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Abstract

Gravitational microlensing is a powerful method for discovering isolated stellar-mass black holes (ISMBHs).
These objects make long-duration microlensing events. To characterize these lensing objects by fully resolving the
microlensing degeneracy, measurements of parallax and astrometric deflections are necessary. Microlensing events
due to ISMBHs have considerable astrometric deflections but small parallax amplitudes, M1E lp µ , where Ml is
the lens mass. We numerically investigate the possibility of inferring parallax amplitude from astrometric
deflection in microlensing events due to ISMBHs. The parallax amplitude in astrometric deflections is proportional
to the relative parallax πrel, which means that it (i) does not strongly depend on Ml and (ii) increases in
microlensing observations toward the Magellanic Clouds. We assume that these events will be potentially detected
in upcoming microlensing surveys such as (1) the Roman observations of the Galactic bulge (GB) and (2) the
LSST observations of the Large Magellanic Cloud (LMC) and that the Extremely Large Telescope (ELT) will
follow up on them with one data point every 10 days. We evaluate the probability of inferring parallax amplitude
from these observations by calculating the Fisher and covariance matrices. For the GB, the efficiencies for
discerning parallax amplitudes with a relative error of <4% through astrometric and photometric observations are
3.8% and 29.1%, respectively. For observations toward the LMC, these efficiencies are 41.1% and 23.0%,
respectively. Measuring parallax amplitude through astrometric deflections is plausible in GB events with a lens
distance of 2.7 kpc and in LMC halo lensing. By monitoring long-duration microlensing events, the ELT can
detect astrometric deflections and their parallax-induced deviations.

Unified Astronomy Thesaurus concepts: Gravitational microlensing (672); Astrometric microlensing effect (2140);
Annual microlensing parallax (2149); Monte Carlo methods (2238); Computational methods (1965)

1. Introduction

A short time after the famous paper by Paczynski (1986)
concerning the detection of massive compact halo objects
(MACHOs) in the Galactic halo through continuous observa-
tions toward the Magellanic Clouds (MCs), three microlensing
groups, i.e., the Expérience de Recherche d’Objets Sombres
(Aubourg et al. 1993), MACHO (Wu 1994), and the Optical
Gravitational Lensing Experiment (Szymanski et al. 1994),
searched for ongoing microlensing events. The first generation
of microlensing surveys observed MCs for 10 yr to find the
source stars that were being lensed by massive objects inside
the Galactic halo. The most important result of these
observations was the determination of an upper limit on the
contribution of MACHOs in the Galactic halo (Alcock et al.
1998, 2000a; Lasserre et al. 2000). Since MACHOs have only
gravitational interactions, studying and characterizing these
objects is possible through gravitational microlensing
observations.

The second generation of survey microlensing groups
changed the observational direction from MCs to the Galactic
bulge (GB) and spiral arms to discover extrasolar planets inside
the Galactic disk and, additionally, probe the Galactic structure
(Kiraga & Paczynski 1994; Albrow et al. 1996; EROS
Collaboration et al. 1999; Alcock et al. 2000b; Udalski et al.
2000; Moniez et al. 2017). In planetary microlensing events, an
extrasolar planet (exoplanet) is usually orbiting the lens object
and makes a deviation in the magnification curve (see, e.g.,

Mao & Paczynski 1991; Gould & Loeb 1992). So far, more
than 204 extrasolar planets have been confirmed in microlen-
sing observations.1 This population of exoplanets discovered
by gravitational microlensing observations has the following
special properties. (a) These exoplanets lie mostly beyond the
snowline of their parent stars. (b) In microlensing events
toward the GB, planetary lensing systems are typically found at
radial distances of greater than 1000 pc from the observer. (c)
These exoplanets are orbiting the host stars, which are usually
very dim or dark (see, e.g., Gaudi 2012). Gravitational
microlensing is therefore complementary to other methods for
discovering extrasolar planets. In other methods (e.g., transits,
radial velocimetry, astrometry), planetary systems must be
close to the observer, and their host stars must be bright.
Applications of survey microlensing observations are not

limited to the mentioned cases. For example, a new population
of free-floating planets in the Galactic disk was discovered
through densely observing the GB (Mróz et al. 2017; Sumi
et al. 2023). Discovering isolated stellar-mass black holes
(ISMBHs) inside the Galactic disk is another outstanding
application of gravitational microlensing (Agol et al. 2002;
Bennett et al. 2002; Mao et al. 2002; Lu et al. 2016; Lam et al.
2022; Sahu et al. 2022). Such isolated objects most likely do
not emit X-ray emissions. Hence, they are only discernible
through probing long-duration and achromatic amplifications in
the light of background source stars.
Despite such vast and unique applications of gravitational

microlensing, there is a problem when interpreting microlen-
sing observations: degeneracy (see, e.g., Sajadian 2023).
However, microlensing degeneracies can be resolved through
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measuring both (a) the parallax amplitude in the magnification
factor (Gould 1994) and (b) the finite-source effect (Witt &
Mao 1994). Instead of resolving the finite-source effect,
measuring either lensing-induced astrometric deflection in the
source trajectory (see, e.g., Hog et al. 1995; Miyamoto &
Yoshii 1995; Walker 1995; Miralda-Escude 1996; Dominik &
Sahu 2000) or the images’ distance at the time of the closest
approach (Dong et al. 2019; Zang et al. 2020), or resolving the
source and lens and measuring proper motions with adaptive
optics observations (Bhattacharya et al. 2018; Terry et al.
2022), will help to resolve the microlensing degeneracy. The
parallax effect refers to the observer’s motion around the Sun.
This effect causes some periodic perturbations in the micro-
lensing light curves (Gould 1994).

