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Abstract 

 
D-optimality is a design criterion that seeks to maximize the determinant of the information matrix, or 

equivalently minimize the determinant of the inverse information matrix of the design. This design criterion 

results in maximizing the differential Shannon information content of the parameter estimates. Cycling, a 

phenomenal problem associated with the construction of D  optimal designs, impedes the rate of 

convergence to such desired optimum, whenever it occurs in a variance exchange process. Different 

polynomial functions may have varying effects on the pattern of convergence due to cycling. This paper 

seeks to determine the nature and extent to which the influence of cycling affects the pattern of convergence 

on Linear, Interactive, and Quadratic order effect designs. The variance exchange algorithmic search method 

was adopted based on the philosophy of numerically searching the design space for optimum designs. Two 

and three-variable response functions are used in the investigation of even and odd-sized Npoint designs. 

Generated data from designs of sizes 10 and 11 were employed in the investigation. Numerical illustrations 

were given to ascertain the pattern of convergence on each of the m degree polynomial designs. The 

computations and graphs were conducted in R version 4.1.1 (2021). The results show that cycling patterns 
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differ with respect to the degree of the response function whether it is of even or odd-sized design, or has two 

or three variables. The result will enable researchers to find appropriate measures to accommodate the 

challenge posed by cycling. 
 

 

Keywords: Cycling; variance exchange process; D-optimality; linear and higher-order effects; response 

function; even and odd N-point designs. 
 

1 Introduction 
 

Optimum experimental designs depend upon the model or models to be fitted to the data, on the values of the 

parameters of the models, Atkinson, Donev and Tobias [1]. The first- and second-order model response 

polynomials in p  factors considered in this study are respectively. 
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The theory of continuous designs considers minimization of the general measure of imprecision   M   on 

the designs, eqns. (1) and (2). The function to be minimized depends on the measure   through the information 

matrix ( )M  . A special case of this is the D  optimality and its relationship to G optimality. For D 

optimality, [1] and Onukogu [2] hold that 
 

        1log log , 3M M M       

 

the generalized variance of the parameter estimates, or its logarithm   log M  , is minimized. This imply the 

determinant of the information matrix ( )M   is maximized. 

 

Pazman [3], Atkinson and Donev [4], Onukogu and Chigbu [5], and [1] hold it that continuous designs that are 

D  optimum are also Goptimum, that is to say they minimize the maximum over X  of the variance.  
 

         1 4,   Td x f x M f x   

 

a function of both the design   and the point at which the prediction is made. 

 

Variance exchange algorithm is one of several algorithms for finding continuous measures   that minimize 

  M  . However, while Atkinson and Donev [6] established that optimal designs guaranteed from ultimate 

convergence by maximizing the determinant of information matrix ( )M   using the variance exchange process 

is usually not feasible, Ikpan and Nwobi [7] attributed it to cycling.  
 

Cycling, when it occurs in such an iterative process, halts the monotonically increasing sequence of 

determinants of the information matrices with attendant consequences on the rate of convergence; the 

determinant and variances of points at this point equals the determinant of the information matrix and variances 

of points one, two or a fraction of one or two places before it in the exchange process.  
 

Optimal design of experiments is currently recognized as the modern dominant approach to planning 

experiments in industrial engineering and manufacturing applications, Agriculture, and Biomed (pharmaceutical 

development, medicine, and epidemiology). Finding optimum conditions for factors in engineering optimization 

problems with response surface functions requires structured data collection using experimental design.  When 

the experimental design space is constrained owing to external factors, Computer-generated optimal designs, 



 

 
 

 

Ikpan and Nwobi; Asian J. Prob. Stat., vol. 23, no. 3, pp. 26-38, 2023; Article no.AJPAS.102408 
 

 

 
28 

 

such as D-optimal designs, provide ready alternatives. However, there is no guarantee that the design the 

computer generates is actually D-optimal, which may be a result of cycling.  
 

Cycling apart from inducing the rate of convergence, affects the nature of an N- point design, even or odd, 

Nwobi and Ikpan [8]. Cycling may show remarkable influence in the pattern of convergence according to 

different degrees of the response functions involved whichever the number of variables p  or the size N , of the 

design. In this article, we will investigate the influence of cycling as it affects first and second-order effect 

designs with respect to convergent patterns.  
 

