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Abstract
As the length scales of the smallest technology continue to advance beyond the micron scale it
becomes increasingly important to equip robotic components with the means for intelligent and
autonomous decision making with limited information. With the help of a tabular Q-learning
algorithm, we design a model for training a microswimmer, to navigate quickly through an
environment given by various different scalar motility fields, while receiving a limited amount of
local information. We compare the performances of the microswimmer, defined via time of first
passage to a target, with performances of suitable reference cases. We show that the strategy
obtained with our reinforcement learning model indeed represents an efficient navigation strategy,
that outperforms the reference cases. By confronting the swimmer with a variety of unfamiliar
environments after the finalised training, we show that the obtained strategy generalises to
different classes of random fields.

1. Introduction

Technological advances in producing micron sized swimmers and robots give hope for applications to
minimal invasive medicine [1]. The possibilities reach from targeted drug delivery, over material removal in
minimal invasive surgery, to telemetric applications where microrobots transmit information that is
otherwise hard to obtain. In all of these examples, microrobots need to find a specific target, e.g. the location
to which a drug needs to be delivered, or an infected piece of tissue that needs to be surgically extracted. In
order to find these targets, usually only local information about the surrounding environment of the robot is
given. The robots might need to travel through a complex network of veines or pass through mucus, which
makes navigation challenging. Hence, smart navigation strategies for microswimmers need to be found.
Here, we develop intelligent strategies, that utilise only limited local information, for microswimmers in a
complex motility field by employing reinforcement machine learning techniques.

Recently, machine learning techniques have been applied to active and soft matter systems [2–4].
Specifically, artificial microswimmers, which have been studied intensely [5], might be used for technological
applications such as decontamination of polluted water [6], or minimal invasive surgery [1, 7–9]. Active
particles have been taught to navigate in different environments, for example optimal paths in force
fields [10–12] or flow [13–16] have been computed. Related to the latter, gliders have learned to navigate in a
turbulent flow [17, 18] and microswimmers learned a complex flow field [19–24]. In experiments,
reinforcement learning has been applied to microswimmers [25] and artificial visual perception has been
given to active colloids [26].

The motility of active particles is strongly influenced by the surrounding medium [27], and in particular,
viscous landscapes have been studied [28–33], giving rise to viscotaxis. Furthermore, active particles can be
steered with an orientation dependent motility [34].
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Figure 1. Training an ABP to navigate, with limited local information, through a complex random environment given by a scalar
motility field. (a) Typical trajectory after the finalised training procedure (solid orange line) and optimal trajectory obtained with
the help of Dijkstras (shortest path) algorithm (dashed red line). (b) Average passage time through the simulation box (from
bottom to top) at each percent of the training procedure (red line), sampled from 30 independent training procedures. Each blue
dot denotes an average over 104 trajectories.

In this paper, we teach an active particle that has only local information about its environment to
navigate through a complex motility field. A reinforcement learning technique (Q-learning, see section 2.2)
that requires a limited amount of data storage is used, making it usable for real life applications. Over the
training time, the Q-learning active Brownian particle (QABP) learns to solve different realisations of a
random environment, with increasing success (figure 1(b)). At the end of training, the particle outperforms a
simple active Brownian particle (ABP), and comes close to the globally optimal path (figure 1(a)) with only
local information. Furthermore, once the particle has learned a strategy, we place it in qualitatively different
environments, in which it still finds an almost optimal path.

2. Methods

2.1. Equations of motion
We model the swimmer as an overdamped ABP in two dimensions with position r(t) and orientation
û(t) = (cosϕ(t), sinϕ(t)). It exerts a space-dependent self-propulsion velocity v0µ(r) along its orientation.
µ(r) ∈ (0,1] represents the motility field around the particle, such that the particle velocity is bound between
0 and the self-propulsion velocity v0. In order to perform intelligent navigation, the QABP is capable of
either rotating itself with an angular velocity ωQ(r(t), t) =± ω0 in either direction or retaining it is
orientation such that ωQ(r(t), t) = 0. Accordingly, the equations of motion are

ṙ(t) = v0µ(r(t))û(t), (1)