In long-duration microlensing events due to dark and
massive lens objects (e.g., ISMBHs), this method for resolving
microlensing degeneracy is somewhat challenging because the
normalized parallax amplitude decreases as M1E lp µ ,
where Ml is the lens mass (see, e.g., Karolinski & Zhu 2020).
However, the scale of the astrometric deflection in the source
trajectory (i.e., θE, which is the angular Einstein radius) in these
events is considerable because ME lq µ . In this work, we
discuss the possibility of discerning parallax amplitudes in
astrometric deflections of source trajectories. We show that
parallax-induced perturbations in the astrometric deflection are
directly proportional to the relative parallax πrel and do not
depend strongly on the lens mass. Hence, measuring the
parallax amplitude is possible in the astrometric deflections of
source trajectories in microlensing events toward MCs.
However, microlensing events due to more massive lens
objects are more suitable because they have considerable
astrometric deflections in source trajectories.

The paper is organized as follows. In the first subsection of
Section 2, we explain the formalism of astrometric microlen-
sing events by including the parallax effect. Then, in
Sections 2.2 and 2.3, by simulating astrometric microlensing
events due to ISMBHs by considering the parallax effect
toward the GB and Large Magellanic Cloud (LMC), respec-
tively, we statistically evaluate parallax-induced deviations. In
Section 3, we do realistic Monte Carlo simulations based on
upcoming survey microlensing observations by the Roman
(Spergel et al. 2015) and Vera C. Rubin Observatory’s Legacy
Survey of Space and Time (LSST; Ivezic et al. 2009)
telescopes. We also consider potential follow-up observations
with the Extremely Large Telescope (ELT) by taking one data
point every 10 days (Vernin et al. 2011). In these simulations,
we numerically calculate the Fisher and covariance matrices to
evaluate the probability of discerning parallax amplitudes
through astrometric and photometric observations. In Section 4,
we explain the results and conclude.

2. Parallax Effect in Astrometric Microlensing

In this section, we aim to answer this question: in what kind
of microlensing events are the parallax amplitudes in
astrometric deflections more realizable than those in the
magnification curves? With this aim, in Section 2.1, we first
review our formalism for generating astrometric microlensing
events by considering the parallax effect. Then, in Sections 2.2
and 2.3, we simulate these events and statistically evaluate
parallax-induced perturbations.

2.1. Formalism

In a gravitational microlensing event, the light of a
background star is temporarily magnified due to passing
through the gravitational potential of a collinear and foreground
massive object (Einstein 1936). In this phenomenon from a
background star, two images are formed whose angular
positions and magnification factors are, respectively,
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where u is the angular distance of the source star from the lens
object normalized to the angular Einstein radius (i.e., θE, the
angular radius of the images’ ring when the lens, source star,
and observer are completely aligned), and û is a unit vector
representing the direction of u projected on the sky plane.
Hence, the locations of two images and the source star are

over a straight line in the sky plane. The angular distance of
these images (;2θE) is too small to be resolved because θE is
on milliarcsecond scales. For instance, for a common lens
object (e.g., an M dwarf star) in the Galactic disk (Dl; 4 kpc,
where Dl is the lens distance from the observer) while the
source star is inside the GB (i.e., the source distance from the
observer is Ds; 8 kpc), it is given by
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where ( )D Dau 1 1rel l sp = - is the so-called relative paral-
lax, au is astronomical units, and M8.14 mas 1k = - has a
constant value. Therefore, we receive the total light of images
which is magnified, the so-called gravitational microlensing
event. The magnification factor due to both images is given by
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In a microlensing event, in addition to the light magnification
of a background star, the brightness center of these images does
not coincide with the source’s center. The astrometric
deflection in the source position is given by
(Hog et al. 1995; Miyamoto & Yoshii 1995; Walker 1995;
Miralda-Escude 1996)
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which is a function of time. This shift is a dimensional parameter
and could be used for measuring the angular Einstein radius.
By ignoring the motion of the observer around the Sun (i.e.,

we first assume that the observer is the Sun), the vector of the
relative lens–source position in the heliocentric frame, ue, is
expressed as a function of time t,

( ) ( )u t t t
u
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where u0 is the lens impact parameter (the closest lens–source
distance), t0 is the time of the closest approach, and
tE= θE/μrel,e is the so-called Einstein crossing time, the time
of crossing the angular Einstein radius. Here μrel,e is the
angular lens–source relative velocity as measured in the
heliocentric frame.
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We now add the Earth’s motion around the Sun (by assuming
that the observer is on the Earth), the so-called parallax effect. In
gravitational microlensing events, the parallax effect alters the
angular lens–source relative velocity as

( ) ( ) v t
au

, 6rel rel,
rel

o,m m p
= + ^

where vo,⊥ is the vector of the Earth’s velocity with respect to
the Sun projected on the sky plane (normal to the line of sight).
Therefore, the parallax effect changes the vector of the relative
lens–source distance as measured from the Earth as
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where πE= πrel/θE is the relative lens–source parallax normal-
ized to the angular Einstein radius, and Δo,n is an extra
displacement in the source position with respect to the lens due
to the Earth’s motion, normalized to astronomical units.

