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ABSTRACT 
 

In this introductory  paper we overview existing approaches to enzyme – catalysed reactions. From 
the Michaelis – Menten kinetics to quantum scatterings several models are considered. We try to 
introduce our ”information – driven measurement engines” (an other model of enzyme action) in 
relation to existent theories. We conclude that our approach is a special type of quantum 
mechanical treatment of enzyme catalysed reactions, in its nascent form. It is, we suppose, stands 
more in relation to a hypothetical gas – phase scattering, maybe even resonance scattering, as a 
one – dimensional vacuum energy – dependent motion along the reaction path. We are aware that 
at this time, no realistic gas – phase scattering is available in the area, and our approach  is thus 
similarly hypothetical. Still, it might provide a fresh view on enzyme – catalysed reactions, utilising a 
somewhat unusual Hamiltonian second – order tensor operator formalism. During arriving at our 
goal, we give some more extensive review devoted to current catalysed and uncatalysed reaction 
investigations, of a pure chemical and biochemical nature, exploring both experimental and 
theoretical procedures. 
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1.  INTRODUCTION 
 
We have hinted in a previous paper [1], that it is 
possible that the quantum mechanical 
’’measurement problem” derives from 
(macro)molecular quantum dynamics, gradually 
converging towards a limited (eventually single -) 
dimensional “out – wave” channel(s) Hilbert 
space (in an S – matrix formalism). The 
“measurement constraint” would be an initially 
randomly coiling, then sterically fixing (freezing) 
proto – enzyme “measurement device”, by a 
ligase - type “measurement” action on its RNA 
oligomer as its “object”. Pattee (e.g. [2]) 
advocated a number of attributes in this context, 
such as that enzymatic  behavior is mimicing 
projection operators, they are in a natural way 
resettable, etc. 
 
Chemical reactions, per se, are (S – matrix) 
scatterings theoretically, i.e., they are  second 
order (perturbational) quantum mechanical 
processes. On the other hand, enzyme - 
catalysed reactions are in a great majority 
leading to a single outcome (product) as an “out 
– wave”. There are generally no byproducts. This 
referres to Pattee’s measurement “engine” 
projectional action. They have generally no 
inverse, a rather general biochemical 
experimental fact, although theoretically there is 
such an inverse. 
 
We must here cite the concept of ’’internal 
measurement” (e.g. [3-5]). The basic idea is that 
the measurement on relatively large systems, the 
device/object interaction is not momentary but 
takes time: The internal interaction with the 
“device” propagates internally with at most the 
velocity of light. Therefore, our enzyme – 
catalysed “measurement scattering” also takes 
time, a fact well – known in experimental 
biochemistry (see e.g. fs resolution chemical rate 
experiments). Disregarding special binding and 
dissociation rates, on this fact relies  a good part 
of the area of enzyme - catalysed reaction 
kinetics (the part described traditionally as the 
unimolecular very fast ’’decay” of the enzyme – 
substrate complex). 
 
Our purpose in this paper is to arrive, finally, to 
our ’’informational measurement engine” concept 
of enzymes. However, to accomplish it, we 
intend to review nearly all strictly physical 

(energetic) approaches available in the literature, 
to enlighten the (formal) simplicitity of our 
concepts. Enzymes as ’’Maxwell’s demons” are 
known for a long time (e.g. [6-9]. Nonetheless, 
the concept has not been as pointed as we use it 
here. Our approach is strictly quantum 
mechanical, but we introduce four – indexed 
tensor elements as ’’Hamiltonians”. They serve 
to distinguish between strictly energetic and 
informational concepts (the contravariant indices 
serve as the ’’informational” aspects). 
 
We will not use extensively higher mathematics 
throughout, but we enlighten those mathematical 
concepts below for the interested reader which 
play a central role primarily in our own approach, 
presented in Section 2.2.  This distinction from 
other reviews is important, for example, in 
quantum scattering resonances, the 
corresponding formules containing, in a rather 
complicated way, the repeated occurrences of e. 
g. band widths. In an overall way, we will keep in 
mind the general biochemist reader, 
concentrating on results rather than on the 
mathematical routes by which they were 
obtained.  
 
(For those interested in our own research but are 
non – specialists, we would like to enlighten 
some   physical – mathematical concepts, used 
primarily in  Section 2.2.: an operator is a 
mathematical object which transforms a function 
into an other one; in quantum physics, physical 
quantities are represented by operators of which 
the most important is the energy operator, the 
Hamilton operator; a projection (operator) 
selects, in a quantum measurement, specially or 
by pure chance, a particular function 
(corresponding to the “collapse of the 
superposition” of functions to a single 
component; if a function, upon the action of an 
operator is only multiplied by a constant, is called 
the “eigenfunction”, the constant the 
“eigenvalue”, of the operator; an affine space is a 
vector space with non – orthogonal (inclined) 
basis vectors; the g metric tensor components  
are the scalar product of these basis vectors; 
“positive definite metric” spaces are those 
spaces where the scalar products are always 
positive; in an affine space a vector has double 
coordinates values: a “covariant” one, which 
transforms upon coordinate transformations 
“approximately” as an orthogonal one, and a 
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“contravariant” one which does not; there are 
(orthogonal or affine) function spaces on the 
analogy of vector spaces, the Hilbert space being 
a special function space; the “state functions”, for 
historic reasons, in quantum mechanics are  
termed “wavefunctions”, denoted by Ψ; in 
scatterings, the incoming “in – waves” are usually 
plane waves, while the post – collision scattered 
“out – wave” is usually a spherical wave; a tensor 
is a vector (function) coordinate – transforming 
object; our “second order difference  energy 
tensor” is a difference of two simple (two – 
indexed) difference tensor, so it is “second order” 
(in the differences), having four indexes; 
“constrained” means  “enforcedly limited”.)        
 

2. DISCUSSION 
 
In this way, as was noted above, we first survey  
the essences of the available cornerstones of the 
study of (energy – driven) enzyme - catalysed 
reactions. In doing so, we must keep in mind 
that, whatever the approach is, the fact is that  
there are reactions up to 10

9 
 rate enhancement 

due to enzyme catalysis. 
 
Accordingly, we first investigate the Michaelis – 
Menten (and Briggs – Haldane) classical kinetics 
(e. g.  Michaelis and Menten [10]; Briggs and 
Haldane [11]; Morrison [12]; Larsen, and Hansen 
[13]; for a derivation see e. g. Rhodes and Aflalo 
[14]); then proceed to more exact (quantum 
mechanical) frames (e. g. Truhlar et al. [15]; Gao 
and Truhlar, [16]).  However, we are not 
concerned here with the quantum mechanical 
refinements of the contributing mathematical 
parametrization, e. g. the more exact calculations 
of potential energy surfaces (PES) or vibrational 
modes, rather, we try to introduce a fresh light on 
the problem (here, rather briefly). 
 
Along this line, thus, finally, we set up our 
“second order” difference dynamical tensor 
equation, derived from the also ’’second order” 
uncertainty relations, where the enzyme 
molecules are active participants in the quantum 
dynamics. The difference between the 
(difference) energy tensors is interpreted as the 
(∆ - Δ) E = E#  energy barrier height transition 
state (TS) differences between not catalysed and 
catalysed reactions. “Information driven” 
measurement also derives from the “second 
order” uncertainty relations (Section 2.2.1.) 
 