2 Literature Review 
 

Variance exchange algorithm, an iterative technique for getting a D  optimum exact design has enjoyed a rich 

literature by several authors. Among the prominent works referenced in this paper are those published by Cook 

and Nachtsheim [9],, the modification of Fedorov’s Exchange Algorithm. In their algorithm, they switched each 

point in the design with the candidate point that maximizes the Fedorov’s delta function, a procedure only twice 

as fast; Other works consulted include those of Eccleston and Jones [10], who developed exchange and 

interchange procedures to search for optimal design; Johnson and Nachtsheim [11], who generalized the original 

Modified Fedorov Exchange Algorithm (MFEA). They did this by permitting only certain stages at each 

iteration, with these stages corresponding to the same number of points, in the designs with the smallest 

variance; the KL-EA of Atkinson and Donev [12], which was another modification of Fedorov’s exchange 

algorithm. In the KL-EA, a point with minimum variance in the design and a point in the candidate set with 

maximum variance are exchanged such that Fedorov’s delta function is maximized; Nguyen and Miller [13], who 

reviewed some algorithms for constructing discrete D  optimal designs. We referred to a similar iterative 

search structure of the variance exchange process by Smucker and Castillo [14], who proposed some exchange 

algorithms for Constructing Model-Robust Experimental Designs; the exchange algorithm by Al Labadi[15], 

which made some refinements on the Fedorov’s exchange algorithm done by simultaneously adding or 

exchanging two or more points at each step. This reduced the number of steps needed to construct a D-optimal 

design; Other Authors referred to in this work are Garroi, Goos and Sorensen [16], A variable-neighborhood 

search algorithm for finding optimal run orders in the presence of serial correlation; Bodunwa and Fasoranbaku 

[17], who developed a sequential method of getting a D-optimal design in a linear model with two explanatory 

variables in the presence of heteroscedasticity using two different structures; Umelo-Ibemere and Chigbu [18], 

who studied the construction of optimal multi- response designs when the responses are measured 

simultaneously for the same settings of the input variables; Ikpan and Nwobi [19], who constructed an improved 

algorithm capable of disabling the influence of cycling in an iterative process. 
 

3 Methodology 
 

We adopted the search method based on the philosophy of numerically searching the design space for optimum 

designs. Here we start with an estimate 
N  of the optimum design *  for the problem, itself not D  optimal, 

and improve on it iteratively until D  optimality conditions are satisfied. The next step in the algorithm is to 

improve the starting design by switching the least variance point
1
 in the design with the highest variance points 

from its complement and evaluate the effect of the change on the D  optimality criterion. We repeat this 

process until no further improvement on the value of the determinant in the entire iteration through the factor 

settings. The output of this procedure is a design whose determinant can no longer be improved by further 

exchange of variance points. The influence of cycling known to affect the determinants at this stage of the 

iterative process induces different patterns of convergence which may be noticeable for different degrees of 

response functions applicable. This influence can be illustrated with the following statements. 
 

3.1 Statement 1.0 
 

Suppose ( )k

N   be an Npoint design measure of linear or interactive order effects at the thk  iteration in an 

exchange process searching for exact D  optimum design. If cycling occurs at this point, then for a 2   and 

3 factor response functions, 

 

   ( ) ( 1)det detk k
N NM M    

or 
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   ( ) ( 2)det detk k
N NM M    

 

where 
( 1)k
N


 and 
( 2)k
N


, are the measures of designs, one and two steps backward respectively in the sequence. 
 

3.2 Statement 2.0 
 

Suppose 
( )k

N   be an Npoint design measure of quadratic order effect at the thk  iteration in an exchange 

process searching for exact D  optimum design. For a 2  factor response function at the point of cycling,  

 

   ( ) ( )det detk k
N NMM    , 

 

where 
( )k
N


, is a measure of design a fraction of one and two steps backward in the sequence. 

 

3.3 Statement 3.0  
 

Suppose 
( )k
N  be an initial N  point design measure of quadratic order effect searching for exact  D 

optimum design. Then for a 3 factor response function, (1)

N  is nonsingular for all
2N N  

  

4 Results and Discussion 
 

In this study, 10, and 11-point designs are used for each of the m  degree polynomials in 2   and 3 factors. 

 

4.1 Linear, Two-Variable Response Function 
 

A function of two independent variables 
1x , 

2x  is written as  

 

     1 2 5,  xf xx  

 

The linear statistical model for the two 2  factor response function given by eqn. (1) becomes  
 

 
2
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1

( ) i i

i

E y E f a a x


   x , 

 

and the experimental set is 

 

 1 2 1 2, ; 2, 1,0,1,2, 1, 0.5,0.5,1X x x x x       , ( ) 0E e , 
2Var( ) ee    

 

Each point in the 10, and 11 point designs will be represented by 
ix ; where 

1 2(1, , )i x xx . 

