (Binet’s Formula) For any integer n, the n th hyperbolic generalized Guglielmo number is

HWn = (A1α̂+ β̂(A2 +A3)) + (α̂A2 + 2β̂A3)n+ α̂A3n
2. (2.6)

where α̂ , β̂ are given as (2.4)-(2.5).

Proof. Using Binet’s formula given below

Wn = A1 +A2n+A3n
2

where A1, A2, A2 are given as (1.7) and then we obtain following identity

HWn = Wn + jWn+1,

= (A1(j + 1) + j(A2 +A3)) + ((1 + j)A2 + 2jA3)n+A3 (j + 1)n2,

= (A1α̂+ β̂(A2 +A3)) + (α̂A2 + 2β̂A3)n+ α̂A3n
2. �

Specifically, for any integer n , the Binet’s Formula of the HTn, HHn, HOn and Hpn numbers are

HTn =
1

2
(β + (α+ 2β)n+ αn2), (2.7)

HHn = 3α̂, (2.8)
HOn = β + (α+ 2β)n+ αn2, (2.9)

Hpn =
1

2
(2β + (6β − α)n+ 3αn2). (2.10)

respectively.

The next step is to provide the generating function for the hyperbolic generalized Guglielmo numbers.

Theorem 2. The generating function for the hyperbolic generalized Guglielmo numbers is

fHW (x) =
HW0 + (HW1 − 3HW0)x+ (HW2 − 3HW1 + 3HW0)x

2

(1− 3x+ 3x2 − x3) . (2.11)

Proof. Let

fHW (x) =

∞∑
n=0

HWxn
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be generating function of the hyperbolic generalized Guglielmo numbers. Then, using the definition of the
hyperbolic generalized Guglielmo numbers, and substracting xg(x) and x2g(x) from g(x), we get

(1− 3x+ 3x2 − x3)fHW (x) =

∞∑
n=0

HWxn − 3x

∞∑
n=0

HWxn + 3x2
∞∑

n=0

HWxn − x3
∞∑

n=0

HWxn,

=

∞∑
n=0

HWxn − 3

∞∑
n=0

HWxn+1 + 3

∞∑
n=0

HWxn+2 −
∞∑

n=0

HWxn+3,

=

∞∑
n=0

HWxn − 3

∞∑
n=1

HWxn + 3

∞∑
n=2

HWxn −
∞∑

n=3

HWxn,

= (HW0 +HW1x+HW2x
2)− 3(HWx+HW1x

2) + 3HW0x
2

+

∞∑
n=3

(HWn − 3HWn−1 + 3HWn−2 −HWn−3)x
n,

= HW0 +HW1x+HW2x
2 − 3HW0x− 3HW1x

2 + 3HW0x
2,

= HW0 + (HW1 − 3HW0)x+ (HW2 − 3HW1 + 3HW0)x
2.

As a result, using (2.3) and rearranging above equation, the proof of the theorem is completed. �

Using above theorem we can write the the generating functions of the hyperbolic triangular, triangular-Lucas,
oblong and pentegonal numbers, respectively, as

fHWn(x) =
j + x

(1− 3x+ 3x2 − x3) ,

fHHn(x) =
(3 + 3j) + (−6− 6j)x+ (3 + 3j)x2

(1− 3x+ 3x2 − x3) ,

fHOn(x) =
2j + 2x

(1− 3x+ 3x2 − x3) ,

fHpn(x) =
j + (1 + 2j)x+ 2x2

(1− 3x+ 3x2 − x3) . �

3 Getting the Binet’s Formula from the Generating Function
Our next step involves exploring Binet’s formula of hyperbolic generalized Guglielmo number {HWn} utilizing
generating function fHWn(x).

Theorem 3. (Binet formula of hyperbolic generalized Guglielmo numbers)

HWn = (A1α̂+ β̂(A2 +A3)) + (α̂A2 + 2β̂A3)n+ α̂A3n
2. (3.1)

Proof. We write
∞∑

n=0

HWxn =
HW0 + (HW1 − 3HW0)x+ (HW2 − 3HW1 + 3HW0)x

2

(1− 3x+ 3x2 − x3) =
d1

(1− x) +
d2

(1− x)2 +
d3

(1− x)3 , (3.2)

so that
∞∑

n=0

HWnx
n =

d1
(1− x) +

d2
(1− x)2 +

d3
(1− x)3

=
d1(1− x)2 + d2(1− x) + d3

(1− x)3 .
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Hence, we arrive at

HW0 + (HW1 − 3HW0)x+ (HW2 − 3HW1 + 3HW0)x
2 = (d1 + d2 + d3) + (−2d1 − d2)x+ d1x

2.