We note that in real observations, the Earth’s motion around the
Sun is completely known, but (i) πE and (ii) the angle between the
Earth’s velocity projected on the sky plane and the source
trajectory are unknown. For that reason, the parallax effect
includes two new variables in the lensing formalism, i.e., πE and
ξ. Since the relative source–lens trajectory projected on the sky
plane has a fixed direction (i.e., the Sun and other stars move on
straight lines during lensing timescales), we define ξ as the angle
between vo,⊥ and μrel,e at the time of closest approach t0.

The second term in Equation (7) changes periodically and
causes a periodic perturbation in the magnification curve and
astrometric deflection in the source trajectory. The amplitude of
this perturbation in the magnification factor is πE because the
magnification factor A depends only on u.

The astrometric deflection in the source trajectory by
considering the parallax effect is
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E o, np p D= + D + . The first term
makes an ellipse on the lens plane (with small perturbations),
and the second term makes a periodic perturbation over that
ellipse. The amplitude of these periodic perturbations is
proportional to πrel. However, the larger the θE, the higher
the detectability of these perturbations. Because (i) the
amplitude of the astrometric deflection is proportional to θE
and (ii) the higher θE makes a lower πE, the second term in
Equation (8) increases. According to Equation (2), long-
duration microlensing events due to ISMBHs close to the
observer (in comparison with the source distance) are the most
suitable ones to realize the parallax effect in their astrometric
deflections instead of magnification curves.

Briefly, the parallax effect changes both the magnification
factor and the astrometric deflection in the source position (as
given by Equations (3) and (4)) in different ways, as follows.

1. These two observing features have different timescales,
as they tend to zero by u−4 and u−1, respectively (see,
e.g., Dominik & Sahu 2000; Sajadian 2014). By getting
the source star away from the gravitational potential of
the lens object, the astrometric deflection in the source
position tends to zero very slowly. The slow evolution of

the astrometric shift is beneficial to realize annual
parallax amplitude.

2. The amplitudes of the parallax-induced perturbations in
the magnification factor and the astrometric deflection are
proportional to πE and πrel, respectively. Considering the
fact that, for realizing the astrometric deflection itself, θE
should be large, in long-duration microlensing events due
to ISMBHs very close to the observer, the parallax
amplitude could be discerned in astrometric deflections
instead of magnification factors.

3. When u= u0, the magnification factor is maximum,
whereas for u 2= , the astrometric deviation is max-
imum. Hence, discerning the parallax-induced perturbation
in the magnification factor and astrometric deflection can be
done with a higher probability when u= 1 and u; 1,
respectively. This point can be found in Figure 5.

So, searching the parallax effect in the astrometric deflection
instead of the magnification factor would be possible in long-
duration microlensing events due to massive and close lens
objects (e.g., stellar- or intermediate-mass black holes). These
points will be verified numerically in the next subsections by
performing simulations of microlensing events toward the GB
and LMC.

2.2. Astrometric Microlensing toward the GB

Using the introduced formalism, we simulate possible
astrometric microlensing events toward the GB by considering
the annual parallax effect (based on their distribution
functions). We justify our simulation according to the Roman
observing strategy. We assume that the Roman orbit is a circle
of radius 1.01 au centered on the Sun (at the second Sun–Earth
Lagrange point, L2). However, in the simulation, we increase
the observing time to 19 yr because the astrometric deflection
tends to zero very slowly.
To simulate a microlensing event, we first choose the

source distance from the observer, Ds, using the projected
mass density in each line of sight, ( )dM D l b dD, ,s s =

( )d Ds
2

b d hr r rW + + . Here (l, b) are the Galactic longitude
and latitude, respectively, and ρb, ρd, and ρh are the stellar
densities of the GB, disks, and halo, respectively. The physical
properties of the source stars (absolute magnitude, mass, radius,
type, etc.) are determined according to the Galactic Besançon
model2 (Robin et al. 2003, 2012).
The distance of the lens object from the observer depends on

Ds and the given line of sight (l, b). We determine the lens
distance from the observer using the microlensing event rate,
i.e., ( )R vE b d h relr r rG µ + + , where RE=Dl θE, vrel=
Dl μrel, and μrel is the size of the angular relative lens–source
velocity (given by Equation (6)). In order to simulate long-
duration microlensing events due to ISMBHs, we select the
lens mass uniformly from the range Ml ä [2, 50] Me (Sicilia
et al. 2022).
Three examples of astrometric deflections in the source

trajectories are depicted in the top panels of Figure 1. In these
panels, solid black and dashed blue curves are astrometric
deflections without and with considering the parallax effect.
Dotted magenta curves represent the first term in Equation (8).
These magenta curves show that parallax-induced perturbations
are mostly generated by the second term of Equation (8). At the

2 https://model.obs-besancon.fr/
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top of the panels, the relevant parameters are reported. These
panels confirm the results in Section 2.1.

Concerning the detectability of parallax-induced perturba-
tions in astrometric deflections, we evaluate a statistical
parameter. For each microlensing event, in the time interval
[−1.5tE, 1.5tE], we numerically calculate the rms of deviations
in the astrometric deflections, i.e.,

( ( ) ( )) ( )t t , 9trms
2dq dq dq= á - ñ

where δθe(t) is the astrometric deflection without the parallax
effect. This parameter shows the scale of the parallax-induced
deviations in the astrometric deflections. We simulate a large
number of astrometric microlensing events due to massive lens
objects toward the GB and extract the detectable events in the
Roman observations. Then, we determine δθrms for each
detectable event.