ϕ̇(t) = ωQ(r(t), t)+
√
2Drξ, (2)

where ξ represents Gaussian white noise exerted from the solvent environment on the orientation of the
particle, with ⟨ξ(t)⟩= 0 and ⟨ξ(t)ξ(t ′)⟩= δ(t− t ′).
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Figure 2. Schematic of the local information, that the QABP receives for the decision making. The swimmer knows the discretised
polar angle of its own orientation û= (cos(ϕ), sin(ϕ)), and the polar angle ψ of the local gradient∇µ of the motility field.
Further, it has information about low motility zones, defined by µ < µ0, as indicated by the red circle.

The swimmer moves within a box of side lengths Lx = 100v0τQ and Ly = 85v0τQ, where τQ denotes the
characteristic time scale of an intelligent decision (see section 2.2). The reinforcement learning problem is
defined by navigating as quickly as possible from the bottom hard wall to the top hard wall of the box.
Depending on the specific model of µ(r), either reflecting or periodic boundary conditions in horizontal
direction are used. The QABP and the reference case of the ABP start their trajectories at r(t= 0)= (0.5Lx,0),
oriented upwards (û(t= 0) = (0,1)). The swimmers are trained in a motility field that is generated with a
Gaussian random wave model (GRW), with wave vectors kn of wavelength ∥kn∥= 20/Ly (for details see
supplementary material section 1). The GRW gives isotropic non-periodic random waves, a typical example
is shown figure 1(a). A remarkable property of this model is an optimal suppression of density fluctuations
above a certain wavelength, a property known as stealthy hyperuniformity [35–38]. The use of stealthy
hyperuniform models as randomly generated motility fields has the advantage that the formation of large
clusters of low motility zones is suppressed. This typically results in the presence of several global paths
through the environment without an imminent danger of getting stuck in a dead end at a non-convex low
motility zone, which greatly facilitates the learning of the QABP.

2.2. Q-learning algorithm
To enable swimmer navigation within the simulated physical environment, a tabular Q-learning
algorithm [39] is superimposed on the Brownian dynamics simulation, giving the QABP the ability for self
rotation through the torque expressed by ωQ. Such an algorithm is characterised by a matrix tableQ, which
encompasses the strategy and learned experience by the active agent. This matrix functions as a decision
matrix, where the rows represent all possible discrete states, in which the swimmer can reside and the
columns represent all possible discrete actions. At any time t of action, the swimmer checks its current state i,
and performs the action Ai corresponding to the highest value within row i of the matrix:

Ai = argmax
j

Qi j(t). (3)

In our model, the swimmer has information (see figure 2) about its own orientation ϕ(t) and the polar
angle ψ (r(t)) of the local gradient of the motility field∇µ(r(t)). Furthermore, it knows whether µ(r(t)) is
above or below a threshold value µ0 = 0.25 (see supplementary material section 4).

The orientational dynamics of the QABP (see equation (2)) are approximated by run and tumble
dynamics, where the swimmer tumbles in each integration time step tn = n∆t with a probability
Ptumble = 2Dr∆t/(∆ϕ)2, where∆ϕ = 2π/Mϕ. The local gradient direction and swimmer orientation are
discretised on the unit circle withMϕ =Mψ = 12 (see supplementary material section 3). All possible
combinations of discrete orientations and gradient directions as well as the binary information about the
velocity form the complete state space of the Q-learning algorithm. With a given periodicity τQ = 10∆t, the
swimmer takes action, by rotating itself in either direction by∆ϕ, or not rotating, depending on the decision
matrixQ. This rotation defines an effective angular velocity ω0 =∆ϕ/τQ = 2π/(Nϕ τQ).

In order to obtain a decision matrix, which represents a good strategy for navigating through the
complex environment given by µ(r),Q is optimised over the course of Nepi = 106 episodes, i.e. trajectories.
Before the training procedure,Q is initialised with zero values. For each episode in the learning phase, the
trajectory of the swimmer is simulated until it either reaches the top of the box, swims into a region with
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µ < 0.5µ0 = 0.125 or the travel time surpasses an upper bound Tmax, obtained by 100 times the time of a
comparable optimal trajectory, obtained with Dijkstra’s algorithm (see supplementary material section 2). To
obtain a navigation strategy, as general as possible, 103 realisations of the random environment are used over
of Nepi = 106 episodes. The results are sampled, with the trained QABP, on 103 new environments.