Equalizing the coefficients of the same degree terms of x in the above equation, we get

HW0 = d1 + d2 + d3, (3.3)
HW1 − 3HW0 = −2d1 − d2,

HW2 − 3HW1 + 3HW0 = d1.

Then, if we solve (3.3) then we can write

d1 = 3HW0 − 3HW1 +HW2,

d2 = 5HW1 − 3HW0 − 2HW2,

d3 = HW0 − 2HW1 +HW2.

Therefore (3.2) can be written as

∞∑
n=0

HWnx
n = d1

∞∑
n=0

xn + d2

∞∑
n=0

(n+ 1)xn + d3

∞∑
n=0

n2 + 3n+ 2

2
xn,

=

∞∑
n=0

(d1 + d2(n+ 1) + d3
n2 + 3n+ 2

2
)xn,

=

∞∑
n=0

(HW0 +
1

2
(−HW2 + 4HW1 − 3HW0)n+

1

2
(HW2 − 2HW1 +HW0)n

2)xn.

As a result, we get the following identity

HWn = Â1 + Â2n+ Â3n
2

where

Â1 = HW0,

Â2 =
1

2
(−HW2 + 4HW1 − 3HW0),

Â3 =
1

2
(HW2 − 2HW1 +HW0).

Take note that the following equalities holds,

Â1 = HW0 (3.4)
= HW0 + jHW1

= (1 + j)W0 + j(
1

2
(−W2 + 4W1 − 3W0)) + j(

1

2
(W2 − 2W1 +W0))

= α̂A1 + β̂(A2 +A3),
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Â2 =
1

2
(−HW2 + 4HW1 − 3HW0) (3.5)

=
1

2
((−3W0 + 4W1 −W2) + j(−W0 +W2)

= (1 + j)(
1

2
(−W2 + 4W1 − 3W0))

+2j(
1

2
(W2 − 2W1 +W0))

= (âA2 + 2β̂A3),

Â3 =
1

2
(HW2 − 2HW1 +HW0) (3.6)

=
1

2
((W2 − 2W1 +W0) + j(W2 − 2W1 +W0)

= âA3.

Utilizing equations (3.4), (3.5) and (3.6) we obtain following equality.

HWn = (A1α̂+ β̂(A2 +A3)) + (α̂A2 + 2β̂A3)n+ α̂A3n
2. �

4 Some Identities
We now provide some special identities concerning the hyperbolic generalized Guglielmo sequence {HWn} . The
following theorem gives the Simpson’s formula for the hyperbolic generalized Guglielmo numbers.

Theorem 4. (Simpson’s formula for hyperbolic generalized Guglielmo numbers) For all integers n we have,∣∣∣∣∣∣
HWn+2 HWn+1 HWn

HWn+1 HWn HWn−1

HWn HWn−1 HWn−2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

∣∣∣∣∣∣ . (4.1)

Proof. For the proof, we use mathematical induction on n ≥ 0 . For n = 0 identity (4.1) is true. Now we
assume that (4.1) is true for n = k . Hence, the identity given below can be written∣∣∣∣∣∣

HWk+2 HWk+1 HWk

HWk+1 HWk HWk−1

HWk HWk−1 HWk−2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

∣∣∣∣∣∣ .
For n = k + 1, we obtain∣∣∣∣∣∣

HWk+3 HWk+2 HWk+1

HWk+2 HWk+1 HWk

HWk+1 HWk HWk−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3HWk+2 − 3HWk+1 +HWk HWk+2 HWk+1

3HWk+1 − 3HWk +HWk−1 HWk+1 HWk

3HWk − 3HWk−1 +HWk−2 HWk HWk−1

∣∣∣∣∣∣
= 3

∣∣∣∣∣∣
HWk+2 HWk+2 HWk+1

HWk+1 HWk+1 HWk

HWk HWk HWk−1

∣∣∣∣∣∣− 3

∣∣∣∣∣∣
HWk+1 HWk+2 HWk+1

HWk HWk+1 HWk

HWk−1 HWk HWk−1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
HWk HWk+2 HWk+1

HWk−1 HWk+1 HWk

HWk−2 HWk HWk−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
HWk+2 HWk+1 HWk

HWk+1 HWk HWk−1

HWk HWk−1 HWk−2

∣∣∣∣∣∣ .
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For the case n < 0 the proof has been seen similarly. Thus, the proof is completed. �

From Theorem 4.1 we get following corollary.

Corollary 5.

(a)

∣∣∣∣∣∣
HTn+2 HTn+1 HTn

HTn+1 HTn HTn−1

HTn HTn−1 HTn−2

∣∣∣∣∣∣ = −4(j + 1).

