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ABSTRACT 
 
Background: Molecular docking has been used recently in pharma industry for drug designing, it’s 
a powerful tool to find ligand-substrate interactions at molecules level. Since urgent need to develop 
anti-viral drug that target new coronavirus main proteins, in silico docking has been used to achieve 
this purpose.  
Materials and Methods: Thirteen herbs are known for their antioxidants and antiviral properties 
have been selected to investigate their abilities in inhibiting SARS-COV2 spike protein and main 
protease Mpro. pdb files for RBD (Receptor Binding Domain) region of spike protein and for Mpro 
and mol2 files for all herbs understudy were uploaded for swiss dock online server, the docking 
results were analyzed using chimera software. Full fitness energy and hydrogens bonds interactions 
were considered for docking evaluation.  Pharma kinetic properties for compounds have good 
binding results were evaluated through AMES and ADMET tests.  
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Results: All compounds showed negative full fitness energy that means they are able to complex 
with both SARS-COV2 spike protein and main protease, however some of the herbs form very 
powerful hydrogen bonding with the RBD site of the spike protein and the catalytic site of Mpro such 
as coumarylquinic acid, while stigmasterol has strong binding with the spike protein only. Both 
compounds appear to be safe drugs for human according to AMES test results. 
Conclusion: Coumarylquinic acid and stigmasterol have powerful binding in silico, further in vitro 
studies include using viral infected human lung cells and testing above compounds ability for 
inhibiting viral entry and replication should be proceed to confirm the study results. 

 
 
Keywords: SARS-COV2; docking; COVID-19; spike protein; mpro inhibitors; natural herbs. 
 

ABBREVIATIONS 
 
SARS-COV2 : Sever Acute Respiratory Syndrome Coronavirus 2 
Mpro : Main protease  
RBD : Receptor binding domain  
3CL pro : 3C like protease  
ADMET : Absorption, Distribution, Metabolism, Excretion and Toxicity 
COVID-19 : Coronavirus disease of 2019 
OB : Oral Bioavailability 
DL : Drug Likeness 
HL : Drug Half Life 
T : Toxicity 
CoVs : Coronaviruses 
 
1. INTRODUCTION 
 
Global emergency and pandemic have been 
declared by the World Health Organization for 
the new coronavirus disease (COVID-19) that 
cause outbreak all over the world. COVID-19 
disease arises by SARS-CoV-2 infection causes 
symptoms like dry cough, fever, fatigue and 
pneumonia. As of now SARS-CoV-2 has reached 
213 countries around the globe, with more than 
17 million confirmed cases since March 18, 2020 
[1]. This pandemic is still ongoing, so it is urgent 
to find new preventive and therapeutic agents as 
soon as possible. While specific vaccines and 
antiviral agents are the most effective methods to 
prevent and treat viral infection, there are not yet 
available treatments that target the 2019-nCoV. 
Development of effective vaccine can take years, 
meaning that more immediate treatment or 
control mechanism should be found if possible. 
Traditional Herbs used in medicine present a 
potentially valuable resource to this end.  
 
As such, the Chinese government is encouraging 
the use of herbal plants in fighting this new 
coronavirus disease. However, the application of 
herbal treatment is mainly guided by the type of 
herb (based on the catalogue of classic literature 
on herbs) and the patient’s symptoms or signs. 
There is insufficient information to predetermine 

whether the herbs in question can directly target 
the virus cause disease or relief virus 
accompanied symptoms, in other words, herbal 
usage is generally not guided by viral pathology. 
We think more detailed information about 
antiviral effects of different plants would be 
greatly helpful for doctors in selecting them. In 
fact, after the outbreak of SARS, many research 
groups dedicated themselves to find anti-
coronavirus agents, including some natural 
compounds that exist in traditional Chinese 
herbal medicines [2–10]. Coronaviruses encodes 
more than one dozen proteins, some of which 
are essential to viral entry and replication. 
Among these proteins, the most well-studied are 
spike protein and 3C-like protease (3CLpro). The 
spike protein of CoVs binds to a host cell 
membrane through a receptor-mediated 
interaction which allows entrance to the host cell. 
It has been determined that the SARS-CoV-2 
has similar mechanism to that of the SARS virus 
in the way of cells entry and the receptor to 
which it has the highest affinity is ACE2 
(angiotensin-converting enzyme 2) [11]. While 
there are structural similarities between the 
SARS-CoV-2 spike protein and the SARS spike 
protein, the conservation is only 73% with most 
of the variability being in the host cell interaction 
region of the protein. Coronavirus SARS-3CLpro 
is a cysteine protease indispensable to the viral 
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life cycle, it cuts transcribed long polyproteins 
into replicase enzyme and other structural 
proteins [12]. These two proteins are attractive 
targets for drug development. For the study of 
medicinal plants and their bioactive compounds, 
in silico ligands docking coupled with network 
pharmacological profiling is getting more 
concerns by providing valuable information for 
proteins’ targets as well as their mechanisms of 
action, and development of new computational 
methods for drug discovery and drug-target 
validation on chemical and pharmacological 
levels [13-18]. 
 
