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Abstract
Quantum mechanical methods like density functional theory (DFT) are used with great success
alongside efficient search algorithms for studying kinetics of reactive systems. However, DFT is
prohibitively expensive for large scale exploration. Machine learning (ML) models have turned out
to be excellent emulators of small molecule DFT calculations and could possibly replace DFT in
such tasks. For kinetics, success relies primarily on the models’ capability to accurately predict the
potential energy surface around transition-states and minimal energy paths. Previously this has not
been possible due to scarcity of relevant data in the literature. In this paper we train equivariant
graph neural network-based models on data from 10 000 elementary reactions from the recently
published Transition1x dataset. We apply the models as potentials for the nudged elastic band
algorithm and achieve a mean average error of 0.23 eV and root mean squared error of 0.52 eV on
barrier energies on unseen reactions. We compare the results against equivalent models trained on
QM9x and ANI1x. We also compare with and outperform Density Functional based Tight Binding
on both accuracy and required computational resources. The implication is that ML models are
now at a level where they can be applied to studying chemical reaction kinetics given a sufficient
amount of data relevant to this task.

1. Introduction

Machine learning (ML) models and especially graph neural networks (GNNs) [1, 2] have turned out to be
potent emulators of density functional theory (DFT) potentials for small molecules [3–7], thanks to their
remarkable ability to find complex relations in high dimensional data. They have a complexity-scaling orders
of magnitudes lower than classic quantum mechanics (QM) methods, but have in recent years achieved
comparable accuracy [8–12]. The capability of these models is manifested by their success in tasks beyond
simple prediction of molecular features such as structural optimization or studying finite-temperature
dynamical properties through molecular dynamics [13, 14]. Despite their achievements, there has only been
limited success in applying ML-models as potentials for transition search algorithms. The earliest work
studied simple diatomic molecule dissociation and achieved acceptable accuracy with tens of thousands of
data points [15]. Other works have had success by limiting their scope to studying single or few reactions but
sacrificing the generality of the approach [16–18]. Attempts to study reactive systems with Gaussian processs
(GPs) [19] have been successful too, but the GP is trained on the particular atomic system, sacrificing speed
for generality by requiring expensive DFT calculations at inference time. Transition-states are notoriously
hard to find as there is no well-defined gradient on the potential energy surface (PES) to guide traditional
optimization algorithms towards them. A wealth of algorithms have been proposed to solve this
problem—one is the nudged elastic band (NEB) [20] algorithm, which works by interpolating an initial path
between reactant and product and iteratively updating it to minimize energy by using information about the
PES. It shares a common bottleneck with other transition search algorithms—the necessity to repeatedly
evaluate energy and atomic forces of molecular configurations, which is extremely costly, especially if
ab-initio or electron DFT calculations are used [21].
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Recent advances in ML have not alleviated the bottleneck as even modern neural network (NN)
architectures have not proved proficient potential approximators for this type of application. The fault lies
primarily with available data in the literature rather than the models’ expressiveness [22]. Most quantum
mechanical datasets are focused on molecular configurations in or near equilibrium [23–26]. Without
configurations on and around reaction pathways in the training data, ML models cannot learn the
interatomic interactions that occur during chemical reactions and cannot reliably be applied for
transition-state search.

We compare ML models against Density Functional based Tight Binding (DFTB), [27] a fast
approximation to DFT that is often used for fast screening of large quantities of configurations with an
acceptable trade-off between accuracy and speed, and our models outperform DFTB with a factor three in
accuracy and a factor two in CPU time.

In this work, we bridge generalization, speed, and accuracy for transition-state search by applying
polarizable atom interaction neural network (PaiNN) models as surrogate potentials for DFT. We build on
and showcase the utility of our previous paper [28] where we released Transition1x, a dataset constituted by
DFT calculations for 10million molecular configurations, all sampled around reaction pathways from 10 000
elementary, organic reactions. It is clear from the results of this paper, that for precise modeling of
transition-state regions, and, consequently, transition states and barrier energies, hitherto popular
benchmark datasets have had insufficient relevant data. On the other hand, training ML potentials on the
Transition1x dataset allows for accurate modeling of PESs in transition-state regions, underlining that
relevant and available data in the literature is as important as the efficiency of available models.

Reliable and fast analysis of reaction kinetics through ML will bring the whole field of computational
chemistry a considerable step closer to the ultimate goal, a virtual laboratory, hyper-accelerating the
discovery of reaction mechanisms for synthesizing drugs and materials.