In this way, we try to formalize the dynamical 
aspects of our “information – driven” 

“measurement engine” concept, introducing 
positive definite metric Hilbert spaces, with 
certain kinds of natural “projections” on them, 
where enzyme action is related to the coupled,   
g i j  geometrical metric tensors, supposing, as is 
done usually, that the catalysed TS’ is under first 
of all an enforced geometrical constraint upon 
the reactants (adjusted to the requirements of an 
induced, somewhat distorted “transition” state of 
the reaction, the “enzyme – substrate complex”, 
to help the dissociation to product(s) and the 
resetted enzyme molecule). This overall 
“coordinate measurement” (fixing) of the 
contributing atoms, as adjusted to the transition 
complex coordinate requirements, may involve 
high internal momenta, which might be one of the 
reasons of fast enzymatic reactions, internal 
momenta turning to a resultant external one upon 
the reaction.  

 
This affine projection by the enzyme molecule in 
fact realizes a difference function between the 
time dependent wavefunction of the reactant(s) 
and the TS, also  that of the product(s), minus 
the top and slope of the catalysed reaction 
barrier height (TS’). The enzyme molecules act 
as quantum filters (choice between scattering 
channels), where the filter is  

 
ΔΨ = ∑ φ

�� −	∑ φ
�
=��� �� → ��� ∑ φ

�� = φ
�
   (1) 

 

Here P̂ i is a projection operator.  
 
Thus, we do not deal here in our own scheme 
with reaction kinetics, rather, we try to provide a 
quantum mechanical interpretation of the already 
widely analyzed molecular level dynamical 
parameters of the phenomenological Michaelis – 
Menten kinetics (Sections 2. 1. 2. and 2. 1. 3.), in 
fact, a possible en gross description of the 
substantial reduction of the energy barrier height 
in the reaction. This is done by dealing with the 
corresponding ’’transition state” (TS’) (here 
’’enzyme – substrate complex”) on a pure 
quantum mechanical basis, trying to transcend in 
this respect the already existing approaches. We 
would like to stress that our approach is intended 
to be a description, not a theory.  Introductorily 
we intend to do it in its most simple form, 
disregarding loose - binding case, tight – binding 
case,  multiple binding, allosteric  inhibition(s), 
etc. particular occurrences. As we noted, though, 
our primary concern is molecular mechanisms, 
discussed later. 
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2.1 Strictly Physical Models of Enzyme 
Action: An Overview 

 

2.1.1 The Michaelis – Menten and  Briggs – 
Haldane kinetics 

 

The basic idea of the description of a simple 
enzyme - catalysed reaction in the Briggs – 
Haldane derivation of the Michaelis – Menten 
kinetics  is summarised as  
 

[S] + [E] [ES]
����
�⎯� [E] + �S′�(P).               (2) 

 

Here and in what follows in this Section, we will 
follow the general notation (S = substrate(s), E = 
enzymes, S ’  =   P) (’’product(s)”). Here [ES] 
corresponds to the ’’transition complex” (enzyme 
– substrate complex), kon,, koff,,  kcat  are the rate 
constants of the reversible enzyme - substrate 
reaction and the in practice irreversible, catalytic, 
reaction rate constant (note that koff,  kcat are not 
equal to kon in dimensions, the latter being a 
bimolecular reaction rate constant, i. e., referring 
to two reactant  specimen concentrations with 
dimension concentration-1time -1, while koff, 
together with kcat,, has dimension time -1,that of a 
unimolecular (’’decay”) one. The task is to derive 
an equation which describes catalytic reaction 
rates which contains only measurable quantities. 
 

We here, as mentioned above, follow the  Briggs 
– Haldane derivation. 
 
Defining the dissociation binding constant of 
[ES], K D  =   koff  / kon  and K M (the Michaelis 
constant) =  (koff +  kcat) / kon ,  the derivation  
follows  the equations of the rate of change for all 
the chemical specimens in the system, but the 
most important is 

 

 d[ES]/d� =��� [ES] − ����� + �����[ES].        (3)                             

 
In most systems, the [ES] concentration will 
rapidly approach a steady state. This steady 
state approximation is the first important 
assumption in the Briggs – Haldane derivation. 
This is also the reason that well – defined 
experiments measure reaction velocities only in 
regions where product formation is linear in time. 
As long as we limit ourselves to study initial 
reaction velocities, we can assume  
 
d[ES]/d� = 0 , from where ��� [E][S] =
����� + �����[ES].                                         (4)  

 
To determine the rate of product formation, 

 d[P]/d� =���� [ES],                                 (5)                                  
 

as the free enzyme concentration [E] is equal to 
the total enzyme concentration [Etotal ] – [ES]. 
Since Vmax is the reaction rate at saturated 
substrate concentrations, it is equal to k cat  [ES], 
when [ES] = [E]. 
 
So by substitutions and rearrangements, we 
arrive at  kcat [E]; and as K M  = (koff +  kcat) / kon 

,we have the familiar Michaelis – Menten 
equation 

 
 v = V���[S]/(K� +[S]).                        (6) 

 
(Note that [S] here represents the free substrate 
concentrations, but it is generally supposed to be 
close to the total substrate concentration. This 
second assumption is the free ligand 
approximation, and is valid as long as the total 
enzyme concentration is well below K M  of the 
system. Otherwise (for example with very high 
affinity substrate), the quadratic (or Morrison) 
equation is used instead [8]. 
 
Comparing  K M  and K D, it is obvious that K M  
must always be greater than K D. 
 
The third approximation is that Michaelis and 
Menten assumed, that substrate binding and 
dissociation occurred much more rapidly than 
product formation (k cat  <<  k off ), which is the 
rapid equilibrium approximation, so that K M  
would be very close to K D.  The larger the kcat 
relative to koff, the greater the difference between 
K M  and K D. Briggs and Haldane made no such 
assumptions about the relative values of k off and 
k cat, and so the Michaelis – Menten kinetics can 
be regarded as a special case of the Briggs – 
Haldane kinetics. 
 
The opposite extreme, where k cat  >> k off , is 
called the Van Slyke – Cullen behavior [17], with 
 

 v = ����[ES].                                         (7)  
 

Thus, the  derived equation is the Michaelis – 
Menten dynamics, a kind of ’’special case” of the 
Briggs – Haldane dynamics. Its mathematical 
form is a rectangular hyperbola, with one paralell 
to the x – axis is Vmax (the other has no 
meaning). The hyperbola expresses the velocity 
of the enzyme catalysed reaction versus the 
substrate concentration. At K M  we have V max / 2. 
A note is in order to the steady state: it was 
proven by Schuster and Hilgetag [18]  that, 
mathematically an elementary flux mode can be 
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defined as a null – space vector, and if all fluxes 
have fixed signs, all elementary modes are given 
by the generating vectors of a convex cone. 
Their formalism is extended to reactions 
proceeding in either direction. Their example is 
glycogenesis and glycolysis .  
 
An additional note is in order once more about 
the free ligand approximation. As we hinted 
above, when a substrate’s K M is lower than the 
total enzyme concentration, a significant fraction 
of the substrate will be bound to the enzyme. 
This is the tight binding case, for which the 
simple Michaelis – Menten equation does not 
hold. For this case, the quadratic velocity 
equation is derived, but we do not go into its 
(more involved) details here.   
 
The Michaelis – Menten (Briggs – Haldane) 
equations are phenomenological equations, at 
best  phenomenological thermodynamic ones. 
They say nothing about the molecular 
mechanisms  of enzyme catalysis. 
 
