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Sample contamination explains
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albacares) in the Western and
Central Pacific Ocean

Giulia Anderson1*, Jed I. Macdonald1, Monal Lal2,3,
John Hampton1, Neville Smith1 and Ciro Rico4

1Oceanic Fisheries Programme, Fisheries Aquaculture and Marine Ecosystems Division, Pacific
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Anderson et al.’s 2019 paper ‘Close Kin Proximity in Yellowfin Tuna (Thunnus

albacares) as a Driver of Population Genetic Structure in the Tropical Western

and Central Pacific’ provided observations of genetically related individuals

among sampled yellowfin tuna. Resampling of some individuals from the

original study produced very different sequencing results when compared with

the original dataset, one possible explanation of which is cross-contamination

among the original samples. Re-analyses produced no indication of strong

population structure, including a very slightly and consistent heterozygosity

deficit with only one statistically significant pairwise FST value of 0.002. We

identified only one pair of genetically similar individuals that could still be an

artefact of lingering contamination. These new results therefore support a highly

connected population of yellowfin tuna in the study area, although we do not

rule out the potential for local adaptation driven by non-observed loci or genetic

sub-structure operating at more contemporary scales.

KEYWORDS

yellowfin tuna, population genetic structure, cross-contamination, Wahlund effect,
Pacific Ocean
1 Introduction

Fisheries science and management has the potential to benefit significantly from

incorporating genetic research in its toolbox. With the advent of next generation

sequencing (NGS) in the 2000’s, which made it feasible to apply direct sequencing

techniques on non-model species (including most commercially important fishes), the
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number and power of fisheries genetic and genomic applications

has expanded rapidly. Today, it is possible to test an individual fish

for species identification, provenance and age (Cusa et al., 2021;

Hallerman, 2021; Mayne et al., 2021), to explore stock structure

(Grewe et al., 2015; Brophy et al., 2020), estimate abundance

(Bravington et al., 2016; Ruzzante et al., 2019), and to monitor

ecosystems biodiversity through DNA metabarcoding (e.g. Oka

et al., 2020). The variety of questions that can be addressed with

confidence through the analysis of genome wide markers has

contributed to an increasing recognition of the value of

incorporating genetics into fisheries management in recent years

(Bernatchez et al., 2017; Moore et al., 2020).

However, genetic assessments come with some challenges and

limitations. Perhaps the most common challenge is ensuring DNA

integrity during sampling and laboratory handling. The presence of

cross-contamination in population genetic research can have a

significant impact on the accuracy of results by artificially

increasing the observed heterozygosity of individuals (Anderson

et al., 2023). Should such data be incorporated into stock assessment

without reservation, it could severely misguide management

decisions. One example is Anderson et al.‘s now-retracted 2019

paper ‘Close Kin Proximity in Yellowfin Tuna (Thunnus albacares)

as a Driver of Population Genetic Structure in the Tropical Western

and Central Pacific’, which reported the observation of individuals

within sample groups that were genetically so similar that they were

possibly siblings. These results reopened discussion about the life

history of the species in the Western and Central Pacific Ocean

(WCPO). However, a re-analysis of the Anderson et al. (2019)

dataset indicates that the original samples was cross-contaminated,

and that the sequencing results were consequently compromised.

We present here a revised interpretation of the Anderson et al.

(2019) study that incorporates new and higher-confidence

sequencing data based on amended laboratory handling protocols

and improved quality filtering protocols. In revisiting this study, we

have two main goals: 1) to correct the record regarding the retracted

study and to re-address the same question: is there fine- and/or

meso-scale population structure among yellowfin tuna in the

WCPO? And 2) to demonstrate the importance of vigilance

against cross-contamination in NGS datasets.
2 Methods

Research was conducted in two stages. First, in 2016, a selection

of yellowfin tuna samples was accessed from the Pacific Marine

Specimen Bank (PMSB), which is managed by the Pacific

Community (SPC) under the auspices of the Western and Central

Pacific Fisheries Commissions (WCPFC). Samples were selected

based on three criteria: 1) that individuals in each group of 30+

specimens were collected within six weeks and a 330 km radius

from each other, 2) that groups from three locations had been

collected in the same season, and 3) that three groups came from the

same EEZ and season, but in different years. The 279 selected

specimens, ranging in size between 28 and 140 cm fork length, were

thus organized into seven sample groups across six years and four

countries (Figure S1). These groups were from the Federated States
Frontiers in Marine Science 02
of Micronesia in 2009 (FM09) and 2011 (FM11), the Gilbert Islands