2. Methods

2.1. Nudged elastic band
NEB [20] is a method for finding minimal energy path (MEP) and transition-state given product and
reactant of a chemical reaction. It does so by iteratively nudging an interpolated path between the reaction
endpoints in the direction of the force perpendicular to the path. Once the perpendicular force converges to
zero, NEB reports the maximal-energy configuration along the path as the transition-state. The path is
represented by an array of molecular configurations called images, and there is no guarantee that, at
convergence, the maximal energy image corresponds to the maximal energy along the path. The maximum
might lie between two images. Climbing image nudged elastic band (CINEB) [29] addresses this problem by
letting the transition-state candidate (the maximal energy image) further maximize its energy by following
the gradient on the PES parallel to the current path between iterations. If the current path has not converged
properly, the climbing image can pull the predicted MEP off the true MEP and therefore, the path is first
relaxed with regular NEB before turning on CINEB. The MEP is considered converged once the maximal
perpendicular force on the path is below a threshold of 0.05 eVÅ−1. The spring constant between images on
the path is set to 0.1 eVÅ−2, and ten images are used to represent the path.

2.2. Initial path generation
The endpoints of the reaction have to be minimized in their respective minima before running
NEB—otherwise the energetic difference between reactant and transition-state cannot be evaluated properly.
A configuration is considered relaxed if the norm of the forces acting on it is below 0.01 eVÅ−1. Once the
endpoints have been minimized, the initial guess for the MEP is found by running NEB with the Image
Dependent Pair Potential (IDPP) [30] on a linearly interpolated path between reactant and product. IDPP is
an inexpensive potential specifically designed to generate physically realistic MEP guesses for NEB at an
extremely low computational cost.

2.3. Optimizers
Reactants and products are relaxed using the Broyden–Fletcher–Goldfarb–Shannon (BFGS) [31] optimizer
with α= 70 and a maximal step size of 0.03 Å in configurational space. The MEP is found with an optimizer
[32] designed to reduce the computational cost of transition-state search algorithms by applying an adaptive
time step selection algorithm with α= 0.01 and rtol= 0.1, and a preconditioning scheme to the PES given an
estimate of its curvature.
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3. Data

We train all models on ANI1x [24], QM9x [33], Transition1x [28]. All datasets are calculated with the
6-31G(d) [34] basis set and ωB97x [35] functional which has an accuracy comparable to the gold standard
but expensive high-level CCSD(T) [36, 37] calculations. Given the compatibility of the datasets, it is possible
to train on either dataset alone or combinations of them to leverage all of their strengths.

3.1. ANI1x
ANI1x [38] aims to provide varied data of off-equilibrium molecular configurations by perturbing
equilibrium configurations with pseudo molecular dynamics. The data is collected through an active
learning technique called Query by Committee; an automated data diversification process that trains an
ensemble (committee) of models on a dataset and accepts or rejects new proposed data based on the
disagreement of models in the committee. The assumption is that if the committee disagrees the data is
sufficiently different from what has already been learned, and the proposed data should be included in the
analysis. The procedure for proposing data and evaluating it with the committee is cheap compared to the
calculation of data using DFT. The dataset is consecutively expanded by alternating between training
committees and adding new data points based on the committee uncertainty. In total, ANI1x contains force
and energy calculations for approximately 5million configurations.

3.2. Transition1x
We have recently published Transition1x [28], a dataset providing a collection of molecular configurations
on and along reaction paths for approximately 10 000 reactions. The reactions consist of up to seven heavy
atoms, including C, N, and O. Transition events are rare, and it is not possible to collect sufficient data in
relevant regions by simple molecular dynamics if the intention is to train NNs models to understand
chemical reactions. Transition1x addresses this problem by sampling molecular configurations around
reaction pathways proposed by NEB, using DFT as potential. The procedure resulted in approximately
10million DFT calculations that were collected and saved during the process and constitute the dataset.
Transition1x is available through the repository https://gitlab.com/matschreiner/Transition1x which includes
data loaders and scripts for downloading the dataset and generating ASE-database files.

3.3. QM9 and QM9x
QM9 [33] is a dataset of 135 k small organic molecules with various chemical properties that has served as the
benchmark for many existing ML methods for quantum chemistry. All molecules in QM9 are in equilibrium.
We have recalculated QM9 with the 6-31G(d) basis set and ωB97x functional to make it compatible with
Transition1x and ANI1x, and we refer to the recalculated dataset as QM9x. Molecular configurations
recalculated in the new potential are not necessarily in equilibrium as the potential shifts when changing
functional and basis sets. QM9x is available through the repository https://gitlab.com/matschreiner/QM9x
which includes data loaders and scripts for downloading the dataset and generating ASE-database files.