2.1.2 Quantum mechanical methods included 

e.g. QM/MM  
    
On a molecular basis, it is quantum mechanics 
which is the relevant theory. It has been known 
for a long time that the essence of chemical 
kinetics is an energetic barrier between reactants 
and products. Quantum mechanics enlighted the 
situation by discovering that they are, in fact, 
separated by the converging adjacent walls of 
(two or more) potential wells, with their internal 
vibrational energy levels (see Fig. 1.: i

+
, k

+’
),  

forming the barrier(s). Classical and current 
quantum mechanical theory on the molecular 
level holds that the primary function of enzymes 
is to lower (even fully diminish) the barrier 
energetically. (In uncatalysed reactions the 
determining factor is some kind of externally 
originated energy supply, increase, such as e. g. 
collisions in elevated temperatures or 
photoeffects.) However, the whole system is 
beyond computational capabilities, thus we note 
here that most methods use the strategy of 
calculating quantum mechanically what can be 
done for single molecules or parts of 
macromolecules  (coenzymes or active centers), 
also e. g. individual solute molecules, then using 
a physically reasonable averaging for the whole 
system, see e. g. the transmission coefficients or 
the corresponding reaction paths (Section 2. 1. 
3.). However, before proceeding to the proper 
dynamics in use, we make some account on the 

more modern applicable quantum mechanical 
methods available. 

 
Of the QM/MM (quantum mechanical/molecular 
mechanical) method [19-20], (modern: e.  g. [21-
23]), the QM side had been for a long time split – 
valence ab initio Hartree – Fock (HF) MO 
procedures (equations: Roothaan [24]; AO’s: 
[25]), with taking care of static electron 
correlations by e. g. “Extended” (“Unrestricted”) 
HF methods (e. g. [26]) with analytical first and 
second partial derivatives with respect to the 
nuclear coordinates (in the Born – Oppenheimer 
approximation). This QM/MM method became 
popular for its fortunate combination of the 
quantal and classical componens (e. g. sp3 ’’ 

’’hybrid” bordering carbon atoms, treated in either 
ways), to yield relatively good precision. The 
quantum mechanical (chemical) semiempirical 
procedures are nowdays largely obsolate for 
their highly imprecisional nature on the quantal 
side. Today, however, with the rapid evolution of 
supercomputers, there are various methods such 
as the ab initio Coupled Cluster (CC) procedure 
(Čižek, [27]; e g. see [28], MP (Møller – Plesset 
[29]; modern: e. g. Davidson and Jarzecki, [30]) 
and other perturbational procedures, intending to 
go “beyond the HF limit” (“infinite” number of 
MOs). They can take care for dynamical 
(Coulomb – holes movements) correlations, so 
for ’’electronic unharmonicity” in vibrational – 
conformational studies. CC e. g. performs pretty 
well for bond – breaking processes. Though 
there are again dimensional limits, in 
combination with MM there is again progress to 
larger systems (e.g. [31]). MM methods are also 
developing with similar rate. Gradients and 
second derivatives are relatively easy to derive in 
QM/MM procedures.  
 
The above sketched recent development is 
important for our considerations here, because  
the potential surface (so also tunneling) and the 
vibrational modes, the latter mainly in relation to  
the crucial flat (e.g. large amplitude vibrational 
torsional, also full rotational) potentials, are 
sensitive to static and dynamic electron 
correlations in the enzyme active centers (also 
for coenzymes). As for uncatalysed reactions, 
currently ab initio calculations on smaller 
molecules aim  even to compete in precision with 
experiment, e. g. concerning rate constants (see 
below). 
 
A note is in order here of the newly introduced 
“master equation” approach, originating from 
Bloch’s nuclear resonance equations. If we 
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divide the total Hamiltonian into “system”, 
“environment” and ’’their interaction” parts, using 
the Neumann equation (time evolution of the 
density operator), in the ’’interaction picture”, 
where only it is the ’’interaction” which is followed 
in time, the total density operator and the 
interaction Hamiltonian remains, and by some 
mathematical manipulations we arrive at an 
equation, which describes the time evolution of a 
probability operator, which dominates (’’masters”) 
the probabilistic process. In the ’’Born 
approximation”, we separate the fast ’’system” 
and ’’environment” parts, so the time evolution is 
determined by the square of the ’’interaction” 
Hamiltonian.  
 
This is the ’’Markovian Master Equation”. For an 
overview of its recent introduction into chemical 
computations see e. g. ref. [32].   
 
A less frequently used (in chemical reaction 
kinetics), recently developed method in the 
molecular realm is the Density Functional Theory 
(DFT). Its essence is introducing a functional (of 
a scalar, usually the total electronic energy) of 
the electronic density. 
 
2.1.3 The quantum mechanically supported 

reaction rate (dynamics) 
 
The classical rate equation (dynamics), which we 
try to refine (and solve more exactly) by the 
introduction of quantum mechanical effects and 
methods, taking into consideration that enzyme - 
catalysed reactions are closed shell ground state  
processes (thus theoretically relatively not very 
involved). 
 
The exact classical rate equation is 

                            
�(T) = γ(T)1/β	ℎ	���[−βΔG#(T)]        (8) 

 
where T is absolute temperature, β =  1/ k T , k  
= Boltzmann’s constant, k T / h =  ’’pre - 
exponential factor” , ’’frequency factor”, 
’’Arrhenius (’’collision”) factor A”, with 
approximate value of 10

 – 13 
 sec

-1
 at 300 

0 
 K; it is 

sometimes interpreted as a normal mode 
frequency of dissociation or forming a bond. ∆ G

# 
 

(T) = molar free energy of activation, i. e., the 
exponental is the temperature – dependent 
Boltzmann distribution of an ensemble of 
reactants at the free energy barrier height, the 

latter also depending on the temperature. γ(T) = 
transmission coefficient, the also temperature – 
dependent fraction of reactants transformed into 
products over the barrier. Both  ∆ G

# 
 (T) and γ 

(T) depend on the choice of the transition state 
(TS) . This equation and its approximations were 
extensively discussed by Gao and Truhlar [15]. 
Two conditions are generally supposed:  
 

a) the reactants are in local equilibrium along 
the reaction path z (’’reaction coordinate”), 
the latter  normal to the hypersurface of the 
free energy;  

b) there is no re – cross  from the potential 
energy surface (PES), as they are 
thermalysed in the reactant or product 
state. 

 
The two crucial parameters are ∆ G#  (T) and γ 
(T). For the condensed phase, the problem can 
be handled by minimizing the rate constant along 
z. The most important is  ∆ G

# 
 (T). For  the other 

important parameter, at enzyme - catalysed 
reactions, γ (T)  ≠ 1. But by optimizing PES , this 
is minimizing the re – crossing correction (γ (T) ≈ 
1.) Concerning coordinates other than z : we 
suppose instantenous equilibration along the 
movement on z. 
 
According to classical mechanics, ∆ G

# 
 (T) is 

consisting of four parts, we have WCM  (T, z#) 
minus WCM  (T, z

 
R), plus G CM

R 
 (z), plus C(T, z ). 

Here z R  and z
# 

 are reaction coordinates at the 
reactants and at the transition state TS,  G CM

R  
(z) is the free energy of the mode in  the 
reactants (R) that correlates with z, C(T, z ) is a 
transformation function (from rectilinear z to 
curvilinear z ). CM = potential of mean force. For 
∆ G# (T), we have thus a potential of mean force, 
abbreviated here PMF, the corresponding free 
energy quantity denoted by WCM (T, z). The latter 
is obtained  by averaging over the enzyme and 
the substrate and solvent configurations along z. 

                                 
W��(T, �) = −RTρ

��
(T, �) +W�

��,   where (9) 

 
ρCM  (T, z) =  classical mechanical probability as 
a function of z, calculable by free energy 
perturbational methods within the framework of 
MM. 
 