During training, when an action j is performed, the QABP transitions from state i to i′. ThenQ is
updated, following the update formula

Qnew
i j =Qi j +α

(
R+ γmax

k
(Qi ′k)−Qi j

)
. (4)

Here, α,γ ∈ [0,1] denote hyperparameters of the learning algorithm and R denotes the sum of the
specific numeric rewards, that the active agent obtained through performing the current action j. The
learning rate α is initialised at 10−4 and linearly decreases to 10−5 at the end of the training, reinforcing the
reliability ofQ with proceeding learning. The term γmax j(Qi′ j) incorporates the highest entry in a row from
the following state into the currentQi j, estimating the future reward. Since a reasonably different behaviour
in neighbouring states is expected across the swimmers state space, γ= 0.3 is used. During training an
ϵ-greedy policy is used. Here, random actions are chosen with probability ϵ= 1 at the beginning of training,
then during training ϵ is decreased linearly to 0 such that equation (3) is used for any decision at the end of
training (see supplementary material section 5).

In order to navigate efficiently the swimmer is rewarded once it reaches the top of the simulation box.
Further, it is punished when it enters a low motility region, or if its displacement is very small (for reward
details supplementary material section 4.).

3. Results

To give an intuition on the development of the strategy, three characteristic trajectories from different stages
of the learning process are shown in figure 3. For visual reference, each panel additionally shows a globally
optimal trajectory obtained via Dijkstra’s algorithm. In figure 3(a) we show a trajectory from an episode early
in the training procedure. Since the QABP has yet to learn about its environment, the probability ϵ to
perform a random rotation in either direction is close to 1. Accordingly, the trajectory is similar to that of a
common ABP. Due to the indecisiveness of the QABP at this explorative stage, the episode terminates
eventually by entering a low motility zone.

Figure 3(b) depicts a trajectory from an episode halfway through the training procedure. The
corresponding probability to perform random actions ϵ is approximately 0.45. The trajectory shows
randomness, through rotational diffusion as well as random active rotation. Despite the fact that more than
half of the actions are randomly chosen, it is visible, how the QABP displays noticeable competence of
avoiding the regions with µ≪ 1 to reach the finish line. Finally, the trajectory in figure 3(c) shows the
dynamics of the QABP after the learning procedure when ϵ= 0. The QABP swims decisively in vertical
direction, such that the trajectory exhibits little dents, thereby maneuvering around the low motility zone in
its path.

3.1. Quantitative performance
Optimising the navigation through the environment, given by the motility field µ(r), relies on the balancing
between two opposing principles: minimising the length of the path while simultaneously maximising the
instantaneous velocity v0µ(r) [40, 41]. Formally, this problem is solved by the solution that minimises the
following functional

T[c] =

ˆ c1

c0

∥ċ(t)∥
v0µ(c(t))

dt, (5)

which is the passage time T from the starting point c0 to any point on the finish line c1. Here, c(t) is a curve
through the environment, parameterised by t. A convenient figure of merit for the performance of the
swimmer along any trajectory r(t) is defined as

vy
v0

:=
Ly

T[r(t)]v0
. (6)

This quantity is in the interval (0,1] for any trajectory. After each independent training procedure, the
resultingQ is tested in 103 trajectories on every independent realisation µ(r) respectively. Performance data
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Figure 3. Three typical trajectories (orange solid lines) in three motility fields µ(r) over the course of the training procedure of
the QABP. The particle’s objective is to cross the box from bottom to top as fast as possible. The environments are generated with
the help of modified isotropic Gaussian random waves. The probablities to perform random actions are (a) ϵ= 1.0, (b) ϵ≈ 0.58,
(c) ϵ≈ 0. The red dashed line highlight the optimal trajectories obtained with Dijkstras algorithm (see supplementary material
section 2). Motility fields are generated as modified isotropic Gaussian random waves and in the horizontal direction reflecting
boundary conditions are employed.