(b)

∣∣∣∣∣∣
HHn+2 HHn+1 HHn

HHn+1 HHn HHn−1

HHn HHn−1 HHn−2

∣∣∣∣∣∣ = 0.

(c)

∣∣∣∣∣∣
HOn+2 HOn+1 HOn

HOn+1 HOn HOn−1

HOn HOn−1 On−2

∣∣∣∣∣∣ = −32(j + 1).

(d)

∣∣∣∣∣∣
Hpn+2 Hpn+1 Hpn
Hpn+1 Hpn Hpn−1

Hpn Hpn−1 Hpn−2

∣∣∣∣∣∣ = −108(j + 1).

Next, the Catalan’s identity of hyperbolic generalized Guglielmo numbers is given.

Theorem 6. (Catalan’s identity) For all integers n and m, the following identity holds

HWn+mHWn−m−HW 2
n = −2m2(α̂(A2

2− 2A1A3 +A2A3 +2nA2A3)−A2
3(α̂− 2nα̂+m2α̂− 2n2α̂− 2)). (4.2)

Proof. Using the Binet Formula given below

HWn = (A1α̂+ β̂(A2 +A3)) + (α̂A2 + 2β̂A3)n+ α̂A3n
2.

The proof is completed. �

As special cases of the above theorem, we give Catalan’s identity of HTn, HHn, HOn and Hpn .

We present Catalan’s identity of hyperbolic triangular numbers.

Corollary 7. (Catalan’s identity for the hyperbolic triangular numbers) For all integers n and m, the following
identity holds:

HTn+mHTn−m −HT 2
n =

1

2
m2(−α̂− 4nα̂+m2α̂− 2n2α̂− 2).

Proof. Taking HWn = HTn in Theorem 6 we get the result that we have been seeking. �

We give Catalan’s identity of hyperbolic triangular-Lucas numbers.

Corollary 8. (Catalan’s identity for the hyperbolic Lucas-triangular numbers) For all integers n and m, the
following identity holds:

HHn+mHHn−m −HH2
n = 0.

Proof. Taking HWn = HHn in Theorem 6 we get the result that we have been seeking. �

We give Catalan’s identity of hyperbolic oblong numbers.

Corollary 9. (Catalan’s identity for the hyperbolic oblong numbers) For all integers n and m, the following
identity holds:

HOn+mHOn−m −HO2
n = 2m2 (−α̂− 4nα̂+m2α̂− 2n2α̂− 2

)
.
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Proof. Taking HWn = HOn in Theorem 6 we get the result that we have been seeking. �

We give Catalan’s identity of hyperbolic pentegonal numbers.

Corollary 10. (Catalan’s identity for the hyperbolic pentegonal numbers) For all integers n and m, the
following identity holds:

Hpn+mHpn−m −Hp2n =
1

2
m2 (11α̂− 12nα̂+ 9m2α̂− 18n2α̂− 18

)
.

Proof. Taking HWn = Hpn in Theorem 6 we get the result that we have been seeking. �

If we take m = 1 in Catalan’s identity, we get the Cassini’s identity for the hyperbolic generalized Guglielmo
numbers as follows.

Corollary 11. (Cassini’s identity for the hyperbolic generalized Guglielmo numbers) For all integers n, the
following identities holds.

(a) HTn+1HTn−1 −HT 2
n = −α̂n2 − 2α̂n− 1.

(b) HHn+1HHn−1 −HH2
n = 0.

(c) HOn+1HOn−1 −HO2
n = −4

(
n2α̂+ 2nα̂+ 1

)
.

(d) Hpn+1Hpn−1 −Hp2n = −9α̂n2 − 6α̂n+ 10α̂− 9.

Theorem 12. Let n and m be integers, Tn is triangular numbers, the following identity is true:

HWm+n = Tm−1HWn+2 + (Tm−3 − 3Tm−2)HWn+1 + Tm−2HWn. (4.3)

Proof. For n,m > 0 the identity (12) can be proved by mathematical induction on m. If m = 0 we get

HWn = T−1HWn+2 + (T−3 − 3T−2)HWn+1 + T−2HWn

which is true by seeing that T−1 = 0, T−2 = 1, T−3 = 3 . We assume that the identity given holds for m = k.
For m = k + 1, we get

HW(k+1)+n = 3HWn+k − 3HWn+k−1 +HWn+k−2

= 3(Tk−1HWn+2 + (Tk−3 − 3Tk−2)HWn+1 + Tk−2HWn)

−3(Tk−2HWn+2 + (Tk−4 − 3Tk−3)HWn+1 + Tk−3HWn)

+(Tk−3HWn+2 + (Tk−5 − 3Tk−4)HWn+1 + Tk−4HWn)

= (3Tk−1 − 3Tk−2 + Tk−3)HWn+2 + ((3Tk−3 − 3Tk−4 + Tk−5)

−3(3Tk−2 − 3Tk−3 + Tk−4))HWn+1 + (3Tk−2 − 3Tk−3 + Tk−4)HWn

= TkHWn+2 + (Tk−2 − 3Tk−1)HWn+1 + Tk−1HWn

= T(k+1)−1HWn+2 + (T(k+1)−3 − 3T(k+1)−2)HWn+1 + T(k+1)−2HWn.