of Kiribati in 2009 (GL09), New Caledonia in 2014 (NC14), and

Papua New Guinea in 2009, 2011, and 2013 (PG09, PG11 and

PG13, respectively).

Frozen muscle tissue samples from the PMSB were subsampled

for genetic analysis by extracting a 2mm3 volume from the interior

of each tissue plug using a scalpel that was sterilized with ethanol

and flame exposure after any cut that contacted the sample surface.

The subsamples were then sent to Diversity Arrays Technology

(DArT PL) in Canberra, Australia, for DNA extraction and de novo

genetic sequencing using the DArTseq protocol. The sequencing

process includes some proprietary steps but was described by DArT

PL as follows (see also Sansaloni et al., 2011; Kilian et al., 2012; Ren

et al., 2015).

Following automated DNA extraction, samples were digested

using PstI and SphI restriction enzymes. Methylation-sensitive

enzymes were chosen to avoid highly repetitive, methylated

genomic regions that are minimally informative and which tend

to carry an elevated risk of misinterpreting paralogs as a single locus

during marker calling. Specialized adaptors were ligated to digested

DNA. Both PstI and SphI adapters included a PCR primer sequence

and Illumina flowcell attachment sequence, and the PstI adaptor

also included a unique, varying length barcode sequence for sample

recognition within pooled libraries. PCR selectively amplified

fragments capped with both adaptors, using the following

protocol: 1 min denaturation at 94°C, 30 cycles of 20 s at 94°C,

30 s and 58°C and 45 s at 72°C, and a final extension step of 7 min at

72°C. Libraries were then further amplified using bridge PCR on the

Illumina HiSeq 2500 platform and sequenced. The resulting data

was submitted to an in-house software, DArTsoft, which interprets

sequences from images of fluorescence taken during Illumina

sequencing and produces FASTQ files. Files were quality

controlled for sequences with 90% confidence at 50% of bases,

and split by barcode into individual specimens. Sequences were

aligned de novo. A separate algorithm, DArTsoft14, called SNPs and

further quality filtered for singletons and other suspected

sequencing errors. The final output produced by DArT PL was a

genotype report of all identified SNPs, their global call rate,

polymorphic information content, and their co-dominant status

in each sequenced specimen.

The resulting data was published in the now retracted paper by

Anderson et al. (2019).

The second stage of research began in 2021. As part of a larger

exploration of genetic cross-contamination in the context of

fisheries science, 94 samples from the Anderson et al. (2019)

dataset were re-sequenced. The selected samples included all

individuals that were identified as part of half- or full-sib pairs in

the Anderson et al. (2019) paper, plus a random selection of other

individuals to capture the impact of resampling on specimens that

were not involved in the kin-versus-contamination discussion. This

time, subcutaneous subsampling was conducted by a staff member

at SPC who sterilized cutting tools with 10% bleach followed by a

Milli-Q water wash between incisions, rather than detergent wash

followed by ethanol and flame exposure. This procedure has been

validated as a method to recover contaminated samples using

experimentally generated contaminated samples (Anderson et al.,
frontiersin.org
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2023). Samples were otherwise handled the same way as per

Anderson et al. (2019) and processed using the same methods,

except that DArT PL has since upgraded to an Illumina Novaseq

platform. The new samples were co-analysed with the 2016 dataset

during SNP calling. Data as returned by DArT PL is available at

DOI 10.17605/OSF.IO/YRFM3 (https://osf.io/yrfm3/).