Figure 4. Distributions of scalar values µ(r(t)) = ∥ṙ∥/v0 along trajectories with ⟨µ⟩ ≈ 0.557 and Prot ≈ 46, sampled from 15
simulations with 1000 trajectories each. The lines indicate ABP (solid orange), straight trajectory, i.e. ABP∞ (solid green), and
intelligent swimmer (QABP, solid blue). The dashed black line shows the distribution of the µ(r)-values within the environment,
averaged from 1000 independent µ(r). The dashed green line corresponds to µ f(µ) of the ABP∞ trajectory. The dotted vertical
line denotes the velocity state threshold µ0 = 0.25.

was additionally gathered from multiple independent training procedures for each set a parameters. The
general performance of the resulting strategy, encoded inQ, is determined by averaging over the 103

trajectories, giving
〈
vy
〉
/v0. The performance will depend on the average motility ⟨µ⟩ and the rotational

Péclet number, which is defined as

Prot = (∆ϕ)2/2DrotτQ (7)

comparing the typical time scale of the rotational diffusion to that of the intelligent active rotation.
The total passage time T (see equation (5)) can be calculated from the non-normalised distribution of

velocities f(µ), sampled with a time step of τQ, along a given trajectory as

T= τQ

ˆ 1

0
f(µ)dµ. (8)

To quantify the behaviour of the individual swimmers, the frequencies f(µ) of the scalar values of µ(r)
are shown in figure 4. The data is averaged from 15 independent simulation runs with 103 trajectories each.
Additionally µ f(µ) is shown for the ABP, for a straight line (i.e. an ABP in the limit of vanishing diffusion
denoted by ABP∞), and for the distribution of function values µ(r) within the environment, averaged from
103 independent motility fields. More specifically, the distribution of the ABP∞ trajectory (green solid line)
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Figure 5. Performances ⟨vy⟩/v0 of the QABP as well as an ABP and a particle swimming in a straight line without diffusion
(ABP∞) as reference swimmers. The scattered data data points indicate a simulation with 103 trajectories each. The solid lines
denote the averages over the respective ten data points per parameter set. (a) shows the performance for varying rotational Péclet
number Prot and (b) for varying environment ⟨µ⟩.

counts the frequencies of function values of µ(r) along a vertical line, sampled in time. Due to the longer
retention time at slower velocities, we obtain the distribution in space, sampled at constant distances, as
µ f(µ). Since the data is averaged over 1.5× 104 different environments, the corresponding µ f(µ) (green
dashed line) is proportional to the distribution of the values in the total field (black dashed line). On the
other hand, the ABP∞ reflects the limit of the ABP, for vanishing diffusion. As visible in the plot, the
respective curves are proportional to each other, emphasising that the performances of the ABP is tangible
through consideration of the motility field alone. Observing the QABP case, it is visible that the distribution
in the lower velocities is approximately constant and lies orders of magnitude below both ABP cases. Instead,
f(µ) displays a significant peak above the velocity state threshold indicated by the vertical line at µ0 = 0.25.
This exemplifies how the navigation strategy of the QABP relies on circumvention of the low motility zones,
through higher motility regions, thereby elongating the trajectory, but saving time through the faster
swimming.

The performances
〈
vy
〉
/v0 of the QABP, and the two reference cases (ABP, ABP∞) are shown as a

function of Prot in figure 5(a), where ⟨µ⟩ ≈ 0.557 is chosen. For large Prot, the
〈
vy
〉
/v0 of the ABP

approaches the performance of the ABP∞. More specifically, the ABP is bounded by the ABP∞, and
〈
vy
〉
/v0

is monotonous in Prot. For small Prot, the performance of the ABP approaches 0. For almost the whole
parameter range the QABP is faster than both reference cases. Additionally