The quantum mechanical refinement enters by 
PMF (or PES) and the free energy of activation is 
obtained by  
 

a) applying variational perturbation TS theory 
(VTST) and a variation of  PMF; it leads to 
the calculation of a TS  (with PMF) ; the 
inclusion of discrete vibrational energies 
makes more exact PMF. Note that the free 
energy of the reactants and that of the TS 
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is critical for determining the reaction rate. 
The vibrational modes are calculated 
quantum mechanically, e. g. by ab initio VB 
(Valence Bond) methods. These are 
important for PES – sensitive bond – 
breaking/formation as PMF determines the 
quantity W CM (T, z ). Note that MM alone 
does not perform well for chemical 
reactions.  

b) Nuclear motion, effecting  PES (and PMF): 
vibrational calculations are essential 
procedures to include into ∆ G

# 
 (T). The 

best way is to select semiclassical TS 
points, and perform QM vibrational 
calculations, to estimate re – crossing.  

c) Tunneling, first of all H, H 
+
 , H

 --  
. As the 

motion along z is not separable, we must 
include multidimensional tunneling, treated 
semiclassically. 

 
In this way, ∆ G

# 
 (T)  results from averaging the 

PES over an ensemble of structures, so PES 
should be accurate. Here QM/MM performs well 
for the free energy simulation for 
macromolecules. The QM – cal diagonal matrix 
element (H1,1 ) includes the solvation energy 
term, the off – diagonal one (H 1,2) is environment 
independent. What concerns PMF: supposing ω0 

’s , no vibrational mode analysis is performed. 
We correct for the classical vibrational modes in 
an ensemble average. Note that only those 
modes are corrected, which are classically 
orthogonal to z. In practice, we calculate not a 
single – minimum QM normal mode analysis, 
rather, we calculate instantenous normal modes 
in a local harmonic approximation. By the similar 
ωR  correction to GR

CM , the free energy barrier 
decreases by 2 – 4 kcal/mol. 
 
Concerning γ (T), there is classically treated re – 
cross and QM – ally treatable effects, such as 
tunneling (in general, nuclear motion) on z (these 
are missing in the above noted calculations) on 
PMF. There is a general way out: „Quantum 
Transition State Theory” (Quantum TST). Its 
essence is to extend the spatial enzyme - 
catalysed reaction TS along z. The point is to 
treat z classically, the other degrees of freedom 
by QM. This is what leads to classical dynamical 
and quantum effects as treated  γ (T). The 
method is ensemble averaged variational TST 
with multidimensional tunneling. The ensemble 
average is calculated by MM, e. g. by a diabatical 
energy – gap coordinate, representing  collective 
solvent motion. (E. g. ∆ E  =  bond 
forming/breaking). For each configuration in the 

TS ensemble, it is partitioned into primary (QM) 
and secondary (MM) region. 
 
If the MM region is kept rigid, we have isoinertial 
Minimum Energy Path, (’’s i’’)  (MEP). It yields a 
generalized free energy of activation ∆ G

 GT 
(T, si) 

(in the general theory Δ G), so si  = si
# 

. As a 
result, the classical equilibrium flux is reduced 
relative to the dividing surface, and we have a 
quasiclassical free energy of activitation. When z 
(si  )  =  z

#
, there is a quasiclassical transition 

factor Γi , with a classical positive exponential 
free energy term, depending on si

# , and a 
negative quasiclassical  free energy term, with 
reference to the TS. 
 
The MEP approximation is a good example of 
QM/MM: the secondary (MM) zone is 
equilibrated, it yields thermal and entropic 
contributions, by calculating them averaging the 
TS configuration ensemble and doing the same 
along the minimum energy path.. An advanced 
method is to be mentioned: z is taken as the 
vectorial sum of all the internal coordinates. 
 
Note that month by month, more refined methods 
are tested, and introduced to account for the 
above noted quantum effects involved. 
 
2.1.4 Computer simulations 
 
The above model calculations are in general 
termed as computer simulations. Garcia Viloca et 
al. [33] discussed several model calculations in 
detail, by inclusion e.g. of H – bond formation, 
charge transfer, etc. on specific enzyme - 
catalysed reactions. The results are in general 
encouraging. They were able to separate the 
individual [TS]’ barrier decreasing values due to 
the different effects in a numerically acceptable 
way. 
 
As Gao and Truhlar [15], Truhlar et al. [16] and 
Garcia Viloca et al. [33] summarised to some 
extent more modern experimental and theoretical 
results on enzyme - catalysed reactions, a briefer 
discussion is in order here on current quantum 
mechanical calculations (and, to a smaller extent, 
experimental results) on the chemical reaction 
kinetics of smaller molecules (however, including 
bioplymers and their interactions with smaller 
compounds).  
 
What concerns environmental experiments, e. g. 
Lee et al. [34] studied the oxidation of 
nitrosodimethylamine (NDMA) precursors with 
ozone and chlorine dioxide. They eastablished 
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both their kinetics and their effect on the NDMA 
formation potential.  Hammes et al. [35] used 
mechanistic and kinetic methods to evaluate the 
organic disinfection byproducts in drinking 
ozonated water. Hu et al. [36] revealed the 
mechanism and reaction kinetics of oxidation of 
carbamazepine by Mn(VII) and Fe(VI).  Sharma 
[37] studied the one – and two – electron steps in 
the oxidation steps by Ferrate (VI) and Ferrate 
(V) of inorganic compounds. As the most 
interesting of all similar works, Neta et al. [38] 
presented (somewhat older) experimental rate 
constants for reactions of inorganic radicals in 
aqueous solutions.   
 
An other interesting area is atmospheric, oceanic 
and space chemical research, as conducted e. g. 
in the University of Michigan, Ann Arbor. These 
(and similarly interested) researchers frequently 
use ab initio and master equation calculations, 
too.  
 
Robinson and Lindtstedt used an ab initio study 
devoted to describe the abstraction of hydrogene 
from n – propyl benzene [39]. Georgievskii et al. 
[40] reformulated the master equation for the 
study of multiple – well chemical reactions [40]. 
Somers et al. [41] discussed by experimental and 
computer simulations of the 2,5 dimethylfuran 
pyrolysis and oxidation. Simmie et al. [42] used 
quantum mechanical methods to reveal the 
abnormal reactivity of 2 – methoxifuran. Also 
Simmie et al. [43] performed modern ab initio 
procedures to establish the substituent effects in 
the thermochemistry of furans. Weston et al. [44] 
used a master equation model with sophisticated 
ab initio SCTST rate constants for reaction rates 
and H/D kinetic isotope effects. Wu et al. [45] 
also used a theoretical method to study the CH 3 
- CH=CH 2 + O(D-1) reaction. Lam et al. [46] 
used experimental and theoretical procedures to 
derive the gas – phase reactions of aryl radicals 
with 2-butyne. One of the most interesting 
method in theoretical terms were performed by 
Glowacki et al. [47] on a modified master 
equation for the study of multi  energy – well 
reactions. Also, Feller and Simmie adopted high 
– level ab initio studies to explore various 
reaction enthalpies. This latter study is a good 
example of the precision which can be obtained 
by sophisticated current theoretical procedures 
[48]. Barker et al. [49] similarly used high – level 
ab initio  study in context with semiclassical TST 
theory, exploring certain isotope effects. 
Altarawneh et al. [50] studied theoretically of the 
thermochemical and structural parameters of 
chlorinated isomers of aniline. Da Silva et al. [51] 

investigated both theoretically and experimentally 
the pyrolysis of fulvenallene  and fulvenallenyl. 
Again Simmie et al. [52] used ab initio methods 
to investigate the decomposition of 2,5 
dimethylfuran. An also ab initio study of Thanh et 
al. [53] in connection with semiclassical TST 
theory was carried out for certain chemical rate 
constants. FitzPatrick et al. [54] used a modified 
(Statistical TST) theory of modeling of the 
chemical dynamics and adopted an ab initio 
procedure for calculating critical points. Vasu et 
al. [55] used experimentally Shock Tube/Laser 
Absorption measurements of the reaction rates 
of OH with ethylene and propene. Bozkaya et al. 
[56] studied theoretically different quantum 
mechanical parameters (barrier, lifetime, etc.) for 
the dissociation of HN 2.   
 