In the top panels of Figure 2, we represent the scatter plots of
δθrms versus Dl, [ ( )]log mas10 relp , and [ ( )]log mas10 Eq (left to
right). Accordingly, the parallax-induced perturbations in the
astrometric deflections are considerable when the lens is very
close to the observer. Although the size of these perturbations
does not depend on the lens mass, they are detected in the
events due to more massive lenses with a higher probability
because the astrometric deflections are scaled with ME lq µ .
The bottom middle and right panels of Figure 2 manifest
that rms rel E

2dq p qµ µ .
For the microlensing observations toward the MCs, the parallax

perturbations in the astrometric deflections should be even higher
because the lens object can be in the Galactic halo (Dl∼ 2 kpc)
and the source stars are inside the LMC (Ds∼ 50 kpc), which
results in a large relative parallax, i.e., πrel∼ 0.48 mas. We study
this point in the next subsection.

2.3. Astrometric Microlensing toward the LMC

Microlensing observations toward the LMC were first proposed
by Paczynski (1986) to determine the contribution of MACHOs in
the Galactic halo. The upcoming LSST telescope will monitor the
LMC with a 3 day cadence in six filters, ugrizy, during its
mission. This telescope will discern a considerable number of
long-duration microlensing events because of its long observing
time (i.e., 10 yr). However, its long cadence is such that it is
simply not going to be able to resolve the hours/days anomalies
typical of planetary microlensing events. In this subsection, we
simulate astrometric microlensing events toward the LMC by
considering the parallax effect.
The LMC celestial coordinates are (R.A., decl.)= (80°.9,

−68°.2), and its distance from the observer is 49.97 kpc. For
simulating potential microlensing events toward the LMC, we
include stellar spatial distributions due to the LMC’s disk, bulge,
and halo, as given by Gyuk et al. (2000) and rewritten in
Appendix (A) of Sajadian (2021a). We assume that the
photometric properties of the LMC stars are the same as those
in our galaxy. The extinction toward the LMC is ignorable, except
for its central part (see, e.g., Dobashi et al. 2008). For the central
part of LMC, we consider the V-band extinction in the range of
AVä [1.6, 2.1] mag uniformly. We simulate microlensing events
toward a square of angular side 4° centered on the LMC’s center.
Three examples of simulated astrometric deflections in

microlensing events toward the LMC are represented in the
bottom panels of Figure 1. The last one is a self-lensing event (its
lens object is inside the LMC), and the two others are halo-lensing
ones (their lens objects are in the Galactic halo). Accordingly, the
parallax effect is realizable in astrometric deflections of halo-
lensing events made by massive lens objects.
In the bottom panels of Figure 2, we show the scatter

plots of δθrms versus the lens distance, [ ( )]log mas10 relp , and
[ ( )]log mas10 Eq . In these panels, halo-lensing events are

Figure 1. Examples of astrometric deflections in source trajectories in long-duration microlensing events toward the GB (top panels) and LMC (bottom panels) due to
ISMBHs by ignoring (solid black curves) and including (dashed blue curves) the parallax effect. The dotted magenta curves are the first term in the astrometric
deflection given by Equation (8), i.e., δθ0. Their parameters are given at the top of the panels.
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specified with green circles, and self-lensing events are denoted
with blue triangles. On average, relative parallax amplitude
(πrel), angular Einstein radius, and as a result δθrms in halo-
lensing events are larger than those due to self-lensing events
by more than 2 orders of magnitude.

Also, by changing the observational direction from the GB
to the LMC, δθrms enhances by more than 1 order of magnitude.
The astrometric accuracy of the ELT3 (Vernin et al. 2011;
Tamai & Spyromilio 2014), which is under construction, for a
bright star with a K-band apparent magnitude of 18–19 mag
reaches 50 μas. Hence, this telescope, by following up long-
duration events toward the LMC, can detect not only
astrometric deflections in source trajectories but also their
parallax-induced deviations. Measuring θE and πrel will specify
the lens mass and its distance uniquely. We study this point
quantitatively in the next section.

3. Simulations of Astrometric Microlensing by Roman
and LSST

In the previous section, we found that the parallax effect
could make considerable deviations in lensing-induced astro-
metric deflections due to massive and close lens objects. Here
we aim to evaluate the detectability of these parallax-induced
deviations and their characterizations.

Extracting parallax amplitudes depends on observing the
photometric and astrometric accuracies, cadence, and time
interval. Therefore, evaluating the efficiency of discerning and
characterizing parallax amplitudes in astrometric deflections or
microlensing light curves needs comprehensive simulations of
these events by generating synthetic data points based on real
observations.

For more realistic simulations, we apply observing strategies
due to upcoming microlensing surveys. We consider three
strategies, which are summarized in Table 1 and explained in
the following.

1. (A) Survey observations with the Roman telescope
toward the GB during six 62 day seasons (its total
observing time is 5 yr) with a 15 minute cadence. We also
consider some extra observations (1 hr observation every
10 days) during the Roman large seasonal gap and when
the bulge is visible for this telescope. The same observing
strategy was introduced to study detecting ISMBHs by
the Roman telescope in Sajadian & Sahu (2023).

2. (B) Survey observations with the Roman telescope and
follow-up observations with the ELT in the K band toward
the GB. The ELT will start observations for each event
when A> 1.34. We assume that this telescope will take one
data point every 10 days during its observing seasons.

3. (C) Survey observations with the LSST telescope toward
the LMC and follow-up observations with the ELT. The
LSST cadence is planned to be 3 days, and its mission
will take 10 yr.