Returned data was further processed to replicate the Anderson

et al. (2019) methods, but subjected to additional tests for cross-

contamination. First, the re-sequenced data was compared against

the original data from the same specimens and the version with

lower observed heterozygosity selected for further use, since

elevated observed heterozygosity is a common indicator of cross-

contamination (e.g. in Petrou et al., 2019). Subsequently, the dataset

was filtered for low quality loci using the same thresholds as

Anderson et al., 2019. All but the locus with the highest call rate

per contig was discarded, plus loci with call rate below 99%,

heterozygosity above 50%, read depth less than 7x, or minor allele

frequency less than 5%. Further, loci were tested for compliance

with Hardy Weinberg Expectations (HWE) at p > 0.0001, linkage

disequilibrium at < 60%, and departure from neutrality with respect

to local selective pressures at a false discovery rate of 0.1. Tests for

HWE and linkage disequilibrium (LD) were conducted with PLINK

1.9 (Chang et al., 2015) using the commands ‘—hardy’ and ‘–r2’,

respectively. Loci under potential selection were identified using

both OutFLANK v 0.2 (Whitlock and Lotterhos, 2015) and

BayeScan v 2.1 (Foll and Gaggiotti, 2008) with a burn in of 50000

steps and prior odds of 10, followed by 20 pilot runs of

5000 iterations.

Alternative filtering regimes were also explored with

heterozygosity cutoffs reduced to 90%, read depth increased to

10x, and a minor allele frequency reduced to 1.8% (equivalent to an

allele being present 5 times in the dataset), but these datasets were

less successful at flagging remaining contaminated individuals and

did not significantly change downstream analyses. Basic results

using these thresholds during final filtering are available in the

Supplementary Materials.

It should be noted that methods exist to filter contaminated loci

and individuals at this stage. The program ART-DeCo (Fiévet et al.,

2019) interprets an unbalanced allelic ratio per heterozygote loci as

contamination, and O’Leary et al. (2018) encourages use of the same

filter to address a number of potential data quality issues. The

present dataset does not include the allelic balance raw data

necessary for such analysis. We therefore proceeded with filters

more in line with those described in Guo et al. (2014), which include

heterozygosity rate and genetic similarity between individuals.

Namely, after the filtering described in the previous paragraph, all

specimens were again assessed for missing data and individual

heterozygosity, the latter calculated as the mean heterozygosity for

that individual across all the loci surveyed. First, specimens with

more than 20% missing data were removed from further analysis.

This threshold was selected because of a clear break in data quality,

with samples either demonstrating less than 20% missing data or

more than 40%. Second, we elected to set a threshold for removal

due to high heterozygosity as the median individual heterozygosity

value (calculated across all specimens) plus the difference between

median and minimum values. This calculation was preferred over z-
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score assessments (recommended by Anderson et al., 2023), after a

Shapiro-Wilk test in the ‘stats’ package in R (R Core Team, 2023)

indicated that the distribution of individual heterozygosity values

was not normal and therefore parametric assessments were not

appropriate. Our approach was not subject to parametric

assumptions about distributional spread, and produced similar,

though slightly more conservative thresholds for filtering (i.e.

0.2649) compared with approaches using z-scores (0.2884,

stabilized after five iterations) or using the mean individual

heterozygosity in the calculation instead of the median (0.2869).

After extraction, the remaining 247 individuals were filtered again

using the same quality metrics and thresholds as during preliminary

filtering. These steps produced a ‘final’ genotype dataset for

further analysis.

We again applied the Shapiro-Wilk test to test for normality of

the heterozygosity distribution in this final dataset.

Downstream population genetic analyses replicated those

conducted by Anderson et al. (2019). The inbreeding coefficient

(FIS) and adjusted expected and observed heterozygosity (Hnb and

Ho) values were obtained for each sample group using GENETIX v.

4.05 (Belkhir et al., 2004), while pairwise FST (Weir and Cockerham,

1984) was calculated using Arlequin v 3.5.2.2. ADMIXTURE v.

1.3.0 (Alexander et al., 2015) was used to recommend the number of

independent genetic clusters (k) among all sampled individuals.