Concerning theoretical methods, these frequently 
adopt fotoeffects and, to a smaller extent, the 
variance of temperature (we do not deal here 
with the latter). 
 
Gustafsson et al. [57] compared the rate 
constants of the radiative association of HF 
molecules as obtained by QM – cal and classical 
dynamics. Li et al. [58] studied tunnelling effects 
with an effective quantum force. Nyman and Yu 
[59] overviewed the available quantum 
approaches to polyatomic reaction dynamics. In 
our view, the most important for practical reasons 
was that Wakelam et al. [60] who provided a 
kinetic database for astrochemistry. Again 
Gustafsson et al. [61] studied, by refined 
theoretical methods, radiative associations. 
 
Keeping in mind the biochemist reader, finally we 
list here a number of current research works, not 
exactly those of enzyme kinetics, but generally 
the interactions of biopolymers with smaller 
molecules, giving not much comment. The 
pecularity of these studies is that they use the 
phenomena of the stabilizing effects of electronic 
polarisations, and they adopt extensively refined 
molecular force fields. While this field can not, 
naturally, studied by QM methods, they can 
adopt e. g. quantum mechanical force fields, 
transferred from smaller molecules and, 
generally, theoretical considerations e. g. of 
electronic polarisations, are frequently used.  In 
physical terms, the main problem is not so much 
the largeness of biopolymers, rather, their 
(physically) disordered nature.   
 
Concerning adapted (’’calibrated”) force fields, 
those of the zinc – protein complex [62] and the 
molecular dynamics of the INT-DBD binding of 
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DNA [63] is mentioned here. Effects of charge 
polarisation stabilization is very favored. Its 
theory was exposed by Zeng et al. [64]. Its 
critical effect in stabilization of the dynamical 
structure of guanine quadruplex DNA was 
studied by Song et al. [65]. Electronic stabilizing 
as crucial factor in the native structure of proteins 
was put forth by Ji and Zhang [66]. An other 
theoretical (numerical) study, calculating also 
polarising electric fields, was carried out by Mei 
and Zhang [67]. The critical stabilizing effect of 
electronic polarization concerning the Mg

 2+ 
 

complex in the catalytic core of the HIV-1 
integrase was studied by Lu et al. [68]. Helix 
(protein) folding is also critically depends (at 
room temperature) on the electronic polarization 
of intraprotein H – bonds, as discussed by Duan 
et al. [69]. That electronic polarization is crucial 
for enzymatic catalytic function, has been known 
for a long time, but Xiang et al. provided new 
evidences [70].  
 
As for more ’’theoretical” studies, a QM/MM  
study (with an ab initio method on the quantal 
side) on the peptide bond formation in the 
ribosome which helps to form the eight – 
membered ring formation, was carried out by Xu 
et al. [71]. A similar calculation was performed by 
Zhu et al. on the amide proton chemical shifts in 
proteins (in a definite solvent) [72]. A 
straightforward quantum mechanical calculation 
on the solvation and protein – ligand free energy 
was performed by Tong et al. [73]. Other 
’’computer simulations” of similar nature were 
carried out by Han and Zhang [74], Wu et al. 
[75], Zhang et al. [76] and others. 
 
As it can be seen from the above brief overview, 
and as we noted above, theoretical (specially, 
quantum mechanical) calculations are thus 
currently frequently used in combination with 
classical (or ’’semiclassical”) theories and, 
mainly, with experiments in chemical reaction 
kinetics. However, as noted also above, on the 
chemical kinetics of small molecules, at least 
concerning current pure QM calculations, can 
compete in precision with experimental results. 
 
2.1.5 Fractal kinetic theory 

 
Here the supposition is that if the kinetics is 
dimensionally constrained (to two or a single 
dimension), e. g. in a membrane channel, they 
do not follow the mass – action kinetics, rather, 
fractal kinetics (Savageau, [77]). The power – 
law formalism is used to introduce fractals for a 
simple pathway and reversible reactions. Simple 

bimolecular rates are considered, and extended 
to the Michaelis – Menten kinetics. The fractal 
kinetic rate law is established for the examination 
of the steady – state equation. The result is that 
by fractal kinetics the temporal response along a 
pathway, characterized by both fundamental and 
quasi – steady – state equations (based on 
traditional mass – action kinetics), is shown that 
the equilibrium ratio is a function of the amount of 
material in a closed system, and microscopic 
reversibility imposes severe constraints on  the 
set of the fractal kinetic orders. 
 
In a biochemical pathway, fractal kinetics allow 
an increase in flux to occur with faster temporal 
response and with less accumulation of pathway 
intermediates than traditional kinetics. Therefore, 
the primary aim is to find novel ways to achieve 
important features of biochemical pathway 
design.   
 
2.1.6 Chemical reactions as quantum 

scatterings  
 
Chemical reactions as second order quantum 
mechanical perturbational processes are first of 
all cross – beam gas phase scatterings, so our 
own considerations (see Section 2. 2.) are to a 
large part ’’gedanken experiments”. However, it 
is possible that one day such enzyme – 
catalysed reactions will be able to be studied by 
gas phase processes. There do not seem to be 

in principle obstacles to its possibility, in 
particular in view of the different modern versions 
(e. g. statistical conformational distributions, 

compare [78]) of Koshland’s original ’’induced fit” 
hypothesis [79-81]. It is possible, in the spirit of 
the paper, that ’’fortunate” (complementing) 
collisions would lead to single energetic radial 
ones, as corresponding to ’’selective 
measurements” by the enzyme molecules, as a 
single barrier – top resonance scattering. 
 
This hypothetical approach is important for us, 
for our approach resembles enzymatic activation 
of reactants in vacuo. We will move in the quoted 
Section within the general framework of the time 
– dependent Schrödinger equation, but now and 
then refer to the original second order S – matrix 
scatterings, similarly to the below cited authors. 
 

Bowman and Schatz [82] and Althrope and Clary 
[83] discussed in detail the problem of chemical 
reactions as gas – phase scatterings by quantum 
mechanical variational (and hyperspherical) 
methods, procedures and calculations on 
bimolecular collisions. 
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In general terms, the incoming waves are plane 
waves, the outgoing one a spherical one: 

                      
Ψ(�) ∼ ���(���) + f(�,θ)[���(���)/r]		 

(r → ∞)	(10) 

 
Here f (k, θ), the scattering amplitude = (1/ 2 i k 
)∑

∞
 i = 0   (2 i 1) (s i   - 1) Pi  (cos θ), the S – 

function: s i   =  exp (2iσ i ). The differential cross 
section: d σ  =   │ f (k, θ) │

2 
.  The integral for full 

space:  
 

∫ │ f (k, θ) │
2  

d
 
Ω  =  2 π ∫0

π
  │ f (k, θ) │

2   
sin θ 

dθ. Different coordinate systems are used: 
Jacobi transformed, reaction path, hyperspace 
ones. The crucial state – to – state reaction 
probability: 
 

 ρ
α,�;α´,�´

= ��α,�;α´,�´�
�
,                   (11)                           

     
where α denotes reagents or products, t denotes 
the electronic structure. Concerning 
approximations, we have the ’’reduced 
dimension” (RD) or ’’rotating bond” theories. 
 