Table 1
The Descriptions of Monte Carlo Simulations (A), (B), and (C), Explained in

Section 3

Simulation Observations Telescope Tobs (yr) Cadence Filter

(A) Survey Roman 5 15 minutes W149
Follow-up Roman 5 10 days W149

(B) Survey Roman 5 15 minutes W149
Follow-up ELT 5 10 days K

(C) Survey LSST 10 3 days ugrizy
Follow-up ELT 10 10 days K

Figure 2. Scatter plots of δθrms (given by Equation (9)) for a sample of astrometric microlensing events due to ISMBHs toward the GB (top panels) and LMC (bottom
panels) vs. Dl(kpc), [ ( )]log mas10 relp , and [ ( )]log mas10 Eq (left to right). In the bottom panels, self- and halo-lensing events are specified with blue triangles and green
circles, respectively.

3 https://elt.eso.org/
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Figure 3. Two examples of simulated microlensing events that are detectable with the Roman telescope. For each event, the light curve and astrometric deflection are
represented (left and right panels). The green and dark red data points are taken by the Roman telescope during its observing seasons and its large seasonal gap,
respectively. Their parameters can be found at the top of the panels.

Table 2
The Results of Monte Carlo Simulations (A), (B), and (C), Explained in Table 1

Simulation  Eq  Ep  ,PhotEp  ,AstEp Ml Dl  tE ò
[%] [%] [%] [%] [%] [%] [%] [%]

Detection threshold = 1%
(A) 70.65 7.80 7.72 0.36 5.48 21.76 29.73 5.71
(B) 76.71 11.35 11.30 0.78 9.18 29.87 49.78 9.75
(C) 62.14 25.92 8.38 25.08 8.03 18.69 20.88 10.20

Detection threshold = 4%
(A) 97.47 21.94 21.68 2.16 21.05 46.67 58.40 20.94
(B) 98.25 29.18 29.09 3.76 28.41 59.57 85.78 28.83
(C) 77.12 42.00 22.98 41.09 22.80 47.67 54.64 27.44

Detection threshold = 7%
(A) 99.36 29.81 29.44 4.05 29.19 57.57 69.29 28.93
(B) 99.61 38.61 38.46 6.55 38.18 71.18 93.34 38.46
(C) 82.78 47.27 29.93 46.10 29.78 59.76 67.97 35.04

Note. Here òa refers to the probability of measuring the parameter a so that its relative error is less than the given threshold. The indices “Phot” and “Ast” in the
probability of measuring parallax amplitudes refer to inferring parallax from photometric and astrometric data with a given detection threshold, respectively.
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We tune our simulations based on these observing strategies. In
the following, we explain the details of these Monte Carlo
simulations and the results.

(A) Survey microlensing with Roman. We first tune our
simulations for potential survey observations toward the GB
with the Roman telescope. We did similar simulations in
Sajadian & Sahu (2023). In that paper, we showed that a
small number of additional observations, i.e., 1 hr of
observations every 10 days when the GB is observable
during the large seasonal gap, will improve Roman’s
efficiency in detecting and characterizing ISMBHs. In
simulation (A), we assume that these extra and sparse data
points are taken with Roman.

In the simulation, we take the time of the closest approach t0
uniformly in the range [0, 5] yr. The lens impact parameter is
also chosen smoothly from the range [0, 1]. The finite-source
effect for microlensing events due to massive lens objects is
ignorable because the normalized source radius projected on
the lens plane is  M1 lr µ and very small. We consider the
parallax effect while the calculating light curves and astro-
metric deflection to compare the errors while extracting the
parallax amplitude from each of them. Since the Roman
telescope will orbit the Sun from the second Sun–Earth
Lagrange point (L2), the radius of its orbit is 1.01 au.

In Monte Carlo simulations from microlensing events
detectable by Roman, we remove events with a timescale of
tE> 2000 days because in most of these events, the
magnification factors do not reach the baseline during the
Roman 5 yr mission.

For calculating the blending effect in all Monte Carlo
simulations, we first calculate the average number of back-
ground stars inside a stellar point-spread function (PSF) as


( ) ( ) ( )

N f
x

M

x

M

x

M
x dx,

D

PSF b
0

b

b

d

d

h

h

2
s

⎜ ⎟
⎛
⎝

⎞
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ò
r r r

= W + +

where fb= 2/3 is the binary fraction; Mb , Md , and Mh are the
average masses of stars in the GB, disk, and halo, respectively;
and ( )FWHM 2PSF

2pW = is the area of a typical stellar PSF
in the Roman observations. We determine the number of stars
using  N N Ns= + , where σN is chosen using a normal
distribution  ( )N0, . A common value for FWHM is
3× pixel size, i.e., 0 33 for the Roman observation.

The Roman photometry accuracy σm is a function of stellar
apparent magnitude in the W149 filter and was given in Figure
4 of Penny et al. (2019). Stellar absolute magnitudes in W149
are estimated by MW149; (MH+MJ+MK)/3, where MH, MJ,
and MK represent the stellar absolute magnitudes in the
standard filters H, J, and K, respectively (see, e.g.,
Sajadian 2021b). We note that the Galactic Becançon model
gives the stellar absolute magnitudes in the standard filters
BVRIK. We specify the absolute magnitudes in the H and J
bands using the Dartmouth isochrones4 (Dotter et al. 2008;
Feiden et al. 2011).