Analyses were run with hypothetical k values ranging from 1 to 10,

and the optimal k value was selected based on a low coefficient of

variance. Discriminant Analyses of Principal Components (DAPC)

in the ‘adegenet’ R package v 2.1.10 (Jombart and Ahmed, 2011)

was first applied to infer cryptic structure within the dataset using k-

means clustering to determine the number of underlying groups.

DAPC was also applied using the sampling units as a priori groups

to visualize the heterogeneity among geographic populations and

sampling years. In both analyses, cross validation was used to

determine the number of principal components retained.

Additionally, in keeping with the original study, we explored

relatedness using three software programs, RelateAdmix (Moltke

and Albrechtsen, 2014), KING v 2.3.1 (Manichaikul et al., 2010) and

COANCESTRY v. 1.0.1.7 (Wang, 2011). The algorithm employed

in RelateAdmix maximizes its accuracy when working with

admixed populations, which is one plausible population model

for tuna. Meanwhile KING employs an algorithm that is robust

to unknown population structure. COANCESTRY allows for the

consideration of inbreeding, which was a relevant feature for some

sample groups in the original study. RelateAdmix requires a priori

information about general genetic clustering, which was recycled

from ADMIXTURE. The output.P and.Q files from the selected

ADMIXTURE analysis (k=1) were submitted to RelateAdmix, and

output values used to calculate q = (k1/4) + (k2/2), where k1 and k2
are respectively the probabilities of sharing one or two alleles from a

shared ancestor, and q is the expected fraction of two genomes that

is identical by descent. KING was run via command “related” and

produces the kinship coefficient j, plus a synthesis of dyads that are
related in the first, second and third degree. COANCESTRY was

run using the TrioML algorithm, which was empirically

demonstrated to best describe the relatedness coefficient (r)

among the seven algorithms available in that software package
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after conducting preliminary simulations as described in the

COANCESTRY user manual.

RelateAdmix and COANCESTRY both produce relatedness

coefficients, but no recommendation on how to differentiate full

sibling pairs from half siblings and more distantly related

individuals. To determine cut-off values for categorizing

relatedness coefficients, we again used COANCESTRY to simulate

200 dyads each of full sibling, half siblings, first cousins, and

unrelated individuals based on the same allele frequencies as the

original population samples. The simulated genotypes were then

submitted to both COANCESTRY and RelateAdmix, and results

used to calculate the lower 95% confidence interval of the mean of

each group, assuming a normal distribution. These values became

the cut-offs for delineating full- and half-siblings in empirical

datasets in the respective software programs.
3 Results

Of the 94 specimens that were resampled in 2021, 73 were

selected to replace existing data in the original dataset. The updated

dataset including all 279 non-duplicated individuals was filtered

and retained 1,417 of 63,351 loci (Table 1). This dataset was used to

assess individuals for missing data and high heterozygosity. The

Shapiro-Wilk test conducted on the Ho distribution at this stage

produced W = 0.519 and p < 2.2e-16, and the associated skewness

coefficient was 4.77, indicating marked divergence from normality

(Figure S2). Four individuals were then removed due to missing

data, and another 29 due to high heterozygosity. Subsequently,

filtering again with the same thresholds but only 247 high quality

individuals, 3,781 loci passed all quality checks (Table 1).

The Shapiro-Wilk test on the Ho distribution for these

remaining 247 individuals produced W = 0.940 and p = 1.72e-8,

with skewness coefficient 0.50, (Figure S2). Although the continued

non-conformity to a normal distribution suggests that our final

genotypic dataset is not entirely free of all contamination, based on
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demonstrated in Petrou et al. (2019) and Anderson et al. (2023), the

substantial reduction in the amount of skewness suggests that cross-

contamination is likewise much lessened. We therefore proceeded

with a reassessment of the yellowfin tuna population structure

results published in Anderson et al. (2019).

Observed and adjusted expected heterozygosity values (Ho and

Hnb) and inbreeding coefficients (FIS) for each sample group are

summarized in Table 2. All sample groups feature Hnb values of

0.26-0.27 and a slight heterozygosity deficit of 0.01-0.02 (on a scale

of 0 to 1). Likewise, there was a small, yet consistent indication of

inbreeding (0.05-0.07 on a scale of -1 to 1). The fixation index FST is

presented in Table 3 and showed only values of 0.001-0.002 (on a

scale of 0-1). Furthermore, only the comparison of FM11 and PG13

was statistically significant at p < 0.05 after Benjamini and Yekutieli

(2001) FDR correction, and the corresponding FST estimate was

only 0.002. K-means clustering recommended a k of 1, indicating

strong evidence for the existence of only one underlying population.