 

The initial and complement extended matrices for linear order effect, 2  factor, 10 , and 11 point designs are 

given respectively as follows.
 

 

 

 

 

1
A point is an ordered list of numbers. It is used interchangeably with the term ‘vector’, and lowercase letters in roman 

boldface are used to denote them. 
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10 10
(1) (1)
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1 2 1 1 2 0.5

1 1 1 1 1 0.5

1 1 0.5 1 1 1

1 0 1 1 0 0.5
,

1 0 0.5 1 0 1

1 1 0.5 1 1 1

1 1 1 1 1 0.5
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c
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1 0 1 1 1 1
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, c
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4.2 Linear, Three-Variable Response Function 
 

The linear statistical model, eqn. (1), for the 3variable response function is 
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E y E f a a x


   x , 

 

and the experimental set is 
 

 1 2 3 1 2 3, , : 2, 1,0,1,2 1,0,1 1,1; ;X x x x x x x       , ( ) 0E e  and 2Var( ) ee   

 

1 2 3(1, , , )i x x xx  

 

The initial and complement extended matrices for linear order effect, 3 factor, 10 , and 11 point designs are 

given respectively as follows. 
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The pattern of convergence by determinants for the linear order effect designs is summarized in Table 1. 
 

4.3 Mixed, Two-factor Response Function 
 

The mixed
3
 statistical model, eqn. (2), for the two 2  factor response function is 

 

2
N  is a list of possible design points, called a candidate set. 
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     x  

and the experimental set is 

 

 1 2 1 2, ; 2, 1,0,1,2, 1, 0.5,0.5,1X x x x x       , ( ) 0E e , 
2Var( ) ee 
 ; 1 2 1 2(1, , , )i x x x xx  

 

The initial and complement extended matrices for interactive order effect, 2  factor, 10 , and 11 point 

designs are given respectively as follows. 
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Table 1. Pattern of convergence for the linear order designs 

 
( )k
N   ( )

10
k

M    ( )
11

kM   

2-factor 3- factor 2-factor 3- factor 

1 1390.0 12480 1545.25 14840 

2 1739.0 15484 2071.25 25568 

3 2006.0 25340 2605.25 35968 

4 2251.5 28476 2854.00 39368 

5 2349.0  32000 2926.00 41760 

6 2352.0 32000 3024.00 44160 

7 2349.0  3024.00 44928 

    44928 

 

 
 

 

Fig. 1a. Pattern of convergence for linear effect, 

two-variable designs 

 

Fig. 1b. Pattern of convergence for linear effect, 

three-variable designs 
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4.4 Mixed, Three-Factor Response Function 
 

The mixed statistical model, eqn. (2), for the two 3 factor response function is 

 

 
3 2 3

0

1 1 1

i i ij i j

i i j i

E f a a x a x x
   

     x  

 

and the experimental set is 

 

 1 2 3 1 2 3, , : 2, 1,0,1,2 1,0,1 1,1; ;X x x x x x x       , ( ) 0E e  and 2Var( ) ee 
; 

 

1 2 3 1 2 1 3 2 3(1, , , , , , )i x x x x x x x x xx  

 

The initial and complement extended matrices for interactive order effect, 3 factor, 10 , and 11 point 

designs are given respectively as follows. 

 

(1) (1)
10 10

1 2 1 1 2 2 1
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1 1 1 1 1 1 1
,
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1 1 0 1 0 1 0
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1 2 1 1 2 2 1

1 2 1 1 2 2 1

c
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    
 

    
  
 
   
 

   
 
 

 

1 0 1 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 0 1 0 1 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 2 1 1 2 2 1

1 2 0 1 0 2 0

1 2 0 1 0 2 0

 
 
 
 
 
 
 
 

 
   
 
   
 
 
   
 
 
   
 

  
 
 

 

 

(1) (1)
11 11

1 2 1 1 2 2 1

1 2 1 1 2 2 1 1 2 0 1 0 2 0

1 2 0 1 0 2 0 1 2 1 1 2 2 1

1 2 1 1 2 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 0 1 0 1 0

,1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 0 1 0 1 0

1 1 1 1 1 1 1

1 2 1 1 2 2 1

1 2 1 1 2 2 1

c
X X

   

     
 

     
       
 

    
  
 

    
    
 
 
 

   
   
     