Consequently, by mathematical induction on m, this proves (12). For the other case, the proof can be done
similarly. �

5 Linear Sums
In this section, we give the summation formulas of the hyperbolic generalized Guglielmo numbers with positive
and negatif subscripts.

Proposition 13. For the generalized Guglielmo numbers, we have the following formulas:
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(a)
∑n

k=0Wk = 1
12

(n+ 1)
((
2n2 − 2n

)
W2 − 2

(
2n2 − 5n

)
W1 +

(
2n2 − 8n+ 12

)
W0

)
.

(b)
∑n

k=0Wk+1 = 1
12

(n+ 1)
((
2n2 + 4n

)
W2 − 2

(
2n2 + n− 6

)
W1 +

(
2n2 − 2n

)
W0

)
.

Proof. For the proof, see Soykan [1]. �

Proposition 14. For the generalized Guglielmo numbers, we have the following formulas:

(a)
∑n

k=0W2k = 1
12

(n+ 1) (
(
8n2 − 2n

)
W2 − 2

(
8n2 − 8n

)
W1 +

(
8n2 − 14n+ 12

)
W0).

(b)
∑n

k=0W2k+1 = 1
12

(n+ 1) (W2

(
8n2 + 10n

)
− 2W1

(
8n2 + 4n− 6

)
+W0

(
8n2 − 2n

)
).

(c)
∑n

k=0W2k+2 = 1
12

(n+ 1) (
(
8n2 + 22n+ 12

)
W2 − 2

(
8n2 + 16n

)
W1 +

(
8n2 + 10n

)
W0).

Proof. For the proof, see Soykan [1]. �

Proposition 15. For the generalized Guglielmo numbers, we have the following formulas:

(a)
∑n

k=0W−k = 1
12

(n+ 1) (
(
2n2 + 4n

)
W2 − 2

(
2n2 + 7n

)
W1 +

(
2n2 + 10n+ 12

)
W0).

(b)
∑n

k=0W−k+1 = 1
12

(n+ 1) (
(
2n2 − 2n

)
W2 − 2

(
2n2 + n− 6

)
W1 +

(
2n2 + 4n

)
W0).

Proof. For the proof, see Soykan [1]. �

Proposition 16. For the generalized Guglielmo numbers, we have the following formulas:

(a)
∑n

k=0W−2k = 1
12

(n+ 1) (
(
8n2 + 10n

)
W2 − 2

(
8n2 + 16n

)
W1 +

(
8n2 + 22n+ 12

)
W0).

(b)
∑n

k=0W−2k+1 = 1
12

(n+ 1) (
(
8n2 − 2n

)
W2 − 2

(
8n2 + 4n− 6

)
W1 +

(
8n2 + 10n

)
W0).

(c)
∑n

k=0W−2k+2 = 1
12

(n+ 1)
((
8n2 − 14n+ 12

)
W2 − 2

(
8n2 − 8n

)
W1 +

(
8n2 − 2n

)
W0

)
.

Proof. For the proof, see Soykan [1]. �

Now, we will give the formulas of the sum of hyperbolic generalized Guglielmo numbers.

Theorem 17. For n ≥ 0, hyperbolic generalized Guglielmo numbers have the following formulas:

(a)
∑n

k=0HWk = 1
6
(n+1)((−n+jn2+2jn+n2)W2+(6j+5n−2jn2−jn−2n2)W1+(−4n+jn2−jn+n2+6)

W0).

(b)
∑n

k=0HW2k = 1
6
(n+ 1) ((−n+ 4jn2 + 5jn+ 4n2)W2 + (6j + 8n− 8jn2 − 4jn− 8n2)W1 + (−7n+ 4jn2 −

jn+ 4n2 + 6)W0).

(c)
∑n

k=0HW2k+1 = 1
6
(n+ 1) ((6j + 5n+ 4jn2 + 11jn+ 4n2)W2 + (6− 8jn2 − 16jn− 8n2 − 4n)W1 + (−n+

4jn2 + 5jn+ 4n2)W0).

Proof.