3.4. Models and Training
Message Passing Neural Networks [12] are a class of GNNs [1, 2] that build their internal graph
representation by running a series of message passing steps. A single message passing step consists of two
distinct operations: (a)Message Dispatching, each node computes a message given its state (and possibly
information about the edge connecting to—and the state of the receiving node) and sends it to its neighbors.
(b) State Update, incoming messages are collected with an aggregation function, and are used to
simultaneously update the internal representation of all nodes. After the message-passing phase, a readout
function extracts the inner representation of the nodes and computes a final feature vector of the graph for
downstream tasks. In the case of molecules, interesting properties are energy and forces where conservative
force fields can be computed via the back-propagation algorithm as the negative gradient of the energy w.r.t.
coordinates of the atoms.

The PaiNN model [39] was used for all experiments—it is a GNN architecture that implements
rotationally equivariant representations for prediction of tensorial properties of graph structures. We refer to
the literature for further details [39]. A cut-off radius of 5 Å was used to generate the initial molecular graph.
All models have three message passing steps and 256 units in each hidden layer, and are trained using the
ADAM [40] optimizer with learning rate 10−3 on training examples from QM9x, ANI1x, and Transition1x.
A batchsize of 75 was used for all datasets and a maximum of 106 training steps was allowed—however,
models training on ANI1x and Transition1x reached maximal scores on validation data after around 6× 105
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steps. In order to understand to which extent a PaiNN-model trained on Transition1x can generalize to
reactions with unseen atomic compositions, building on an assessment of the substructures or elemental
features, Transition1x was stratified by chemical formula such that each formula can only be found in one
split. The Transition1x was split in 10, and 10 models were trained such that each split could be set aside once
as testing data for the NeuralNEB algorithm and once as validation data for early stopping. ANI1x was
stratified by chemical formula such that test, validation and training sets consist of chemical formulas unique
to that set. QM9x was split randomly. In the case of QM9x and ANI1x, 80% of the data was used for training,
10% for testing, and 10% was used for validation and early stopping. In QM9x all configurations are unique
as they are in distinct equilibria and can therefore be split randomly. No attention was paid to the molecular
scaffold. For ANI1x, it is necessary to split on chemical formula to ensure that configurations across splits are
significantly different. Each chemical formula contains similar configurations, since data is generated by
randomly perturbing identical initial configurations.

4. Results

Table 1 shows the overall findings of the paper. Each row displays the performance of a surrogate potential,
where datasets in the leftmost column indicate PaiNN models trained on the given dataset. The barrier error
is the difference in barrier heights found when applying DFT as potential for NEB versus when applying the
surrogate potential.

As different initializations of parameters in equivalent architectures result in variations in the trained
models capabilities, five models were trained on each of QM9x and ANI1x and ten models were trained on
the Transition1x dataset. QM9x and ANI1x models were used as potentials for all reactions in the
Transition1x dataset, and models trained on Transition1x were used as potentials only for those reactions
with atomic compositions from the test split. The best models are trained on Transition1x, with the lowest
mean average error (MAE) and root mean squared error (RMSE) and the highest convergence ratio. The
QM9x models have only seen data very close to equilibrium and have not learned the structure of the PES
between equilibria which makes it unable to converge in most cases. In general DFT performs the best in
terms of convergence rate and average iterations run, but it comes at a steep price, running almost a factor
1500 times slower than the ML potentials. DFTB is the go-to fast potential, but the models trained on
Transition1x are twice as fast and three times as accurate. Figure 1, on the frontpage, displays MEPs
calculated with NEB using DFT and PaiNN trained on Transition1x side by side. Each MEP is projected onto
a plane in configurational space spanned by the reaction’s transition-state, product, and reactant. The x and y
axes are basis vectors describing the plane in units of Å, and the z-axis and color-coding show the
atomization energy of configurations in the plane in eV. Not only does PaiNN trained on the Transition1x
accurately calculate the barrier energy for the reaction, but it also correctly identifies the plane spanned by
the configurations defining the reaction, and calculates an almost identical PES in the vicinity of the MEP.
Each MEP is projected from a high dimensional space onto the plane, and therefore, only the atomization
energy of equilibria and transition-states are shown correctly in the plot. At these points, the MEP intersects
with the plane. The intermediate points have energies slightly shifted up the sides of the energy valley. The
MEP does not necessarily lie in the plane, and since the MEP represents the energy valley, projecting it onto
the plane, will increase the energy. The× symbols on the surfaces are projections of images predicted by NEB
and the dashed lines connecting them are cubic spline interpolations. The importance of accurate
predictions in the vicinity of the MEP is clear, as these calculations will guide the search for the
transition-state. The Transition1x model predicts smooth and well-behaved PESs resembling DFT.