Through in silico docking and the compounds 
safety tests, a series of small molecules, 
including those from natural compounds, have 
been screened and confirmed to directly inhibit 
these important proteins in SARS and Middle 
East respiratory syndrome (MERS) coronavirus 
[19–25]. The gene sequence of 2019-nCoV has 
been released, currently there are >100 
complete genome sequences known in the NCBI 
GenBank from over 10 countries. The variation 
between these sequences is less than 1%. This 
virus is closely related to the SARS-CoV which 
allows utilization of known proteins structures for 
SARS-CoV as templates to quickly build a model 
for the purpose of drug discovery on this new 
SARS-CoV-2 [26-28]. 
 
It is challenging to screen out all the herbs that 
might contain anti-coronavirus (2019-nCoV) 
compound(s) especially in a very short time. In 
the current study, we have screened the most 
common and available traditional herbs through 
implementing these methodologies in an attempt 
to identify the most effective and safe 
compound(s). 
 
2. MATERIALS AND METHODS 
 
The approach is taken here to search possible 
medications for the SARS-CoV-2 by performing 
in silico docking models from the most variable 
proteins in the SARS-CoV-2, the spike 
glycoprotein, and the SARS-CoV-2 3CL main 
protease. Both spike and protease proteins are 
essential for the transmission and virulence of 
the virus. However, inhibiting anyone of these 
two proteins or both for a higher active therapy, 
the severity of the infection will be reduced. Our 
efforts have been placed in competitively 
inhibiting the binding of its natural substrates. 
Main bioactive compounds of the most common 
herbs have been run against several sites on the 
spike protein (RBD) and the catalytic site of the 

SARS-CoV-2 main protease represented by 
residues HIS41 and CYS145, distance between 
the two residues is 3.8A [29]. 
 
Different herbs that are commonly used as anti-
oxidant, antiviral and for the treatment of 
respiratory tract infections and their 
complications were selected. Total of 13 main 
natural compounds constituents were examined 
for structure chemical and therapeutic properties 
(https://tcmspw.com, 
https://pubchem.ncbi.nlm.nih.gov). 
 

2.1 Protein-molecular Docking 
 
The crystal structure of the spike protein RBD 
site (6w41) and main protease (6m03) 
(https://rcsb.org) were used for docking test, 3D 
structure for each tested compounds is obtained 
from pubchem website 
(https://pubchem.ncbi.nlm.nih.gov/), receptors 
(RBD of spike protein and 3CL pro and ligands 
are prepared for docking using Chimera software 
(version 1.14). Docking was accomplished 
through the online Swissdock software/ server 
(http://swissdock.ch/ [30]. Less Full fitness score 
for ligand pose, number of hydrogens bonds and 
other binding forces were employed as 
parameters for prediction good docking results. 
UCFS Chimera 
(http://www.cgl.ucsf.edu/chimera), a molecular 
visualization tool, was used to visualize the 
results obtained from the server [31]. PyMOL 
(version 1.3) and BIOVIA Discovery Studio 2016 
was further used to prepare the 3D protein-ligand 
complexes and 2D interactions of the complexes. 
 

2.2 Pharmacokinetic Properties  
 
It is faster and more economical to screen active 
chemicals using ADME-T (absorption, 
distribution, metabolism, excretion and toxicity) 
models simulated in silico systems [32]. Caco2 
permeability, oral bioavailability (OB), drug-
likeness (DL), half-life (HL) and toxicity (T) were 
used to apply ADME-T-related models. The 
screening was done for the most efficient natural 
compounds since these herbal treatments are 
bioactive via oral administration. The tested 
ligands are coumarylquinic acid, 
hexadecanedioic acid, quercetin and 
stigmasterol. The indices used for the screening 
include evaluation of oral bioavailability, Caco-2 
permeability, drug-like value, drug half-life and 
toxicity. Smiles formats for each of the fourth 
compounds were obtained from PubChem 
website (https://pubchem.ncbi.nlm.nih.gov/). 