We use the 3D extinction map offered by Marshall et al. (2006)
and use the following transformation relations to specify
extinctions in other bands: A A A8.47 8.21V K Ks= = =

A A A1.67 5.43 4.44I H W149= = (Cardelli et al. 1989). We
determine the astrometric accuracy of Roman according to stellar
apparent magnitude and using Jitter simulations done by S. C.

Novati. We assume that the probability of regular observations
with Roman is 90% during its observing seasons.
In Figure 3, two simulated astrometric microlensing events

detectable by Roman are represented. The sparse data points
during its large seasonal gap are shown in dark red, and the
Roman data during its observing seasons are depicted in green.
In this figure, the sparse data points help to discern astrometric
deflections and, as a result, the Einstein angular radius. The
parallax amplitude can be extracted from the Roman photo-
metric data.
After making a big ensemble of these events, we extract the

detectable events in the Roman observations. We have two
criteria for detectability: (i) ∣ ∣ 8002

real
2

base
2c c cD = - > ,

where real
2c and base

2c are χ2 values from fitting the real model
and the baseline, respectively; and (ii) three data points should
be above the baseline by at least 4σ, where σ is the photometric
accuracy.
We numerically calculate the photometric and astrometric

Fisher matrices separately, i.e.,  and  for each detectable
event. In this regard, the observable parameters that affect the
magnification curves and astrometric deflections are t0, u0, tE, ξ,
fb, mbase, and πE and θE, πE, andμs, respectively. We embed πE
into both lists to compare the photometric and astrometric
errors while extracting the parallax amplitude.
In fact, real astronomical data points determine the projected

source trajectory on the sky plane, which is

( ) ( ) ( ) ( ) ( )ut t t t t , 10s 0 E s 0 s o,nq m dqq p D= + - - +

where μs is the angular velocity of the source star, and
πs= 1.01 au/Ds is the so-called source parallax amplitude
when the observer is Roman. The source parallax amplitude
(πs) is very small and ignorable. Hence, the parallax-induced
perturbations mostly alter the last term (i.e., the astrometric
deflection). Throughout the paper and in Figures 1, 3, 6, and 7,
we only show the last term (the astrometric deflection) so that
the parallax-induced deviations get highlighted. However,
while calculating the astrometric Fisher matrix (), we
numerically calculate the derivatives of the source trajectory
θs(t) with respect to its parameters.
The results from this simulation are reported in Table 2. In

this table, òa is the probability (or efficiency) of measuring the
parameter a with a relative error of less than the given
thresholds (i.e., 1%, 4%, and 7%). The indices “Phot” and
“Ast” for  Ep refer to measuring parallax amplitudes from
photometric and astrometric data, respectively. The last column
is the probability of simultaneously measuring three para-
meters, θE, πE, and tE, with relative errors of less than the given
threshold. These parameters uniquely offer the lens mass, lens
distance, and lens–source relative velocity. The relations to
calculate the errors can be found in Sajadian & Sahu (2023),
and we do not repeat them here.
The normalized distributions (NDs) of relative errors in

the parallax amplitude, EEs pp , extracted from covariance
matrices  1- (based on photometric data) and  1- (based on
astrometric data) are depicted in Figure 4 in green and
purple, respectively.
Accordingly, in long-duration microlensing events toward

the GB detectable by the Roman telescope, the parallax can
be extracted from light curves much more than from
astrometric deflections (10 times). This point can be seen in
Figure 3.4 http://stellar.dartmouth.edu/
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To determine in what kind of simulated events parallax
amplitudes could be measured through astrometric observa-
tions, in the top panels of Figure 5, we show the NDs of

[ ( )]log mas10 Eq , u0, and [ ( )]log mas10 relp due to events that are
detectable by Roman with green filled distributions. In these
figures, red lines represent the NDs of these parameters due to
the events in which πE can be measured (with relative errors of
less than 4%) through either photometric or astrometric data.
Blue and black lines are NDs due to events with measurable
parallax amplitudes through photometric and astrometric data,
respectively. Inside each panel, the average values of the
parameters from their distributions are given.
Accordingly, in the events with πE 0.25 mas (or a lens

distance Dl 2.7 kpc from the observer), measuring parallax
amplitudes through astrometric observations is possible. The
events with larger u0 are more favorable to infer parallax
amplitudes from astrometric data, whereas in high-magnifica-
tion events, parallax amplitudes can be measured from light
curves. In fact, the magnification factor tends to zero fast as
u−4, whereas the astrometric deflection maximizes when
u 2= .

(B) GB survey observations by Roman with ELT follow-
up. The astrometric precision of the ELT is planned to be better
than 50 μas. In this simulation, we consider potential follow-up
astrometric observations with the ELT from long-duration
microlensing events that will be discovered by Roman.
We assume that this telescope will take one data point every

10 days, which is suitable for long-duration microlensing
events. For each microlensing event, the ELT observation is
started when its magnification factor reaches 1.34.
For the ELT astrometric observations, we assume that it

observes microlensing events in the K band. In terms of the
ELT astrometric precision, the statistical astrometric accuracy
of a telescope with an aperture D and in the observing
wavelength λ is given by (see, e.g., Trippe et al. 2010)

( )
/ /D D

1

S N
34 as

2.2 m

42m 100

S N
, 11a,1s

l
p

m
l
m

= =

where S/N is the signal-to-noise ratio. Hence, for the ELT
observations with S/N =100 in the K band by the Multi-
adaptive optics Imaging CAmera for Deep Observations
(MICADO;5 Davies et al. 2021), the statistical astrometric
precision will be ;34 μas. We add the systematic error
(∼10 μas) to this statistical accuracy. Therefore, for a source
star with an apparent magnitude of mK; 18–19 mag, the
MICADO astrometric accuracy reaches ∼50 μas. Fiorentino
et al. (2020) modeled the images that would be taken by
MICADO/ELT from globular clusters and found a more
practical relation between the apparent magnitude of stars in
the K-band filter and the MICADO astrometric precision
adjusted for a 20 minute exposure time, which was given in
their second table. Throughout the paper, we use their results to
estimate the ELT astrometric accuracy in the K-band filter.
We consider a 5 month seasonal gap annually for the ELT.