Considering the time dependent Schrödinger 
equation, from the point of view of available 
efficiency the basis set and the propagation 
method is important.  

 
       Ψ(t) = �����−�	��	t	/	ℏ��			Ψ(t = 0),     (12)  

 
where the first factor is the time evolution 
operator, computed by certain propagation 
algorithms,  Ψ (t), the time dependent 
wavefunction  is represented by grid. The 
propagation algorithm can be chosen to be a split 

– operator method: exp {- i  Δ t ��/ ħ }  =  {  } {  } 
… , so that Ψ (t + Δ t)  =  {  } {  } Ψ (t), or e. g. the 
so – called Cheybichev series is used. These 
methods have different advantages and 
disadvantages.  
 
There is a notable further approximation: the 
reactant/product decoupling (RPD) 
approximation, in which we avoid the coordinate 
problem by splitting the exact Schrödinger 

equation, concerning wavefunctions, into χ r  (t) + 

χ p  (t)  =  χ (t), so instead of the equation  

 
    �	ℏ{∂χ(t)/ ∂t} = ��χ(t),      (13)       

        
with 

�	ℏ�∂χ
�
(t)/ ∂t� = ��χ

�
(t) − ���χ

�
(t) 

�	ℏ �∂χ
�
(t)/ ∂t� = ��χ

�
(t) + ���χ

�
(t)  (14) !!!             

       
we have two equations (χ denotes reactants and 
products). The first usable scattering equations 
were set up by Liu in 1975;  Liu et al. [84] in the 
late 80s obtained good PES, converged integrals 
and differential cross sections (H + H 2    →   H 2  + 
H). (Note that the study  was critically discussed 
by Truhlar and Horowitz). It resulted in the Liu – 
Siegbahn – Truhlar – Horowitz (LSTH) PES in 
the 80s. Real quantum scattering calculations 
are available since 1995. What is important is the 
overall behavior of the cross section using 
quantum and classical trajectories treated 
together (QCT). Using it, there is a time delay in 
forward scattering. The concrete calculation was 
F + H 2  →  HF + H. 
 
The first accurate ab initio calculation on PES 
was performed by Stark and Werner [85]. It  
 
a) correctly predicted a bent TS, provided a 
realistic barrier height, with the inclusion of spin – 
orbit coupling. Since then, numerous calculations 
were performed on insertion – type, heavy – light 
– heavy atom, metal atom inclusion, etc. types of 
reactions, involving ion – molecule reactions, 
with deep wells, long – range potentials, 
nonabatiatic effects, etc. Scattering near – 
resonances were studied, with lifetime 
investigations, showing that resonances may 
take part in the collisions, providing adiabatic 
potential wells. Feschbach resonances occurred: 
quasi bound states were found that were 
associated with PES, containing no local minima. 
(Notably, Feschbach resonances were originally 
introduced in nuclear physics.) In general, it was 
found that chemical scatterings are very sensitive 
to the concrete form of PES. In this respect, we 
note that theory and experiment are in a way 
complementary. 
 
An alternative approach is following the one – 
dimensional reaction path z along the above 
noted minimal PES of the reduced mass μ: 
 

  ∂�Ψ/ ∂�� + 2μ/ℏ�[E − V���(�)]Ψ = 0.  (15) 
 

Here  E  is the total energy, μ is the reduced 
mass, V MEP is the minimum potential energy 
path. Concerning Ψ, 
 

Ψ(� = −∞) = ���	�	k	� + S�	��� − �	k	� 
       �(S = ∞) = S� ��� � k	�.      (16)                       
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Here SR and ST are the energy – dependent  
(complex) reflexion and transmission amplitudes. 
ST is the reaction probability, determinable by 
calculating  │ ST  │

2 
. 

 

Resonance scattering more closely  
 

 
Resonance scatterings are of special interest for 
us, for reasons what has been said above. 
Though contemporarily available (experimental 
and theoretical) methods are not appropriate to 
test our suppositions, it is well worth to overview 
current research in the field. For the interested 
biochemist, we recommend Sakurai’s updated 
book as an introduction to the resonance 
phenomena [86]. 
 
Scattering resonances were extensively studied 
by Fernández – Alonso and Zare [87], as 
associated with poles in the  S – matrix, e. g. E = 
E 0 -  i Γ / 2 in the last propagation equation; this 
contribution of the denominator of the proper 
resonance equation to σ vanishes (here Γ is the 
resonance width). Theoretically, we search for 
such poles in the complex plane. As the S – 
matrix is a complex analytical function, the poles 
completely define it. 
 
Friedman and Truhler examined barrier 
resonances [88]. They showed, that symmetric 
energy barriers are also associated with a short – 
lived pole in the S – matrix, far from the real axis. 
They also concluded that this holds also for 
asymmeric potential barriers, too; in fact, E 0  -  i 
ħ ω (2n + 1), where  E0  is the  position on the 
potenential barrier, and ω is the frequency. The 
first pole occurs at E 0  ; similar localisation 
effects were found for the usual resonance 
phenomena. The resonance types found:  
 

a) conventional resonances  (Feschbach 
resonances),  

b) barrier resonances,  
c) Wigner cusps (threshold anomalies).  

 
The first two are associated with true metastable 
states. Semiclassically, they are associated with 
maxima in the vibrational adiabatic potential 
curves, i. e., the repulsive periodic orbit dividing 
surface (RPDS), in contrast to the RPOs, is 
related to conventional resonances. Ten barrier 
states dominated the low energy spectrum, and 
formed two progressions along the reactant and 
product states. Their stability is similar to 
Feschbach resonances, they increase with 
energy.  
 

Considering Feschbach resonances, we 
introduce into the one – dimensional propagation 
equation Veff (z ): 
 

V���(�) = V���(�) + ℏω(�)(n + 1) +

ℏ�/16μ(n� + n + 1) ���d	ln	ω(�)�
�
� /d	��

�

   
         (17) 

 

The first term is the original VMEP along z; n are 
running integer quantum numbers and ω is the 
frequency. The second and third term in their 
interaction greatly effect the shape of the 
potential. Thus we have both shape and barrier 
resonances. The investigation can be extended 
to adiabatic potential curves taking into account J 
(the total angular momentum), adding rotational 
energy vs. z. Geometric phase (orientation of 
incoming waves) also can be considered, initially 
in a H + H 2  scattering, and it is a very sensitive 
function of the collision energy and PES. 
Additionally, we have the two – vector  (k – k’) 
correlation approach in the usual cross – beam 
experiments. 
 
For current research on shape resonances, see 
e.g. ref. [89]. As for a current experimental 
investigation on chemical scattering resonances 
at ultra cold (a few Kelvin), low angle and 
ultrasonic cross – beam molecular collisions, 
obtaining shape and Feschbach resonances, see 
[90]. 

 
2.2 The Author’s Scheme: The 

Information Driven Measurement 
Engine 

 
2.2.1 The basic concepts: the ’’loose” 

uncertainty relations and the secondary 
differences Hamiltonian tensor operator 

 
We arrived to the point of the discussion, that the 
author’s frame of the information driven quantal 
measurement action as supposedly (at least one 
of the) driving force of enzyme catalysis can be 
discussed. We think that it was necessary to 
some existent theories (and, in some cases, 
practice) to present above, for the 
comprehensibility of our scheme. 
 