ADMET properties for the compounds were 
evaluated using ADMETSAR online server 
(http://lmmd.ecust.edu.cn/admetsar2/
 
The threshold values indicating effectiveness for 
these four indices were > 30%, > 
and > 3 h, respectively, as recommended by 
[33,34].  
 

3. RESULTS 
 
Molecular docking is a very powerful tool to 
investigate the possible treatments for ncov19 
since it’s time consuming and vaccine developing 
will take at least about 12-18

th
 months to be 

marketed. However, another quick approach is to 
find the suitable medicine against the virus by 
applying computational predicted inhibition. 
 

 
Fig. 1. Spike protein chain C represents the (RBD) that consist of 231 residues

 

 
Fig. 2. Main protease of SARS-COV2, catalytic site is located between two residues HIS41 and 
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ADMET properties for the compounds were 
evaluated using ADMETSAR online server 
http://lmmd.ecust.edu.cn/admetsar2/) 

The threshold values indicating effectiveness for 
our indices were > 30%, > -0.4, > 0.18 

and > 3 h, respectively, as recommended by 

Molecular docking is a very powerful tool to 
investigate the possible treatments for ncov19 
since it’s time consuming and vaccine developing 

months to be 
marketed. However, another quick approach is to 
find the suitable medicine against the virus by 
applying computational predicted inhibition. 

Thirteen compounds known as herbs have been 
selected as potential inhibitors of
spike protein and main protease. 
compounds showed the highest affinity to bind 
with both spike RBD (Fig. 1) and main protease 
activity site represents by HIS41 and CYS141 
(Fig. 2).  
 
Four ligands have highest negative fitness 
energy and form more conventional hydrogens 
bonds with SARS-COV2 proteins which mean a 
longer residence time at the binding site 
for Stigmasterol that gives weak binding with the 
main protease. (Fig. 3). 
 
The binding forces represent by Van der walls, Pi 
Alkyl, Carbon hydrogens bonds and pi
are executed using 2D plots (Fig. 4 and Fig. 5). 

 

Fig. 1. Spike protein chain C represents the (RBD) that consist of 231 residues

 

COV2, catalytic site is located between two residues HIS41 and 
CYS145 
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Thirteen compounds known as herbs have been 
selected as potential inhibitors of SARS-COV2 
spike protein and main protease. Some docked 
compounds showed the highest affinity to bind 
with both spike RBD (Fig. 1) and main protease 
activity site represents by HIS41 and CYS141 

have highest negative fitness 
energy and form more conventional hydrogens 

COV2 proteins which mean a 
longer residence time at the binding site except 
for Stigmasterol that gives weak binding with the 

orces represent by Van der walls, Pi 
Alkyl, Carbon hydrogens bonds and pi-pi stacked 
are executed using 2D plots (Fig. 4 and Fig. 5).  

Fig. 1. Spike protein chain C represents the (RBD) that consist of 231 residues 

 

COV2, catalytic site is located between two residues HIS41 and 
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Full fitness energy and G energy for all 
compounds binding with SARS-COV2 spike 
protein and main protease are listed in Table (1). 
Coumarylquinic acid has bound with RBD protein 
by forming two hydrogens bounds with CYS 336 

residue and 1 hydrogen bound interaction                      
with 339 GLY residue (Fig. 3A) while it hits                   
main protease activity site residue HIS41                     
with one strong hydrogen bound binding (Fig. 
3B).  

 

 
 
Fig. 3. Hydrogens bonds interactions (yellow solid lines) of ligands with both RBD site of virus 
spike protein (left side) and the activity site of SARS-COV2 main protease (Right side). A & B: 

Coumarylquinic acid, C & D: Hexadecanedioic acid, E & F: Quercetin and G: Stigmasterol 
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Fig. 4.1. The binding configuration of ligands showing their pose and interaction analyses in 
the binding site of the main protease of SARS-CoV-2. (a) Coumarylquinic, (b) Hexadecandioic 

acid. Interaction analysis in 2D was executed using discovery studio visualizer; it shows 
different types of non-covalent interactions between Ligands and the amino acid residues in 

the binding site of Mpro 



 
Fig. 4.2. The binding configuration of ligands showing their pose and interaction analyses in 

the binding site of the main protease of 
analysis in 2D was executed using discovery studio visualizer; it shows different types of non
covalent interactions between Ligands and the amino acid resid
 