Also, this telescope can take data from stars with a K-band
apparent magnitude in the range mK ä [12, 23] mag (its

Figure 4. The NDs of relative errors in the parallax amplitudes, as measured
through photometric (green) and astrometric (purple) observations based on
simulations (A), (B), and (C), from top to bottom. The dashed black lines determine
the threshold amount 4%EEs p =p . The fractions of events with relative parallax
errors of less than 4% are given inside the panels. 5 https://elt.eso.org/instrument/MICADO/
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saturation and detection thresholds). We assume both prob-
abilities for suitable weather, and regular survey observations
are done in 90% of the nights;in 10% of nights some special
events will be observed.

In this simulation, extracting lensing parameters and
simulating the Roman data is similar to the explanation in
simulation (A).

In Figure 6, we show two examples of simulated astrometric
microlensing events detected with Roman and ELT. Here dark
red points are taken with the ELT. Comparing Figures 3 and 6,
one can see the large difference between the astrometric
accuracies of Roman and the ELT. Although the ELT data are
sparse, they manifest astrometric deflections well. In the first
event, discerning the parallax effect in the astrometric
deflection is doable because of the ELT astrometric data.

We mention the results from performing Monte Carlo
simulation (B) in Table 2. Accordingly, the ELT observations
will improve the efficiency in measuring both θE and πE.
Although the efficiency of discerning parallax amplitudes from
astrometric deflections is low for observations toward the GB,
some sparse data points with the ELT double this efficiency.

This improvement can be seen by comparing the first two
panels of Figure 4.
In the middle row of Figure 5, the NDs of [ ( )]log mas10 Eq , u0,

and [ ( )]log mas10 relp resulting from simulation (B) are depicted.
They are similar to the top row (owing to simulation (A)) with
small changes.
(C) Survey and follow-up observations with LSST and ELT.

The upcoming LSST telescope, which is under construction at
the Vera C. Rubin Observatory, Chile, is planned to survey the
whole sky with a 3 day cadence (Ivezic et al. 2009). This
telescope will observe the LMC during its 10 yr mission and
potentially detect several long-duration microlensing events in
this direction.
For the LSST observations toward the LMC, we assume

follow-up astrometric observations with the ELT with a 10 day
cadence. The details of this follow-up astrometric observation
are the same as explained in simulation (B).
The LSST data will be taken in six filters, ugrizy, which are

similar to the filters used by the Sloan Digital Sky Survey
(Fukugita et al. 1996; Ivezic et al. 2009). We determine the
photometric errors in these filters using the relations explained

Figure 5. The NDs of [ ( )]log mas10 Eq , u0, and [ ( )]log mas10 relp from simulations (A), (B), and (C) are represented in green from top to bottom. Red lines represent the
NDs of these parameters due to events in which πE can be measured (with a relative error of less than 4%) through either photometric or astrometric data. Blue and
black lines are NDs due to events with measurable parallax amplitudes through photometric and astrometric data, respectively. Inside each panel, the average values of
the parameters (θE, u0, πrel) from their distributions are indicated.
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in Section 3 of Ivezic et al. (2009). The astrometric accuracy of
LSST is also a function of stellar apparent magnitude (see, e.g.,
Eyer et al. 2012). We assume that both probabilities of suitable
weather for observations and doing regular observations with
LSST are 90%. The LSST seasonal gap lasts 5 months.

Since the LSST observing time is 10 yr, we ignore
microlensing events with tE> 4000 days. In these events, the
magnification factors do not reach the baseline during the LSST
observing time. Also, the time of the closest approach is
uniformly chosen from the range t0ä [0, 10] yr. Other lensing
parameters are determined in the same way as explained in
simulation (A). We note that for the LSST observations, the
blending parameter is considerable because of the LSST’s
observing depth (see, e.g., Sajadian & Poleski 2019).

In Figure 7, we depict two examples of simulated astrometric
microlensing events detected with the LSST and ELT. The data
points taken by LSST in the ugrizy filters are shown in purple,
blue, dark green, yellowish green, orange, and red, respec-
tively. The data taken by the ELT are shown in dark red.