Similarly, the DAPC results with a priori groups showed minimal

differentiation among sample groups (Figure 1).

A full, side-by-side comparisons of these results to data from the

original 2019 paper is available in the Supplementary Materials

(Tables S1-S5, Figure S3) to demonstrate the changes brought about

by resequencing and the updated tissue extraction procedures and

data filtering steps. For example, heterozygosity excess of the FM09

and FM11 sample groups dropped from 0.07 to -0.015, and FIS
increased from -0.255 to 0.065.

Finally, there was strong agreement between relatedness

analyses on the (minimal) presence of kin among specimens.

COANCESTRY, RelateAdmix and KING all identified the same,

lone pair of individuals showing a relatedness coefficient within the

range of simulated half sibs in the entire dataset, along with one or

two cousin-level pairs. COANCESTRY and RelatedAdmix also

reported several thousand dyads with relatedness coefficients

lower than the threshold for cousin pairs, but more than would

be expected from unrelated individuals (specifically, 8399 dyads

using COANCESTRY and 5727 using RelatedAdmix), while KING

identified 86 such dyads. Direct comparisons of these results with

the results of Anderson et al. (2019) are available in Table S5 in the

Supplementary Materials.
4 Discussion

The results presented here, in contrast to the conclusions of the

retracted paper (Anderson et al., 2019), leave little evidence of

strong genetic population structure for yellowfin tuna across our

study region in the WCPO. Previous studies that generated levels of

genetic divergence comparable to those inferred in this work have

been hesitant to infer biologically significant structure patterns (e.g.

Gonzalez et al., 2008). The observed heterogeneity and deficit in

heterozygotes can most likely be attributed to transient ecological

assemblages (Nikolic et al., 2020), which our sampling featuring

spatially and temporally restricted collections was well designed to

highlight. The findings of this study are consistent with expectations

for a tropical tuna species like yellowfin tuna, which is highly mobile
TABLE 1 Number of loci retained through quality filtering process for
initial data exploration (‘Initial’) and the final dataset (‘Final’).

Filtering Step

Dataset

Initial Final

Initial number of loci 63351 63351

One SNP per contig 38910 38910

Call rate (>99%) 7393 13824

Read Depth (>7x) 6993 11982

Heterozygosity (<50%) 6907 11976

MAF (> 0.05) 1422 3866

HWE (p<0.0001) 1417 3784

LD (60%) 1417 3781

LUPS (FDR=0.1) 1417 3781
MAF, Minor allele frequency; HWE, Hardy-Weinberg expectation; LD, Linkage
disequilibrium; LUPS, Loci under potential selection; FDR, False discovery rate.
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and widely distributed. Previous research has shown that adult

yellowfin tuna populations exhibit genetic structuring at broad

spatial scales (e.g. [Appleyard et al., 2001; Grewe et al., 2015;

Pecoraro et al., 2018; Evans et al., 2019; Grewe et al., 2019;

Proctor et al., 2019]; and reviewed in [Moore et al., 2020; Hamer

et al., 2023]). The structure patterns described in these studies may

be influenced by factors such as incomplete migration and the

presence of semi-permeable oceanographic barriers (Pecoraro

et al., 2018).

The lack of genetic variation we observed in adults and sub-adults

from across the study region is also consistent with reproductive studies

and historical larval collections that suggest that yellowfin tuna can

spawn year-round across a large, continuous area in tropical waters of

the WCPO, leading to high potential for mixing during early life stages

(Nishikawa et al., 1985; Schaefer, 2001; Reglero et al., 2014; Muhling

et al., 2017; Ijima and Jusup, 2023). Small juvenile yellowfin tuna (i.e.