〈
vy
〉
/v0 seems to be independent

from Prot for Prot ≳ 1. This demonstrates the QABP’s ability to steer against the kicks from rotational
diffusion. Only for Prot ≲ 1, the QABP loses its ability to correct for rotational noise, and hence the
performance declines with decreasing values of Prot. Figure 5(b) shows the respective performances as a
function the environment parameter ⟨µ⟩ for a constant Prot ≈ 46. For all three cases,

〈
vy
〉
/v0 increases with

µ. Once again, the QABP surpasses the ABP across all ⟨µ⟩, and the ABP∞ for most of the shown parameter
range. For ⟨µ⟩ ≈ 1, the performances

〈
vy
〉
/v0 of both QABP and ABP∞ approach 1, since the optimal

trajectory becomes a straight line. For ⟨µ⟩= 0.5, the motility field µ(r) displays a percolation transition of
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Figure 6. Trajectories of QABPs, trained in non-periodic Gaussian random wave environments (see figure 3), placed in unknown
environments, after the finalised learning process (Prot ≈ 46, ⟨µ⟩ ≈ 0.557). The globally optimised trajectories, generated with
the help of Dijkstra’s algorithm, are shown as dashed red lines. The motility fields µ(r) are generated with the help of (a) Gaussian
random waves (see. Supplemental Material section 1) periodic in horizontal direction, (b), (c) Gaussian random waves periodic
in both Carthesian directions, (d) Gray–Scott model for reaction-diffusion (e) 30 Gauss peaks scattered randomly across the
simulation box and (f) Eight Gauss peaks scattered randomly across the simulation box, superimposed with solutions to the
randomly initialised Gray–Scott model.

the low motility zones, and therefore the Q-learning model of avoiding low motility zones becomes less
viable. It is visible in the figure, however, that the QABP surpasses the ABP∞ down to ⟨µ⟩ ≈ 0.35.

3.2. Generalisation to unfamiliar environments
In order to demonstrate the generality of the learned strategy, i.e. to show that the final resultQ of the
learning process transcends the specific implementation of our learning environment, we test the QABP’s
ability to navigate in other motility fields that represent different types of long- and short-order order in
space. More specifically, the swimmer is first trained on the previously used non-periodic Gaussian random
fields with reflecting boundary conditions. After the learning procedure is finalised, the swimmer is placed in
the respective unfamiliar environment.

A selection of the emerging trajectories (Prot ≈ 46) is shown in figure 6. All fields are generated such that
⟨µ⟩ ≈ 0.557. Additionally, a performance

〈
vy
〉
/v0 is given averaged from ten independent training

procedures with 103 trajectories each. For all fields, the QABP outperforms the references cases and displays
performances reasonably close to the globally optimal solutions (the exact numerical values of the different
performances can be found in the supplementary material section 9).

3.2.1. Directional patterns
The first instance in figure 6(a) displays an environment that is periodic in horizontal direction. The
horizontal components of the random wave vectors fulfill |kn · êx|= 6π/L. The absolute value of the vertical
components

∣∣kn · êy∣∣ are randomised uniformly in [0,12π/L]. The QABP visually displays competence of
maneuvering through the new environment. Furthermore,

〈
vy
〉
/v0 shows similar values as presented for the

same parameters (Prot ≈ 46, ⟨µ⟩ ≈ 0.557) in section 3.1. This likely stems from the similarity of the wave
vectors kn and the resulting characteristic length scales in the environments µ(r).

Figures 6(b) and (c) show trajectories through periodic Gaussian random fields with kn · êx = 2π/L and
kn · êy =± 8π/L, respectively. It is visible through the global solutions, that the optimal paths are obtained
by avoiding the low motility stripes through the periodicity of the box, persistently swimming in the same
slanted direction. The performance of both environments with opposite parity are approximately equal. We
thereby show, that the machine learning model is on average not subject to unexpected symmetry breaking.
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Furthermore, the swimmers exhibit a significant tendency to slide across the boundary of the low motility
zones. This behaviour exemplifies the strategy of the QABP to avoid motilities below a certain threshold
rather than optimising the instantaneous velocity at all times.