The first event is halo lensing, and the second is a self-
lensing event. In the first event, the parallax effect makes

considerable deviations in both magnification factor and
astrometric deflection. Since the ELT data are taken in the
domain of the light curve (because of the ELT saturation limit),
they only cover the parallax-induced deviations in the
astrometric deflection. In this event, the parallax amplitude
can only be extracted from its astrometric deflection. In the
second event (a self-lensing one), the ELT data manifest the
astrometric deflection itself and, as a result, θE. In this event,
the parallax amplitude is not measurable.
We perform this Monte Carlo simulation, denoted simulation

(C), and make a large sample of these astrometric microlensing
events that are discernible in the LSST observations. The
detectability criteria are the same as those mentioned for
simulation (A). For each simulated event, we numerically
calculate Fisher and covariance matrices. The results can be
found in Table 2.
Comparing the results reported in Table 2 toward the LMC,

the efficiency of measuring θE even by considering the ELT
follow-up observations is less than that toward the GB by
∼10%. There are three reasons. (i) For self-lensing events, θE is
too small (see Figure 2). (ii) The LSST telescope can discern

Figure 6. Same as Figure 3, but dark red points are hypothetically taken by the ELT in the K band with a 10 day observing cadence.
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faint source stars with an r-band apparent magnitude mr ä [16,
24.3] mag, so most of the source stars in detectable
microlensing events (by the LSST observations) are faint. That
means that the efficiencies for measuring parameters from
photometric and astrometric data (e.g., u0, tE, πE, and θE) are
lower than those for measuring parameters from the Roman
data. (iii) The maximum number of LSST data points during its
mission with a 3 day cadence is 708, whereas the maximum
number of Roman data points for a microlensing event during
six 62 day seasons is 35,700. While calculating Fisher and
covariance matrices, higher numbers of data points offer lower
errors.

Nevertheless, the efficiency of measuring πE in microlensing
events toward the LMC is more than the efficiency in events
toward the GB by ∼13%. Toward the LMC, extracting parallax
amplitudes from astrometric deflections is more efficient than
taking them from light curves. According to the last panels of
Figure 5, there are two kinds of events toward the LMC with
very different πrel values: self- and halo-lensing ones. The
second class has large πrel values and is suitable to determine
parallax amplitudes from astrometric data.

Hence, through observations toward the LMC by LSST,
efficiencies for extracting θE and tE are lower, and those for
extracting πE are higher in comparison with observations
toward the GB with Roman. For that reason, the efficiencies of
measuring these three parameters simultaneously through both
observations are the same.
The bottom panels of Figure 5 manifest that by decreasing

the lens impact parameter, and the efficiency of specifying
parallax amplitudes from light curves improves by 2 orders of
magnitude.

4. Conclusions

In microlensing events due to massive lens objects (e.g.,
ISMBHs), measuring parallax amplitudes from their magnifi-
cation curves is a challenge because the parallax amplitude in
these light curves decreases by the lens mass as M1E lp µ .
Although these massive lenses make long-duration events in
comparison to the Earth’s orbital period, they have small
parallax amplitudes.
In this work, we studied the possibility of measuring parallax

amplitudes from astrometric deflections instead of light curves.

Figure 7. Same as Figure 3 but for observations toward the LMC with LSST. The simulated data points taken by LSST in the ugrizy filters are shown with purple,
blue, dark green, yellowish green, orange, and red, respectively. The data taken with the ELT are depicted in dark red. The observing cadences for the LSST and ELT
data are 3 and 10 days, respectively.
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We found that parallax-induced deviations in astrometric
deflections are proportional to πrel but not πE. However, for
detecting these second-order effects, the astrometric deflections
themselves should be measurable. Hence, events with large θE
and πrel are suitable for measuring parallax amplitudes from
astrometric data. The best events are long-duration microlen-
sing events toward the LMC due to ISMBHs inside the
Galactic halo. In these events, on average, parallax-induced
deviations reach ∼10–100 mas (see Figure 2). The largest
parallax-induced deviations on astrometric deflections occur
when u 2 (at the light-curve domain).

To quantitatively study the detectability of parallax ampli-
tudes in astrometric measurements, we have done three realistic
Monte Carlo simulations based on upcoming microlensing
surveys, as follows. Simulation (A) includes Galactic bulge
(GB) survey microlensing observations with Roman during its
5 yr mission. In this simulation, we assume that the Roman
telescope itself would take some sparse data points (1 hr of
observation every 10 days) during its large seasonal gap and
when the GB is observable. Simulation (B) includes GB survey
microlensing observations with the Roman telescope and
follow-up observations with the ELT in the K band. We
assume that the ELT would take one data point every 10 days.
Simulation (C) includes LSST observations toward the LMC
during its 10 yr mission and follow-up observations with the
ELT by taking one data point every 10 days.

In the simulations, for each event, we numerically calculated
Fisher and covariance matrices based on synthetic photometric
and astrometric data points and then estimated the errors. We
included the parallax effect in both the magnification factors
and astrometric deflections in source trajectories. The results of
these simulations are reported in Table 2.

Accordingly, for observations toward the GB and in events
due to ISMBHs at a distance Dl 2.7 kpc from the observer,
measuring parallax amplitudes through astrometric deflections is
possible. However, for microlensing events toward the GB, the
efficiency of measuring parallax amplitudes (with relative errors
of less than 4%) from astrometric deflections is only 2%. This
efficiency is doubled by adding the ELT sparse data points.

In the LSST observations toward the LMC, the efficiency of
measuring the parallax amplitudes increases by more than 13%.
Toward the LMC, and especially in halo-lensing events,
extracting parallax amplitudes from astrometric deflections is
more efficient (by 18%) than extracting them from light curves.

Briefly, through observations toward the LMC by LSST, the
efficiencies for extracting θE and tE are lower (because LSST
will mostly detect microlensing events of faint source stars, and
its cadence is long), and for extracting parallax amplitudes, the
efficiency is higher in comparison to observations toward the
GB with Roman. Hence, the efficiencies of measuring three
parameters simultaneously through both observations are in the
same range.
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