~20-40 cm fork length) are regularly caught in purse seine, pole and

line and ringnet fisheries throughout the equatorial and tropical

WCPO, from Indonesia to Hawaii and from the Solomon Islands to

south of Japan (Hamer et al., 2023; Macdonald et al., 2023). Taken

together, these findings indicate that juvenile yellowfin tuna are

widespread across our study region, consistent with the widespread

larval distribution. No discrete (in space or time) spawning or nursery

areas have been identified to date in this region. That said, genetic

assessments of larval or early juvenile stages may reveal more structure

due to limited mobility and/or mixing opportunities during those life
Frontiers in Marine Science 05
phases. Indeed, an excess of sibship was found among 5-11 day old

larvae of the related Atlantic bluefin tuna samples by McDowell et al.

(2022). Further representative sampling of larvae and juveniles has long

been identified as a research need to improve our understanding of

tropical tuna population structure, and plans are afoot to obtain larval

samples during upcoming collaborative research cruises.

While the steps taken in this work to address cross-contaminations

have improved the reliability of the corrected dataset, caution should

still be exerted during interpretation of the results. The present study

implemented enhanced protocols for sample handling and post-

sequencing checks, resulting in a significant reduction in sample

cross-contamination compared with the Anderson et al. (2019)

dataset. However, it is probable that some traces of contamination

persist in the data. This hypothesis is supported by the non-normal

distribution of Ho (depicted in Figure S2) and the correlation between

high heterozygosity with elevated genetic similarity in relatedness

assessments, in line with indicators of cross-contamination proposed

by Guo et al. (2014). In all three evaluations of relatedness, twelve out of

the thirteen dyads with the greatest relatedness coefficients consist of at

least one individual whose heterozygosity is above the 90th percentile.

The remaining dyad consists of two individuals with heterozygosity

above the 75th percentile. The dyad exhibiting the strongest relatedness

coefficient in which both individuals that fall below the 75th percentile

is related at the 4th degree (e.g. half-first cousins), a degree of similarity

more likely to arise naturally and not through contamination effects.

The sole statistically significant pairwise FST value could potentially be
TABLE 2 Number of samples in the final dataset (n, followed by the number of samples extracted during filtering in parentheses), adjusted expected
heterozygosity (Hnb), observed heterozygosity (Ho) and inbreeding coefficient (FIS) produced by the final dataset.

Sample Group

New Results

n Hnb Ho FIS

FM09 26 (11) 0.2659 0.2489 0.06498

FM11 39 (4) 0.2652 0.2477 0.06677

GL09 38 (5) 0.2636 0.2462 0.06686

NC14 23 (3) 0.2623 0.2468 0.06040

PG09 41 (2) 0.2616 0.2428 0.07261

PG11 43 (1) 0.2622 0.244 0.07028

PG13 37 (6) 0.2656 0.2525 0.04977
front
TABLE 3 Fixation index (FST) values below the diagonal and related p-values above the diagonal.

FM09 FM11 GL09 NC14 PG09 PG11 PG13

FM09 — 0.7291 1 1 0.2047 0.7291 0.2047

FM11 0.002 — 0.866 0.7291 0.2047 0.7703 0.0383

GL09 0.001 0.001 — 1 0.7291 1 0.2047

NC14 0.002 0.002 0.001 — 1 1 0.683

PG09 0.002 0.002 0.001 0.001 — 0.7291 0.2047

PG11 0.002 0.001 0.001 0.001 0.001 — 0.6507

PG13 0.002 0.002 0.002 0.002 0.002 0.001 —
i

P-values are adjusted using Benjamini and Yekutieli (2001)’s FDR method. Significant values are bold.
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compromised considering that the two groups involved in the

comparison (FM11, PG13) contained a substantial proportion of

individuals that were removed from the dataset during filtration

based on our criteria to infer contamination.

Bioinformatic pipelines such as those developed by Simion et al.