1 1 0 1 0 1 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 0 1 0 1 0

1 1 1 1 1 1 1

1 2 1 1 2 2 1

1 2 0 1 0 2 0

1 2 0 1 0 2 0

1 2 1 1 2 2 1

 
 
 
 
 
 
  
 

    
   
 
  
 
 
    
 

  
 
 
 
 

 

The pattern of convergence by determinants for the interactive order effect designs is summarized in Table 2. 
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Table 2. Pattern of convergence for mixed effect designs 

 
( )k
N   ( )

10
k

M    ( )
11

k
M   

2-factor 3-factor 2-factor 3- factor 

1 10395.00   24717312 10435.50   47553280 

2 22834.69   89879040 22698.00 150100992 

3 32832.00 159045632 42623.13 294461440 

4 50544.00 242581504 49428.00 363802624 

5 75688.87 301989888 57011.62 542703616 

6 50544.00 340787200 63036.00 542703616 

7  340787200 68688.00  

8   68688.00  

 

  
 

Fig. 2a. Pattern of convergence for mixed effect, 

two-variable designs 

 

Fig. 2b. Pattern of convergence for mixed effect, 

three-variable designs 

 

4.5 Quadratic, Two-Factor Response Function 
 

The quadratic statistical model, eqn. (2), for the two 2  factor response function is 

 

 
2 2 2

2

0

1 1 1

i i ij i j ii i

i j i i

E f a a x a x x a x
   

       x  

 

and the experimental set is 

 

 1 2 1 2, ; 2, 1,0,1,2, 1, 0.5,0.5,1X x x x x       , ( ) 0E e , 
2Var( ) ee   

 

 2 2

1 2 1 2 1 21, , , , ,i x x x x x xx  

 

The initial and complement quadratic order effect extended design matrices for 2  factor, 10 , and 11 point 

designs are given respectively as follows. 
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(1) (1)
10 10

1 2 1 2 4 1 1 2 0.5 2 4 0.25

1 1 1 1 1 1 1 2 0.5 1 4 0.25

1 1 0.5 0.5 1 0.25 1 2 1 2 4 1

1 0 1 0 0 1 1 1 0.5 0.5 1 0.25

1 0 0.5 0 0 0.25
,

1 0 1 0 0 1

1 1 0.5 0.5 1 0.25

1 1 0.5 0.5 1 0.25

1 2 1 2 4 1

1 2 0.5 1 4 0.25

c
X X

    
 

    
    
 

   
 
  
 
  
 
 
 

  
 
 

1 1 1 1 1 1

1 0 0.5 0 0 0.25

1 1 1 1 1 1

1 1 1 1 1 1

1 2 0.5 1 1 0.25

1 2 1 2 4 1

 
 
 
 
 
 
  
 
 
  
 
 
 

  
 
   

 

(1) (1)
11 11

1 2 1 2 4 1

1 2 0.5 1 4 0.25 1 2 0.5 1 4 0.25

1 1 0.5 0.5 1 0.25 1 2 1 2 4 1

1 1 0.5 0.5 1 0.25 1 1 1 1 1 1

1 1 1 1 1 1

,1 0 1 0 0 1

1 0 0.5 0 0 0.25

1 1 0.5 0.5 1 0.25

1 1 0.5 0.5 1 0.25

1 1 1 1 1 1

1 2 1 2 4 1

c
X X

  
 

    
    
 

    
  
 

  
 
 
  
 
 
 
    

1 0 0.5 0 0 0.25

1 0 1 0 0 1

1 1 1 1 1 1

1 2 0.5 1 4 0.25

1 2 0.5 1 4 0.25

1 2 1 2 4 0.25

 
 
 
 
 

 
 
 

  
  
 
 
 
 

 

  

4.6 Quadratic, Three-Factor Response Function 
 

The quadratic statistical model, eqn. (2), for the 3 factor response function is 
 

 
3 3 2 3

2

0

1 1 1 1

i i ii i ij i j

i i i j i

E f a a x a x a x x
    

       x  

 

and the experimental set is 
 

 1 2 3 1 2 3, , : 2, 1,0,1,2 1,0,1 1,1; ;X x x x x x x       , ( ) 0E e  and 2Var( ) ee   

 
2 2 2

1 2 3 1 2 3 1 2 1 3 2 3(1, , , , , , , , , )i x x x x x x x x x x x xx  

 

The initial and complement quadratic order effect extended design matrices for 3 factor, 10 , and 11 point 

designs are given respectively as follows. 
 