In our own approach, the primary effect of 
enzyme action is to decrease the quantum 
uncertainties of the substrate(s), to obtain a 
’’skewed” probability field. The way to attain this 
is to decrease the quantum uncertainties of the 
substrates (i) by a part of the quantum 
uncertainties of the enzyme molecule (j) (the 
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difference of differences) of the  complex 
systems’

 
 resultant vectors, yielding a kind of 

’’secondary” uncertainty relations. This realizes 
the in principle quantum specificity. In the 
coordinate – momentum picture, with reference 
to the internal specific interactions: 
 

�Δ�� − Δ����Δ�� − Δ��� ∼ 2ℏ�� − 2ℏ��  (18) 
 

The summands in eq. (18) define operator 
(matrix) differences, in a compressed form as a 
secondary physical (energy) quantity. As a 
corollary result, 
 

Δ�� = ���	Δ��,   i.e.,                             (19) 

 
an informational  -,  quasi – deterministic relation 
follows from eqs. (18-19) . Here ∆ Q j  , so ∆ P j  

corresponds to an a priori resultant effect of 
enzymatic uncertainty, with reference to a set of 
steric configurational/conformational (so also 
electronic)  and linear momentum of the enzyme 
molecule in the transition complex, with 
quasiclassical alternatives, the internal choice 
describable as a quantum information content. 
The crucial geometrical (and electronic) 
information content of the enzyme molecule is 
derivable from eq. (19), with certain 
considerations of [79-81] : 

 

�������	������������,			����������	������� =

log������
�
																																																																 

                       (20)  
 

The   ħ i j   coupling constants, in fact, as noted 
above, express  this (induced, [79-81]) spatial 
(geometric) specificity: 
 

ℏ�� = ℏ�� = Δ��Δ�� = Δ��Δ�� ⟶ Δ�� =

���Δ��.                                       (21) 
 

Starting again from the phenomenological eq. 
(18), with some considerations on the 
fundamental principles of quantum mechanics, 
we can set up the dynamical equation, with i, k  =   

incoming waves of A (reactants) +   B0 ’  (the 
quantum catalyst)  (i),  outgoing wave of C 
(products) +  B

0  
(resetted quantum catalyst) (k), 

and, most important, the intermediate transition 

complex (enzyme – substrate complex) (j ’). 
 

The 2 ħi i  - 2 ħ i j constant in the second order 
relation points to contrary to the usual wide total 
energy level difference (the difference between 
the bottom and top of the barrier, the latter (the 
barrier) involving Coulomb and exchange 

repulsions of overlapping many dimensional 
potential wells, generally needing some energetic 
activations) of uncatalysed interactions of 
complex molecules, versus the intervening 
enzymatic conformational and electronic fittings, 
the also wide difference of differences, maybe 
extending to being even a ’’global resonant” 
barrier heights difference one. 
 

Introducing the second order mathematical 
objects (the difference of differences), 
 

�����
��´
	��� = �����	��� = ���

�
− ���

�´           (22) 
 

where we denoted tensor elements (operators), 
the covariant indices denoting initial, wheras 
contravariant ones final individual quantum 
states (interpretable, however, in the condense 
phase also as ensembles) along the reaction 
path (coordinate) z, with (∆ k ’ 

j   
-  ∆ j ’ 

j
 ) E  =  E

# 
 

referring to the difference of  the uncatalysed 
dividing barrier height of PES and the barrier 
height with the crucial enzymatic activation 
component of the total energy of the complex 
molecules, so, in an ’’interaction picture”, 
 

����´�(�)	���
�´(�) =

�Δ�´
�
(�) − Δ�´

�
(�)�E���

�´(�) = E#���
�´     (23) 

 

This is a certain kind of ’’pseudo” – eigenvalue 
(in fact, extremal value) problem. 
 

2.2.2 The affine projections 
 

For the sake of the comprehensibility of what 
follows, we quote here the basic affine relations 
in  two  composite affine Hilbert spaces. As for 

one of them, for brevity, ��� >= χ� ∗ χ� > , 
 

��������� = g�� 

                               ��� ���� �� = g�� 

                               ��� ������ = δ�
�  

                  ��� �����´� = g�
�
’                   (24)           

                                                                                             

(here ٭ is ’’product”; i and j corresponds, in a 
scattering context, to the special scattering 
channel (incoming/outgoing wave components) 
as the associated special wavefunction 

components. Φ
~

j ’ denotes the function (vector) 
component in an other (affine) coordinate 
system.  (We do not, in general, deal here with 
the e 

i kr
,
 
e 

i kr
 / r  incoming – outgoing plane and 

spherical wavefunctions, rather, we move within 
the frame of the time – dependent Schrödinger 
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equation, so they are but internal time dependent 
amplitude functions.) Our projectional equations 
then become, denoting the wavefunction (vector) 

of the working enzyme molecule by χE’ 
(’’device”) 

and that of the substrate molecules (’’objects”) by 

χS 
, and we introduce the two composite affine 

Hilbert space coordinate systems, one for the 

active enzyme E ’ and  the S activated (substrate) 
molecules, together expressed as enzyme – 

substrate complex [ES]
’
 (TS)

’
 , and for the  

dissociated product(s), S
’ (+ < E free, resetted ) .  

 
The other affine Hilbert space is defined for (S

†
, 

S†), i. e., the  ’’self – interacting” substrate 
molecule(s) and the uncatalysed transition state 
(TS).  The loaded enzyme (the enzyme - 
substrate complex) will be referred to as being in 
a ’’virtual” state, emphasizing its special 
existence, distinguishing it by the enzyme’s 
contravariant, the other components as 
covariant, ’’strictly material” state(s). The prime 
on „ j

 ’
 ” in eqs. (19, 22, 23) 

superscripts/subscripts refer to the (lower) value 
on an orthogonal energy scale, the enzyme 

catalysed (TS) 
’ , 

 the scale beginning at ’’ k ’ ’’  in 
Fig. 1. ; the unprimed ones (’’ j ”) refer to the the 
upper (not catalysed) reaction transition state 
(TS) (see also Fig. 1.). This notation referres  

primarily to the  Δ E
 
- s  and the Φ

~ ’ -  
s. The 

initial states of the Φ
~

 functions are referred to 
by ’’i” , the final state by ’’k”.  (We do this to spare 
superfluous letters. We deal here only with the 
second and first half of the functions.) Using 
some properties of dual spaces,  

 

Cj (τ) C j ’’ (τ) C j (τ ) C
  j ’’ (τ) < ∑ i g i j χ j

 E ’ | 
χ j 

„ S 
activated  > < χ j E ’  ٭ χ j’’ 

 S 
activated  → 

C ’ (τ ) < χ j
 E ٭ χ j

’’
 
 S 

  = C (τ) < Φ
~

j  ’ 
(( j 

 ,
, k ), S ’ 

))  [ES] (TS’) ;  (+ < χ Ej resetted) → 
C † i (τ) C † j (τ) χ j

† S † > < χ i
† S †  → 

 (C † i (τ)) 2 C † j (τ) g‡ii  χ j
† S † > < χ i

† S † | χ 

i
† S † > → [TS] → 

                     ��Φ����������(��) − C <

Φ�(�´,�)(�´)[��](��´)
�´

;	�+< χ�
�� = (Ψ − ΔΨ)     (25) 

 

(Here τ is the time parameter, g i i ‡ is the metric 
tensor component in  the other affine coordinate 
system (square of the length of the i th basis 
vector), double prime referres to the other 
component of the vector (function) in  the same 
composite Hilbert space.) Ψ– ΔΨ  is  the full  

wavefunction of the system, including  the proper 

TS - s. 
                          