(a) Note that using (2.1), we get
n∑

k=0

HWk =

n∑
k=0

Wk + j

n∑
k=0

Wk+1

and using Proposition 13 the proof completed.

(b) Note that using (2.1), we get
n∑

k=0

HW2k =

n∑
k=0

W2k + j

n∑
k=0

W2k+1

135



Yılmaz and Soykan; Asian Res. J. Math., vol. 19, no. 12, pp. 120-147, 2023; Article no.ARJOM.111283

and using Proposition 14 the proof completed.

(c) Note that using (2.1), we get
n∑

k=0

HW2k+1 =

n∑
k=0

W2k+1 + j

n∑
k=0

W2k+2

and using Proposition 14 the proof completed. �

As a special case of the theorem (17, a) we present following corollary.

Corollary 18.

(a)
∑n

k=0HTk = 1
6
(n+ 1) (6j + (5j + 2)n+ (j + 1)n2).

(b)
∑n

k=0HHk = (3j + 3) (n+ 1) .

(c)
∑n

k=0HOk = 1
6
(n+ 1)(12j + (10j + 4)n+ (2j + 2)n2).

(d)
∑n

k=0Hpk = 1
6
(n+ 1) (6j + 9jn+ (3j + 3)n2).

As a special case of the Theorem 17 (b), we present following corollary.

Corollary 19.

(a)
∑n

k=0HT2k = 1
6
(n+ 1) (6j + (5 + 11j)n+ (4 + 4j)n2).

(b)
∑n

k=0HH2k = (3j + 3) (n+ 1) .

(c)
∑n

k=0HO2k = 1
6
(n+ 1) (12j + (10 + 22j)n+ (8 + 8j)n2).

(d)
∑n

k=0Hp2k = 1
6
(n+ 1) (6j + (3 + 21j)n+ (12 + 12j)n2).

As a special case of the Theorem 17 (c), we present following corollary.

Corollary 20.

(a)
∑n

k=0HT2k+1 = 1
6
(n+ 1) ((6 + 18j) + (11 + 17j)n+ (4 + 4j)n2).

(b)
∑n

k=0HH2k+1 = (3j + 3) (n+ 1) .

(c)
∑n

k=0HO2k+1 = 1
6
(n+ 1) ((12 + 36j) + (22 + 34j)n+ (8 + 8j)n2).

(d)
∑n

k=0Hp2k+1 = 1
6
(n+ 1) ((6 + 30j) + (21 + 39j)n+ (12 + 12j)n2).

Now, we present the formula that yield the summation formulas of the generalized Guglielmo numbers with
negative subscripts.

Theorem 21. For n ≥ 1, hyperbolic generalized Guglielmo numbers have the following formulas:

(a)
∑n

k=0HW−k = 1
6
(n+ 1) ((2n+jn2−jn+n2)W2+(6j−7n−2jn2−jn−2n2)W1+(5n+jn2+2jn+n2+6)

W0).

(b)
∑n

k=0HW−2k = 1
6
(n+ 1) ((5n+ 4jn2 − jn+ 4n2)W2 + (6j − 16n− 8jn2 − 4jn− 8n2)W1 + (11n+ 4jn2 +

5jn+ 4n2 + 6)W0).

(c)
∑n

k=0HW−2k+1 = 1
6
(n+ 1) ((6j − n+ 4jn2 − 7jn+ 4n2)W2 + (−4n− 8jn2 + 8jn− 8n2 + 6)W1 + (5n+

4jn2 − jn+ 4n2)W0).

Proof.
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(a) Note that using (2.1), we get
n∑

k=0

HW−k =

n∑
k=0

W−k + j

n∑
k=0

W−k+1

and using Proposition 15 the proof completed.

(b) Note that using (2.1), we get
n∑

k=0

HW−2k =

n∑
k=0

W−2k + j

n∑
k=0

W−2k+1

and using Proposition 16 the proof completed.

(c) Note that using (2.1), we get using Proposition (16), we get

n∑
k=0

HW−2k+1 =

n∑
k=0

W−2k+1 + j

n∑
k=0

W−2k+2

and using Proposition 16 the proof completed. �

As a special case of the Theorem 21 (a), we get the following corollary.

Corollary 22.

(a)
∑n

k=0HT−k = 1
6
(n+ 1) (6j + (−1− 4j)n+ (1 + j)n2).

(b)
∑n

k=0HH−k = (3j + 3) (n+ 1) .

(c)
∑n

k=0HO−k = 1
6
(n+ 1) (12j + (−2− 8j)n+ (2 + 2j)n2).

(d)
∑n

k=0Hp−k = 1
2
(n+ 1) (2j + (1− 2j)n+ (1 + j)n2).