Table 3. Pattern of convergence for quadratic order designs 
 

( )k

N   ( )
10

k
M    ( )

11
k

M   

2-factor 3- factor 2-factor 3- factor 

1     53230.5 0   254229.8 0 

2   441414.6    643248.0  

3   910818.0  1472981.0  

4 1329552.0  1827636.0  

5 1521792.0  2033151.0  

6 1475712.0  1992587.0  
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10 10
(1) (1)

1 2 1 1 4 1 1 2 2 1

1 2 0 1 4 0 1 0 2 0

1 2 1 1 4 1 1 2 2 1 1

1 2 0 1 4 0 1 0 2 0

1 2 1 1 4 1 1 2 2 1

1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1
,

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 2 0 1 4 0 1 0 2 0

1 2 1 1 4 1 1 2 2 1

c c
X X

   

 

   
 

  
   
 

  
   
  

   
  
 
   
 
 
    

2 1 1 4 1 1 2 2 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 2 1 1 4 1 1 2 2 1

1 2 1 1 4 1 1 2 2 1

1 2 0 1 4 0 1 0 2 0

1 2 1 1 4 1 1 2 2 1

 
 
 
    
 

   
    
 

  
   
 
    
 
 
 
 

    
   
 

  
 
   

 

(1) (1)
11 11

1 2 1 1

1 2 1 1 4 1 1 2 2 1

1 2 0 1 4 0 1 0 2 0

1 2 1 1 4 1 1 2 2 1

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0 1 0

,1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 2 1 1 4 1 1 2 2 1

1 2 1 1 4 1 1 2 2 1

c c
X X

 

   
 

  
    
 

    
  
 

    
    
 
 
 

   
   
     

4 1 1 2 2 1

1 2 0 1 4 0 1 0 2 0

1 2 1 1 4 1 1 2 2 1

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 2 1 1 4 1 1 2 2 1

1 2 0 1 4 0 1 0 2 0

1 2 0 1 4 0 1 0 2 0

1 2 1 1 4 1 1 2 2 1

  
 

  
   
 

   
  
 

    
   
 
  
 
 
    
 

  
 
 
 
 

 

 

The pattern of convergence by determinants for the quadratic order effect designs is summarized in Table 3. 

 
 

Fig. 3. Pattern of convergence for quadratic effect, two-variable designs 
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4.7 Discussion 
 

The Authors considered appraising the pattern of convergence due to cycling in linear, mixed and quadratic 

response polynomials. Generated data using two and three variables for each of the m degree response 

functions were employed. Computations and graphs were conducted in R version 4.1.1 (R Core Team (2021)). 

The results of the analysis are summarized in Tables and graphs. The summaries of the pattern of convergence 

for degree 1 polynomials are presented in Table 1 and Figs. 1(a) and 1(b); Tables 2 and Figs. 2(a) & 2(b) present 

summaries for mixed polynomials while Table 3 gives the summaries for the quadratic portions in degree 2 

respectively. The results show that 

 

(i) Determinants increase monotonically to certain points and are seen to either becoming steady or 

reverting to specific earlier values for both the linear and mixed models except for the quadratic model   

(ii) Determinants for quadratic model for the 2  factor situation reverts at certain points in the process to 

non-specific earlier values while those for the starting designs for the 3 factors are all zero. 

 

These results agree reasonably well with [6], when they stated respectively that a variance exchange process 

may have good starting designs but may not guarantee designs having maximum determinants, Goos and Jones 

[20] and Arora [21], that starting designs may sometimes be singular. More so, the research advances further in 

finding out the different convergent patterns for linear, interactive and quadratic-order designs, induced by the 

influence of cycling. 

 

5 Conclusion and Future Scope  
 

This paper critically analyzed the convergent patterns of one- and two-degree response polynomials in a 

variance exchange process and comes to the conclusion that 

 

(i) The first degree and the mixed polynomials follow a regular pattern of determinants cycling about 

specific values giving a different picture of irregular patterns with the second order degree, cycling 

about non-specific values. 

(ii) The initial designs for all quadratic components of the second order polynomials have singular 

information matrices and cannot guarantee a variance exchange process.  

(iii) The effect of cycling on the pattern of convergence for two- and three-degree polynomials therefore 

differs with respect to the number of variables of the designs involved.  

 

The singular information matrices prevented the exchange process in the quadratic order effect for the two 

factor designs and therefore, emphasis on the research direction should be focused in future on a way to address 

such singular information matrices for the exchange process to be possible. 
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