(2018) and Fiévet et al. (2019) are available to identify and filter out

compromised loci and individuals from next generation sequencing

datasets. These methods require sequencing read processing and SNP

calling to be done in house. This was not possible in the present study,

which sought to remain compatible with the Anderson et al. (2019)

dataset by utilising DArT PL services to process raw data through SNP

calling and to undertake preliminary quality filtering. Regardless, given

the strength of evidence against the presence of strong population

structure as shown by our new data, we believe that additional filtering

steps are unlikely to alter this overall conclusion.

Some discussion is warranted on the likely source of contamination

events in the original dataset presented by Anderson et al. (2019).

Handling of samples always introduces the risk of contamination, even

by experienced field and laboratory staff. Even professional sequencing

labs can be a potential source of contamination (Ballenghien et al.,

2017). The use of ethanol and flame treatment during the sample

preparation phase was also possibly a weak point, since ethanol does

not denature DNA and heat is likewise not recognized as a highly

effective treatment (Wang et al., 2014). However, if this was the sole
Frontiers in Marine Science 06
source of contamination, then samples would likely have been

compromised at the same rate across groups. Instead, the

concentration of contamination among Micronesian samples from

FM09 and FM11 suggests that local deviations in onboard or onshore

sampling protocols may have increased the rate and intensity of

contamination in those groups. Situations like this directly highlight

the need for the development of standard operating procedures for

genetic sampling (Anderson et al., 2023) and effective communication

of these SOPs among fisheries observers and other biological samplers.

Notably, the success of resequencing in dramatically reducing

contamination rates in the present study further validates the

subsampling protocol proposed by Anderson et al. (2023) as an

effective means of recovering compromised tissue samples. The

approach is applicable to samples obtained either at sea or in port, in

cases where standard operating procedures for genetic sampling were

not adhered to, where the history of sample handling is unknown, or

when tissue collection was primarily intended for non-genetic purposes

(e.g. muscle stable isotope analysis – Lorrain et al., 2020).

Finally, it must be acknowledged that this study is still only

assessing a subset of de novo SNP loci from the yellowfin tuna

genome, and only assesses adults and sub-adults. There remains the

potential for different conclusions using different loci, including

alternative neutral loci and adaptive loci (especially given ongoing

efforts to sequence full reference genomes for the various tuna species),
FIGURE 1

Discriminant analysis of principal components using 60 principal components, 6 discriminant functions, and a priori groupings. A synthesized
distribution of specimens reflecting their genetic similarity and coloured according to group.
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different life stages, and different data types. Evidence of population

genetic structure among yellowfin tuna at a Pacific-wide scale has been

provided (e,g. Grewe et al., 2015; Pecoraro et al., 2018). However, we

note no additional peer reviewed nuclear genome research has been

published on yellowfin tuna since 2019. We encourage continued

exploration of the population dynamics and genetic structure of

yellowfin tuna both at the local and ocean-basin scale, particularly

through collaborative assessments, ideally combining inference from

multiple data sources (e.g. genetics, otolith chemistry and shape

analysis, tagging, and modelling– e.g. Sakamoto et al., 2019;

Taillebois et al., 2021). We also encourage ongoing efforts to publish

reference genomes for yellowfin tuna and the pursuit of further larval

and young juvenile samples.
5 Conclusion

We revisited data published in 2019 that indicated population

genetic structure among yellowfin tuna in theWCPO. By resequencing

a suspect part of the dataset, we found that the results were not

reproducible. Instead, our new results indicate a lack of evidence for

genetic population substructuring across the study area spanning

Papua New Guinea to the Gilbert Islands, Kiribati, over six years of

sample collection. The most likely explanation is that the original

dataset was compromised by cross-contamination, which was reduced

through the amended laboratory handling and data filtering protocols

used in the present study.

It is possible that population structure exists but was not

observed in this study, in particular local adaptation driven by

loci under selection not captured by our genotyping assay. Structure

may also be revealed when sampling alternative life stages as shown

in other tunas. Finally, population structure can occur at time scales

that are important to management processes but not measurable by

genetic processes. We therefore encourage continued exploration of

yellowfin tuna population structure using a diverse array of

methods. We also highlight the need for the refinement and roll-

out of sampling standard operating procedures for fisheries genetics

and genomics applications that reduce the potential for sample

cross-contamination from the point of collection to sequencing.
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