Figures 2 and 3 tell similar stories. Figure 2 is a histogram of barrier errors where the error is the
difference between activation energy found using the surrogate potential and DFT. The Transition1x model
is precise and accurate, with a sharp peak around zero, whereas DFTB and ANI1x have wider spreads with
means below and above zero, respectively. The QM9x model is plotted on the histogram, but due to high
errors and low convergence, only a few calculated barriers fall within an error of±2 eV, as shown in the
figure. See appendix for an equivalent figure without truncated x-axis.

Figure 3 compares activation energies found with DFT on the x-axis with those found using various
surrogate potentials on the y-axis. Each marker represents a single reaction. Predictions from the model
trained on Transition1x follow the x= y line with a MAE of only 0.23 eV. The QM9x model does not have a
proper representation of the transition-state regions as it has not seen that type of data during training.
Often, the QM9x model does not recognize nearby initial equilibria as minima on the PES, and even before
optimizing the MEP, the reaction endpoints have dropped further on the PES to qualitatively different
endpoints which results in the model calculating the MEP for a completely different reaction. The algorithm
is not set up to detect this, and as long as the reaction converges, it is included in the analysis. Even when the
QM9x model relaxes the endpoints of the reaction correctly, it either finds low energy shortcuts in the faulty
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Table 1. Performance of various potentials used for Nudged Elastic Band (NEB) when compared to Density Functional Theory (DFT).
ANI1x, Transition1x and QM9x indicate PaiNNmodels trained on the respective dataset. The Barrier column displays the Mean Average
Error (MAE) and Root Mean Squared Error (RMSE) of barrier predictions, where the individual error is the difference between the
barrier as predicted when using DFT as potential vs. using the surrogate potential. The convergence rate is the percentage of reactions
that converged. Average CPU time is CPU time spent per reaction. Average iterations is the average number of Minimal Energy Path
(MEP) updates before convergence. We have marked the lowest errors, highest convergence rate, and fastest computation in boldface.

Barrier (eV) NEB Convergence

MAE RMSE Rate Avg. CPU Time Avg. Iterations

ANI1x 0.51 1.67 69.3% 37 s 149
T1x 0.23 0.52 80.3% 33 s 135
QM9x 3.40 3.59 35.0% 28 s 111
DFTB 0.70 0.85 65.7% 82 s 114
DFT — — 84.1% 12 h 14 m 43 s 100.74

Figure 1.Minimal Energy Paths (MEPs) found with Nudged Elastic Band (NEB) applying the Graph Neural Network (GNN)
architecture Polarizable Atom interaction Neural Network (PaiNN) trained on the Transition1x dataset and Density Functional
Theory (DFT) as potentials. The MEPs are projected onto planes in structural space, intersecting product, reactant and
transition-state of the converged MEPs. The PES has been calculated on the planes in the vicinity of the MEPs with the respective
potential and is shown on the z-axis. The x and y-axes are basis vectors describing the plane. The reaction involves a H-transfer
coupled with a C–C bond formation on C6H8. The reaction can be seen as a GIF by following this link.

potential or does not converge, and as a result the converged reactions are often only the energy difference
between reactant and product. The QM9x dataset was not designed with any type of molecular dynamics or
reaction kinetics in mind, and comparing it to ANI1x and Transition1x for reaction path search is perhaps
inappropriate. However, given the ubiquity of QM9 in the literature, it is an important point to convey, that
new datasets are required for solving higher order problems in computational chemistry. The Transition1x
and ANI1x models drop in performance above 5 eV. Data becomes scarcer at higher energies and
consequently, models are less accurate in high energy regions. DFTB and the ANI1x models have systematic
errors in their predictions. The ANI1x models are biased towards high energies in the transition regions as
they have not seen the low energy valleys connecting equilibria. The DFTB potential systematically predicts
energies too low. In table 2 the systematic errors are corrected based on the training data. This leads to a
lower test error for the ANI1x and DFTB, but equal test error for Transition1x underlining that Transition1x
models are already very accurate.