As a special case of the Theorem 21 (b), we obtain the following corollary.

Corollary 23.

(a)
∑n

k=0HT−2k = 1
6
(n+ 1) (6j + (−1− 7j)n+ (4 + 4j)n2).

(b)
∑n

k=0HH−2k = (3j + 3) (n+ 1) .

(c)
∑n

k=0HO−2k = 1
3
(n+ 1) (6j + (−1− 7j)n+ (4 + 4j)n2).

(d)
∑n

k=0Hp−2k = 1
6
(n+ 1) ((6j) + (9− 9j)n+ (12 + 12j)n2).

As a special case of the Theorem 21 (c), we obtain the following corollary.

Corollary 24.

(a)
∑n

k=0HT−2k+1 = 1
6
(n+ 1) ((6 + 18j) + (−7− 13j)n+ (4 + 4j)n2).

(b)
∑n

k=0HH−2k+1 = (3j + 3) (n+ 1) .

(c)
∑n

k=0HO−2k+1 = 1
3
(n+ 1) ((6 + 18j) + (−7− 13j)n+ (4 + 4j)n2).

(d)
∑n

k=0Hp−2k+1 = 1
6
(n+ 1) ((6 + 30j) + (−9− 27j)n+ (12 + 12j)n2).

We will now provide a different theorem given above that allows us to calculate the finite sum of Gaussian
numbers.

Theorem 25. For every integer n, hyperbolic generalized Guglielmo numbers have the following formula
n∑

k=0

HWn = (A1α̂+ β̂(A2 +A3))(n+ 1) + (α̂A2 + 2β̂A3)
n(n+ 1)

2
+ α̂A3

n(n+ 1)(2n+ 1)

6
.
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Proof. The proof can be done easily by using identity (2.6).

Next we can get the following corollary by using (25).

Corollary 26.

(a)
∑n

k=0HTn = 1
2
(β(n+ 1) + (α+ 2β)n(n+1)

2
+ αn(n+1)(2n+1)

6
).

(b)
∑n

k=0HHn = 3α̂(n+ 1).

(c)
∑n

k=0HOn = β(n+ 1) + (α+ 2β)n(n+1)
2

+ αn(n+1)(2n+1)
6

.

(d)
∑n

k=0Hpn = 1
2
(2β(n+ 1) + (6β − α) n(n+1)

2
+ 3αn(n+1)(2n+1)

6
).

6 Matrices linked to Hyperbolic Generalized Guglielmo Numbers
In this part of our study we give some identities on some matrices linked to hyperbolic Guglielmo numbers.

By using the {Tn} which is defined by the third-order recurrence relation as follows

Tn = 3Tn−1 − 3Tn−2 + Tn−3

with the initial conditions T0 = 0, T1 = 1, T2 = 3 we present the square matrix A of order 3 as

A =

 3 −3 1
1 0 0
0 1 0


such that detA = 1 . Then, we give the following Lemma.

Lemma 27. For all integers n the following identity is true HWn+2

HWn+1

HWn

 =

 3 −3 1
1 0 0
0 1 0

n HW2

HW1

HW0

 .

Proof. First, for the proof we assume that n ≥ 0 . Lemma 27 can be given by mathematical induction on n. If
n = 0 we get  HW2

HW1

HW0

 =

 3 −3 1
1 0 0
0 1 0

0 HW2

HW1

HW0


which is true. We assume that the identity given holds for n = k. Thus the following identity is true.

 HWk+2

HWk+1

HWk

 =

 3 −3 1
1 0 0
0 1 0

k HW2

HW1

HW0

 .
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For n = k + 1, we get

 3 −3 1
1 0 0
0 1 0

k+1 HW2

HW1

HW0

 =

 3 −3 1
1 0 0
0 1 0

 3 −3 1
1 0 0
0 1 0

k HW2

HW1

HW0


=

 3 −3 1
1 0 0
0 1 0

 HWk+2

HWk+1

HWk


=

 3HWk+2 − 3HWk+1 +HWk

HWk+2

HWk+1


=

 HWk+3

HWk+2

HWk+1

 .

Consequently, by mathematical induction on n, the proof is completed. Note that the case n < 0 the proof
can be done similarly.

Note that

An =

 Tn+1 −3Tn + Tn−1 Tn

Tn −3Tn−1 + Tn−2 Tn−1

Tn−1 −3Tn−2 + Tn−3 Tn−2

 .

For the proof see [24].

Theorem 28. If we define the matrices NHW and EHW as follow

NHW =

 HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

 ,

EHW =

 HWn+2 HWn+1 HWn

HWn+1 HWn HWn−1

HWn HWn−1 HWn−2

 .

then the following identity is true:
AnNHW = EHW .