In Table (2), ADMET test results showed that 
compounds with the highest negative docking 
energy (Coumarylquinic acid, Hexadecanedioic 
acid, Quercetin and Stigmasterol) have high OB 
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The binding configuration of ligands showing their pose and interaction analyses in 
the binding site of the main protease of SARS-CoV-2. (c) Pinene, (d) quercetin. Interaction 

analysis in 2D was executed using discovery studio visualizer; it shows different types of non
covalent interactions between Ligands and the amino acid residues in the binding site of Mpro

test results showed that 
compounds with the highest negative docking 
energy (Coumarylquinic acid, Hexadecanedioic 
acid, Quercetin and Stigmasterol) have high OB 

that reflects the ability of compounds to enter the 
human circulatory system [35]. All tested 
molecules showed high permeability in the 
intestinal epithelial cells (Caco-2) which means 
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The binding configuration of ligands showing their pose and interaction analyses in 
, (d) quercetin. Interaction 

analysis in 2D was executed using discovery studio visualizer; it shows different types of non-
ues in the binding site of Mpro 

that reflects the ability of compounds to enter the 
human circulatory system [35]. All tested 
molecules showed high permeability in the 

2) which means 



high absorption of the drug [36]. All molecules 
appeared as drug-like with high potential to 
become drugs as compared with known drugs 
[37], except Hexadecanedioic acid
potential. All molecules appeared with excellent 
HL (except for Hexadecanedioic acid
not available) that reflects drug therapeutic 
 

 
Fig. 4.3. The binding configuration of ligands showing their pose and interaction analyses in 

the binding site of the main protease of 
2D was executed using discovery studio visualizer; it shows different types 

interactions between Ligands and the amino acid resid
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high absorption of the drug [36]. All molecules 
like with high potential to 

become drugs as compared with known drugs 
cid with least 

potential. All molecules appeared with excellent 
for Hexadecanedioic acid the data is 

not available) that reflects drug therapeutic 

availability in the blood where dose, dosing 
intervals and volume of drug accumulation can 
be calculated [38,39]. Quercetin showed 
excellent HL and it was reported that it was 3.8hr 
for the distribution phase and 16.8hr for the 
elimination phase [40]. All herbs showed no 
hepatotoxicity and no toxicity in AMES test.

The binding configuration of ligands showing their pose and interaction analyses in 
the binding site of the main protease of SARS-CoV-2., (E) stigmasterol. Interaction analysis in 
2D was executed using discovery studio visualizer; it shows different types of non

interactions between Ligands and the amino acid residues in the binding site of Mpro
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hepatotoxicity and no toxicity in AMES test. 
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Fig. 5.1. The binding configuration of ligands showing their pose and interaction analyses in 
the binding site of the RBD of SARS-CoV-2. (a) Coumarylquinic and (b) Hexadecandioic acid. 
Interaction analysis in 2D was executed using discovery studio visualizer; it shows different 

types of non-covalent interactions between Ligands and the amino acid residues in the 
binding site of spike protein’s RBD 
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Fig. 5.2. The binding configuration of ligands showing their pose and interaction analyses in 
the binding site of the RBD of SARS-CoV-2. (c) Pinene and (d) quercetin. Interaction analysis in 

2D was executed using discovery studio visualizer; it shows different types of non-covalent 
interactions between Ligands and the amino acid residues in the binding site of spike 

protein’s RBD 
 

 
 

Fig. 5.3. The binding configuration of ligands showing their pose and interaction analyses in 
the binding site of the RBD of SARS-CoV-2. (E) stigmasterol. Interaction analysis in 2D was 

executed using discovery studio visualizer; it shows different types of non-covalent 
interactions between Ligands and the amino acid residues in the binding site of spike 

protein’s RBD 
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Table 1. Compounds used in docking against spike protein and main protease of SARS-COV2 
with their binding energy 

 
Molecule Spike protein (RBD) Mpro 

G energy 
Kcal/mol 

Fullfitness 
energy Kcal/mol 

G energy 
Kcal/mol 

Fullfitness energy 
Kcal/mol 

Coumarylquinic acid -7.349 -777.302 -6.790 -1062.204 
Hexadecanedioic 
acid 

-7.727 -874.620 -7.663 -1317.67 

Quercetin -7.235 -780.665 -6.697 -1078.491 
Stigmasterol -7.195 -770.540 -7.845 -1060.826 
Beta Pinene -6.077 -737.554 -5.918 -1031.781 
Camphene -5.903 -575.211 -6.016 -1072.217 
Cymene -5.935 -794.086 -5.772 -1086.974 
Eucalyptol -6.373 -789.774 -5.929 -1083.707 
Neoclovene -6.511 -750.804 -6.631 -1048.018 
Alpha-phellandrene -6.024 -799.523 -5.918 -1094.087 
Spathulenol -6. 527 -549.871 -6.171 -847.305 
Vanillin -6. 030 -785.173 -5.913 -1080.240 
Chlorogenic -7.524 -773.538 -7.236 -1053.588 