As noted above, in these affine equations, 
showing half of the functions, the g 

i j
 metric 

tensor components  fix the sterically constrained 
individual scattering channel (’’i”) and the 
associated specific wavefunction components of 

E 
’
, S activated  (and [TS]

’
, as „ j 

’
 ”). The enzymatic 

contravariant  state χ
j E  

is ’’virtual” 
(informationally ruled) state, as it becomes 
charged with the substrat(s),  dominating above 
the ’’strictly material” states, fixing both the 
scattering channel and the transition complex 

[TS]
’ 

wavefunction. It fixes also the 

wavefunctions of  E
’
 and S  . C+Φ

~
 i  

j
    -  CΦ

~
j’ ’

 ( j 

’ , k ) ([ES] (TS) ’ ,S’ ) 
  is half of the difference function 

between the initial states (S† S† ), (i)  and the 
also ’’strictly material” final states (products) (S

 †
 

’
), (k),  were there no enzyme action. Substructed 
from it the catalysed reaction half function, the 
enzyme catalysed [TS] ’ barrier height half 
function, we can write (this is, in a sense, the 
rewriting of eq. (23)): 
 

�H��´
� (�) − H��´

�(�)� (Ψ − ΔΨ)(�) = �Δ�´
� (�) −

Δ�´
� (�)�E(Ψ − ΔΨ) = E#(Ψ − ΔΨ).               (26) 

 
Here E

#
 is the difference in the maxima of the 

potential energy barrier heights half - 

wavefunctions between i  (S
†
 S

†
), E

 ’  + S 

(activated) and final state(s) (k) (S
† ’

 ), S
’
 + E,

  

through intermediate states j, j 
’
,  (TS) , (TS)

 ’
 

(see Fig. 1. for an endergonic reaction), the 
problem also essentially being the ’’pseudo” - 
eigenvalue  (in fact, extremal value) problem of 
the previous kind. In pure letters, 
 

 � ⟶ (�),	 �´ ⟶ �             (27) 
                                                                                                                                           

 j ’, j here refers to the TS (barrier heights) with 
and without enzyme action. k’, as noted above,  
is the initial coordinate of the orthogonal energy 
scale. The outcome of the first affine projection is 

CΦ
~

j ’
 ( j ’k ) ((ES (TS)’ ) and the resetted enzyme 

molecule (< χ j 
E   ), i. e., from the ’’virtual” state j 

’ ([ES]
’
, TS

’
), to ’’strictly material state(s)” E + S

’
 k 

( j
 ’

 ) ;  the second projection shows  the route 

from a kind of ’’self – interaction” (S
†
 S

†
),  

substrate state i , (eq. (25)) to  state j  ((TS) C+

Φ
~

i
  j

 ) . In scattering terms, (Ψ - Δ Ψ) = C+
 Φ
~

i
 j
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-  CΦ
~

j ’
 ( j ’ , k ) ((ES

’
 (TS ’  + s

 ’
 )))  (+ < χ E ) which 

practically coincides with ST
 ++: i (S†), ( E ’ + S 

activated
 
)  → ( j , j

 ’ 
)  →  k (S’) (E + S

 ’ 
).  (E’  + S

 

activated
 
is purely hypothetical)  (The technical 

point is that the ’’virtual” state j ’ at CΦ
~

j ’ 
 ( j ’ , k ) 

((ES (TS ’) ) 
 

 for consistency must be an initial 
coordinates ending at ’’k”, by a final interchange 
of indices  j ’ ↔ k).   
 
(Here ++ is to distinguish the quantity from pure 
(uncatalysed) scatterings). The pecularity of our 
introductory method is that we calculate only 
halves of both barrier wavefunctions along the 

’’reaction coordinate” (path) z, from the initial 

state S
† 

to the [TS], and from the [ES] 
’ 
(TS)’ to 

the final state E + S
’
. This is supposed to work, 

except for very asymmetric barrier shapes.  
 
Changing to scattering, the arrows in Fig. 1. 

show the S
†
 → (TS) ; [ES]

 ’
 (TS)’  → E + S

’
  

routes. The transition complex is a very shallow 
but finite multidimensional minimum (in a saddle 
point context) on PES,  and is a state (TS), 

(’’virtual” for (TS)
’ ). If we interpret the processes 

in a condensed phase as an ensemble, subject 
to equilibration, we change to free energy.

 

 
 

Fig. 1. Cross section section of PES along z for and endergonic reaction. For the symbols, 
see text 
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(Note, however, that Mayer showed [91] that the 
statistical distribution in simple uncatalysed TS 
should be treated by quantum statistics, rather 
than by Boltzmann’s. In this light, the above 
kinetic equations of Section 2.1.3., and their 
generalizations (e. g. Garcia – Viloca et al. [33]), 
are not entirely “exact”.   

 
3. CONCLUDING REMARKS 
 
We have overviewed the the available enzyme - 
catalysed reaction kinetics theories (occasionally 
practices), from the Michaelis – Menten (and 
Briggs – Haldane) kinetics to a (hypothetical) 
quantum scattering, to provide a reasonable 
background for our information – driven quantum 
formalism. It has been shown that our ’’second 
order” frame is in practice consistent with certain  
condensed phase ensemble approaches, if the 
word “state” is substituted for (equilibrated) 
“states” and change to free energy.  
 
More important, our formal treatment is 
consistent with a (hypothetical) gas phase 
quantum scattering as a second order 
perturbational process, and the individual states 
are treated as in – and out - going individual 
waves, propagating in the proper scattering 
channel. In fact, changing to this scattering 
picture, the formalism presented might resemble 
a gas phase generalized barrier resonance 
scattering, due to the (at present yet purely 
formal) tensorial secondary approach, following 
from the .”second order” uncertainty relations.   

 
Our above argument is highly introductory, an in 
principle one, rather than practical. We can not, 
as at the present stage of the investigation, to 
provide examples of any outstanding practical 
usefullnes. However, it might help to rethinking of 
the enzyme – catalysed reactions in a fully 
quantal way, with the note that we must evidently 
take into account the geometrical – electronic 
complementation informations, so effective in 
face of a rather individual „black box” approach, 
in which physical parameters are calculated a 
posteriory, knowing the exact steric 
complementations.. Our kind of research, we 
think, can be approached in a molecular 
evolutional way, where also chance has its 
determining role. Nonetheless, the “Maxwell – 
demon” aspect of the enzymatic process, 
emphasised by Monod [6], and theoretically 
discussed by Brillouin [7] (see also e. g. Collier 
[8], also Barato and Seifert [9]) calls our attention 
to the fact that information in this sense might be 
a very strong complementing factor besides pure 

energetic considerations. We here only 
introductorily have put forth the “virtual” (not 
strictly “material”) nature of the action of 

enzymes in the [ES] complex.H
~̂

i k 
j j ’  in fact 

referres to the highly (informationally) selective 
(selectively projected) quantum transitions, 
based on space complementations in the sense 
of Pattee (e.g. [2]) and Balázs (e.g. [1]) which we 
called above, in lack of a better expression, 
individual resonance scatterings involving highly 
selective (individual, selected, ’’measurement”) 
quantum states. 
 
Though nowdays ’’brute force” approximations 
are in use in general, our study might perhaps 
provide an additional, fresh view on enzyme 
kinetics, emphasizing molecular information and 
the corresponding “internal measurement” aspect 
of enzyme action. 
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