Proof. For the proof, we can use the following identities

AnNHW =

 Tn+1 −3Tn + Tn−1 Tn

Tn −3Tn−1 + Tn−2 Tn−1

Tn−1 −3Tn−2 + Tn−3 Tn−2

 HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

 ,

=

 a11 a12 a13
a21 a22 a23
a31 a32 a33
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where

a11 = HW2Tn+1 +HW1 (Tn−1 − 3Tn) +HW0Tn,

a12 = HW1Tn+1 +HW0 (Tn−1 − 3Tn) +HW−1Tn,

a13 = HW0Tn+1 +HW−1 (Tn−1 − 3Tn) +HW−2Tn,

a21 = HW2Tn +HW1 (Tn−2 − 3Tn−1) +HW0Tn−1,

a22 = HW1Tn +HW0 (Tn−2 − 3Tn−1) +HW−1Tn−1,

a23 = HW0Tn +HW−1 (Tn−2 − 3Tn−1) +HW−2Tn−1,

a31 = HW2Tn−1 +HW1 (Tn−3 − 3Tn−2) +HW0Tn−2,

a32 = HW1Tn−1 +HW0 (Tn−3 − 3Tn−2) +HW−1Tn−2,

a33 = HW0Tn−1 +HW−1 (Tn−3 − 3Tn−2) +HW−2Tn−2.

Using the Theorem 12 the proof is done. �

From Theorem 28, we have the following corollary.

Corollary 29.

(a) Let the matrices NHT and EHT are defined as following

NHT =

 HT2 HT1 HT0

HT1 HT0 HT−1

HT0 HT−1 HT−2

 ,

EHT =

 HTn+2 HTn+1 HTn

HTn+1 HTn HTn−1

HTn HTn−1 HTn−2

 ,

so that the identity given below is true for An , NHT , EHT

AnNHT = EHT ,

(b) Let the matrices NHO and EHO are defined as following

NHO =

 HO2 HO1 HO0

HO1 HO0 HO−1

HO0 HO−1 HO−2

 ,

EHO =

 HOn+2 HOn+1 HOn

HOn+1 HOn HOn−1

HOn HOn−1 HOn−2

 ,

so that the identity given below is true for An , NHO , EHO

AnNHO = EHO.

(c) Let the matrices NHH and EHH are defined as following

NHH =

 HH2 HH1 HH0

HH1 HH0 HH−1

HH0 HH−1 HH−2

 ,

EHH =

 HHn+2 HHn+1 HHn

HHn+1 HHn HHn−1

HHn HHn−1 HHn−2

 ,

so that the identity given below is true for An , NHH , EHH

AnNHH = EHH .
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(d) Let the matrices NHp and EHp are defined as following

NHp =

 Hp2 Hp1 Hp0
Hp1 Hp0 Hp−1

Hp0 Hp−1 Hp−2

 ,

EHp =

 Hpn+2 Hpn+1 Hpn
Hpn+1 Hpn Hpn−1

Hpn Hpn−1 Hpn−2

 .

so that the identity given below is true for An , NHp , EHp

AnNHp = EHp.

7 Conclusion
In the literature, there have been so many studies of the sequences of numbers and the sequences of numbers
were widely used in many research areas, such as physics, engineering, architecture, nature and art. In this study
we introduce hyperbolic generalized Guglielmo sequence and focused on four special cases such as hyperbolic
triangular numbers, hyperbolic Lucas-triangular numbers, hyperbolic oblong numbers and hyperbolic pentegonal
numbers.

• In section 1, we present some important information related to generalized Guglielmo numbers such as
reccurance relation, Binet’s formula, generating function and Cassani’s formula. Moreover we give some
information about hyperbolic numbers and some examples studied in the literature.

• In section 2, we define hyperbolic generalized Guglielmo numbers and four special cases such as hyperbolic
triangular numbers, hyperbolic Lucas-triangular numbers, hyperbolic oblong numbers and hyperbolic
pentegonal numbers. In addition, we introduce Binet’s formula and generating function of hyperbolic
generalized Guglielmo numbers and four special cases.

• In section 3, we define some identeties raleted to hyperbolic generalized Guglielmo sequence such as
hyperbolic triangular numbers, hyperbolic Lucas-triangular numbers, hyperbolic oblong numbers and
hyperbolic pentegonal numbers. e.g Simpson’s formula, Catalan’s identity and Cassani’s identity.

• In section 4, we define linear sum formulas related to hyperbolic generalized Guglielmo sequence and four
special cases such as hyperbolic triangular numbers, hyperbolic Lucas-triangular numbers, hyperbolic
oblong numbers and hyperbolic pentegonal numbers.