3.2.2. Gray-Scott field
Figure 6(d) shows an environment obtained through integration of the Gray–Scott equations for
reaction-diffusion [42, 43] (see supplementary material section 1.A). The typical length scales of the low
motility zones obtained through this model are drastically smaller, than the previous examples. Furthermore,
due to the entirely different algorithm, the functional form at the edges of the low motility zones is different.
Despite these drastic differences to the original training data, the QABP displays the capability of efficiently
maneuvering through the environment.

3.2.3. Strongly clustering patterns
All of the previously shown examples of scalar fields are based on hyperuniform models with suppressed
density fluctuations. Next, we show that after training, the QABP also successfully navigates in random
motility fields with strong heterogeneities (based on non-hyperuniform models).

Figure 6(e) shows an environment, which is generated by scattering 30 points qk uniformly in the
simulation box, and assigning each a characteristic randomly chosen length scale κk. Explicitly, the motility
field is given by

µ(r) =
30∏
k=1

[
1− exp

(
∥r− qk∥2

κk2

)]
, (9)

with periodic boundary conditions. The environment in figure 6(e) displays several clusters of peaks.
Nevertheless, we observe that the QABP finds a quick path through the environment by evading low motility
zones of any size (for which it was efficiently trained in the stealthy hyperuniform GRW).

Finally, figure 6(f) shows a trajectory through a motility field that is given by a sum of equation (9) and a
randomly initialised solution to the Gray–Scott model with amplitude 0.1 (see supplementary material
section 1.A). This approach yields a motility field, with large low motility zones throughout the
environment, overlaid with a more regular perturbation, that causes local gradients, which drastically
influence local information. Even though, not having learned about the local structure, our results show, that
the QABP noticeably interacts with the respective local gradients only at low swimming velocities. This result
emphasises the significance of the inclusion of the swimming velocity in the QABPs state space.

4. Conclusions

In this work, we used a reinforcement learning algorithm to teach a microswimmer (QABP) to navigate
through complex environments, given by scalar motility fields, that determine the local swimming velocity of
the particle. Brownian dynamics simulations were used to investigate the dynamics of the QABP in this
two-dimensional physical environment. To enable smart navigation, a tabular Q-learning algorithm was
superimposed. The swimmer receives the ability to perform deterministic rotations, while only receiving
local information about its environment.

First, modified Gaussian random waves were employed as motility fields. Two reference cases of an ABP
and a particle swimming in a straight line (ABP∞) were simulated and it was shown that the time of first
passage of the ABP to a given target can be inferred from the motility field. The performance, i.e. the speed of
finding the target, of the ABP, is bounded by the ABP∞, as the limit of low diffusion. We demonstrate, that
our intelligent QABP outperforms both the ABP and ABP∞. To demonstrate the applicability of the resulting
strategy, we test the ability of the QABP to solve different environments, generated with various algorithms,
though only having learned the Gaussian random wave environment. The swimmers display competence of
maneuvering through all the displayed examples of motility fields and again outperforms the ABP and
ABP∞. Our stealthy hyperuniform model provides a random yet relatively homogeneous environment that
is well suited for the initial training of the QABP. In our observation, QABP provides competitive results in
non-hyperuniform fields unseen during the training phase. Furthermore, due to the translational
symmetries of our scalar random fields, we expect that the strategy, which has been learned in the training
on relatively small box sizes, can automatically be transferred to applications, which feature meaningfully
large environments.

Throughout this paper, we lay emphasis on the fact, that the final decision matrix only requires the
microswimmer to know little local information about its environment. This will be of particular relevance to
future microrobotic applications, where individual autonomous agents rarely possess the ability to capture
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information about the whole environment at once, and the amount of data storage is dictated by the size of
the technical components. Future studies of this local algorithm can be extended to more complex problems
such as the inclusion of hydrodynamic force fields, or more general vectorial fields. [13, 16]. The explicit
inclusion of cargo uptake and delivery [44, 45], as well as the consumption of fuel, into the machine learning
model, may be of interest to medical applications [1]. Swimming strategies, which combine a deterministic
approach to the decision making, such as through our reinforcement learning, with undeterministic
approaches, e.g. random actions (cf figure 3(b)), may yield insight as models for biological microswimmers,
that are motivated, for instance by the search for nutrients.
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