 
Table 2. Pharmacokinetic properties of the tested molecules 

 
Molecule Pharmacokinetic properties 

OB (%) Caco-2 DL HL (h) T 
Coumaroylquinic acid 37.63 -0.656 0.29 5.15 No 
Hexadecanedioic acid 20.72 0.301 0.16 - No 
Quercetin 46.43 0.05 0.28 14.40 No 
Stigmasterol 43.83 1.44 0.76 5.57 No 

 

4. DISCUSSION 
 
Many current studies have applied molecular 
docking to predict some suitable inhibitors for 
COVID-19 entry and replication, one study has 
tested mixture of herbs, antiviral drugs and other 
drugs against SARS-COV2 main protease, high 
free energy values resulted from docking proved 
that these compounds are really bind with Mpro 
active site leading to protein inhibition [41]. 
Coumarylquinic acid is an ester derivative of 
quinic acid that is found in many foods, 
researchers have found that quinic acid 
derivatives exhibit anti- inflammatory properties 
both in vivo and in vitro, and for that consider as 
good therapeutic targets for viral infections, 
furthermore, some of quinic amides have prevent 
Dengue virus infections in Huh 7.5 cells at 
different infection levels [42]. Coumaroylquinic 
acid has been proved as hepatoprotective and 
anti-hepatitis B virus (HBV) that reduced the 
extracellular HBV DNA level significantly [43] and 
against other respiratory viruses [44]. Our 
docking results also showed another promising 
inhibitor of both SARS-COV2 spike protein and 
Mpro, Hexadecanedioic acid free energy binding 
with RBD site was -7.727 and with Mpro was -

7.663. Higher negative Gibbs energy, means 
more favorable complex binding and reaction 
shifting into equilibrium state [45]. 
Hexadecanedioic acid has been reported as anti-
thrombotic and atherosclerosis agent through its 
activity on the clotting system at the platelet, 
fibrinogen or Fibrinolysis levels in plasma [46, 
47]. Quercetin and Stigmasterol showed the best 
Pharmacokinetic Properties among other tested 
molecules where Quercetin has the best OB and 
HL while Stigmasterol has better Caco-2. 
 
The flavonoid Quercetin is represented as a drug 
and dietary supplement that has beneficial 
effects in Chronic Obstructive Pulmonary 
Disease (COPD) that is significantly decreased 
lung inflammation and prevented progression 
[48]. Quercetin was reported to inhibit tumor 
necrosis factor-alpha (TNF-α) overproduction 
and attenuate pathophysiological conditions 
during acute and chronic inflammation especially 
in respiratory conditions [49]. It showed antiviral 
activity that inhibits rhinovirus replication in vitro 
and in vivo [50], inhibits hepatitis C viral 
production in tissue culture through its inhibition 
of heat shock protein expression [51]. It has been 
shown to prevent platelet aggregation, lower the 
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plasma lipid, lipoprotein and hepatic cholesterol 
levels, induced endothelium-dependent 
vasorelaxation via increase nitric oxide 
production. Quercetin and its glycosides were 
also reported to inhibit the angiotensin-converting 
enzyme activity [48]. It is highly safe and 
reported no evidence of in vivo toxicity, including 
lack of genotoxic/carcinogenic properties and 
Generally Recognized as Safe (GRAS) by The 
FDA [52,53].  
 

Stigmasterol is a steroid derivative represented 
as natural preventive dietary product and was 
reported as a useful adjunctive therapy for 
hypercholesterolemic patients where plasma 
total cholesterol and LDL-C concentrations were 
significantly reduced [54]. 
 

5. CONCLUSION 
 
Study results explained the potential activity of 
some herbs in blocking new coronavirus spike 
protein and main protease that result in virus 
inhibition at entry and replication levels, 
coumarylquinic acid shows this ability in silico, 
further confirmative studies are needed to test 
compound inhibition ability in cell line culture, 
stigmasterol has strong binding with RBD site of 
spike protein, both compounds have safe 
pharmacophore properties to be used as a 
combination therapy to treat SARS-COV2 
infections.  
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