• In section 5, we define matrix formulation and some special theorem using matrix theory linked to
hyperbolic generalized Guglielmo sequence.

Linear recurrence relations (sequences) have many applications. Next, we list applications of sequences which
are linear recurrence relations.

First, we present some applications of second order sequences.

• For the applications of Gaussian Fibonacci and Gaussian Lucas numbers to Pauli Fibonacci and Pauli
Lucas quaternions, see [25].

• For the application of Pell Numbers to the solutions of three-dimensional difference equation systems, see
[26].

• For the application of Jacobsthal numbers to special matrices, see [27].

• For the application of generalized k-order Fibonacci numbers to hybrid quaternions, see [28].

• For the applications of Fibonacci and Lucas numbers to Split Complex Bi-Periodic numbers, see [29].
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• For the applications of generalized bivariate Fibonacci and Lucas polynomials to matrix polynomials, see
[30].

• For the applications of generalized Fibonacci numbers to binomial sums, see [31].

• For the application of generalized Jacobsthal numbers to hyperbolic numbers, see [32].

• For the application of generalized Fibonacci numbers to dual hyperbolic numbers.

• For the application of Laplace transform and various matrix operations to the characteristic polynomial
of the Fibonacci numbers, see [33].

• For the application of Generalized Fibonacci Matrices to Cryptography, see [34].

• For the application of higher order Jacobsthal numbers to quaternions, see [35].

• For the application of Fibonacci and Lucas Identities to Toeplitz-Hessenberg matrices, see [36].

• For the applications of Fibonacci numbers to lacunary statistical convergence, see [37].

• For the applications of Fibonacci numbers to lacunary statistical convergence in intuitionistic fuzzy
normed linear spaces, see [38].

• For the applications of Fibonacci numbers to ideal convergence on intuitionistic fuzzy normed linear
spaces, see [39].

• For the applications of k -Fibonacci and k−Lucas numbers to spinors, see [40].

• For the application of dual-generalized complex Fibonacci and Lucas numbers to Quaternions, see [41].

• For the application of special cases of Horadam numbers to Neutrosophic analysis see [42].

• For the application of Hyperbolic Fibonacci numbers to Quaternions, see [43].

We now present some applications of third order sequences.

• For the applications of third order Jacobsthal numbers and Tribonacci numbers to quaternions, see [44]
and [45], respectively.

• For the application of Tribonacci numbers to special matrices, see [46].

• For the applications of Gaussian generalizeg Guglielmo numbers, see [47]

• For the applications of Padovan numbers and Tribonacci numbers to coding theory, see [48] and [49],
respectively.

• For the application of Pell-Padovan numbers to groups, see [50].

• For the application of adjusted Jacobsthal-Padovan numbers to the exact solutions of some difference
equations, see [51].

• For the application of Gaussian Tribonacci numbers to various graphs, see [52].

• For the application of third-order Jacobsthal numbers to hyperbolic numbers, see [53].

• For the application of Narayan numbers to finite groups see [54].

• For the application of generalized third-order Jacobsthal sequence to binomial transform, see [55].

• For the application of generalized Generalized Padovan numbers to Binomial Transform, see [56].

• For the application of generalized Tribonacci numbers to Gaussian numbers, see [57].

• For the application of generalized Tribonacci numbers to Sedenions, see [58].

• For the application of Tribonacci and Tribonacci-Lucas numbers to matrices, see [59].

• For the application of generalized Tribonacci numbers to circulant matrix, see [60].

• For the application of Tribonacci and Tribonacci-Lucas numbers to hybrinomials, see [61].
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• For the application of hyperbolic Leonardo and hyperbolic Francois numbers to quaternions, see [62].

Next, we now list some applications of fourth order sequences.

• For the application of Tetranacci and Tetranacci-Lucas numbers to quaternions, see [63].

• For the application of generalized Tetranacci numbers to Gaussian numbers, see [64].

• For the application of Tetranacci and Tetranacci-Lucas numbers to matrices, see [65].

• For the application of generalized Tetranacci numbers to binomial transform, see [66].

We now present some applications of fifth order sequences.

• For the application of Pentanacci numbers to matrices, see [67].

• For the application of generalized Pentanacci numbers to quaternions, see [68].

• For the application of generalized Pentanacci numbers to binomial transform, see [69].
We now present some applications of second order sequences of polynomials.

• For the application of generalized Fibonacci Polynomials to the summation formulas, see [70].

• For some applications of generalized Fibonacci Polynomials, see [71].
We now present some applications of third order sequences of polynomials.

• For some applications of generalized Tribonacci Polynomials, see [72].
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