5. Discussion

To train models that can properly step in as surrogate potentials for DFT when running NEB, it is necessary
to have datasets with appropriate data in and around transition-state regions. Finding reaction barriers with
ML models and NEB is a non-trivial test. ML models, and especially NNs, are known to perform poorly for
out of distribution tasks [41, 42]. Table A1 illustrates this clearly with results for training and testing ML
models on various datasets.
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Figure 2. Histogram of barrier errors. The x-axis shows errors between reaction barriers calculated using Density Functional
Theory (DFT) and surrogate potentials for Nudged Elastic Band (NEB). The x-axis has been truncated at+/− 2 eV error (see
appendix for the full plot). The y-axis shows the frequency of each bin. Green, red and blue display results from PaiNN models
trained on Transition1x, QM9x and ANI1x, respectively. Yellow displays results from Density Functional based Tight Binding
(DFTB). The QM9x model has such a low convergence frequency, and general barrier error, that the model does not show in the
plot.

Figure 3. Comparison of reaction barriers found with Nudged Elastic Band (NEB) using Density Functional Theory (DFT) as
potential on the x-axis vs. various surrogate potentials on the y-axis. Green, red and blue markers are PaiNN models trained on
The Transition1x, QM9x, and ANI1x datasets respectively. Yellow is Density Functional based Tight Binding (DFTB). Points on
the dashed line have been calculated perfectly. The figure displays a subsample of 500 reactions—see appendix for the full scatter
plot.

Finding reaction barriers with NEB is a much more demanding test of the models’ capabilities. When
running NEB, the PES is swept by the path connecting endpoints, and data encountered in the process can
diverge wildly from any data seen during testing and training. The model can get caught in even a small
region of high error, or it can be thrown off the correct MEP and be unable to converge altogether, so the
model must be accurate across the entire PES.

The reaction paths are represented by ten images in all reactions. A core strength of NNs is their ability to
utilize GPUs to evaluate multiple data points at once, and in principle, NEB can be run with hundreds of
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Table 2.Mean Average Error (MAE) and Root Mean Squared Error (RMSE) of barrier errors found by PaiNN trained on Transition1x
and ANI1x and DFTB, after correcting for systematic error.

Corrected Barrier (eV)

Systematic Error (eV)MAE RMSE

ANI1x 0.48 1.66 0.23
T1x 0.23 0.51 −0.10
QM9x 0.89 1.14 −3.40
DFTB 0.48 0.62 −0.58

images instead of tens at little to no additional cost when using NNs as potentials. We ran experiments with
high density paths with the rest of the setup fixed but saw no improvement in neither accuracy nor
convergence speed. The preconditioning scheme of the NEB optimizer relies on a sparsely populated path.
But this approach could possibly produce robust results by applying other optimizers.

A clear application of this work is as a screening procedure for complex reaction networks. Cheap
methods, such as permuting bond order matrices, can be used to automatically generate nodes for entire
reaction networks. The individual reactions can be screened fast using the method before recalculating entire
reaction networks with expensive methods. Usually this is done with DFTB [27] but running NEB with NNs
is faster and more accurate.

6. Conclusion

We have trained GNN potentials on various datasets and used them as surrogate potentials for DFT when
running NEB for transition-state search. A MAE of 0.23 eV and RMSE of 0.52 eV is achieved with the best
model, compared against running the same set up with DFT. The models converge 80.3% of the time on
unseen reactions. We show that expressive models alone are not sufficient for solving complex tasks in
quantum chemistry moving forward, but just as much care has to be put into designing and generating
datasets. We tested three different datasets: ANI1x, QM9x and Transition1x and only models trained on the
latter could reliably solve the transition search task.

Our results show that the future development of the field of ML for quantum chemistry stands on two
legs—the completeness of the available data, and the expressiveness of the available models. Transition1x
deals with only four types of atoms. To apply the results of this paper to general chemistry, larger datasets
with more atom types should be produced. Our results indicate that the ML approach scales: With the right
amount of the right data, accuracies at a sufficient level can be achieved.
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Appendix A

Table A1 displays results of the models when training and testing on various datasets. In all test set-ups the
models that perform best, are models that have been trained on training data from the corresponding dataset.

7

https://doi.org/10.6084/m9.figshare.19614657.v4
https://doi.org/10.6084/m9.figshare.19614657.v4
https://gitlab.com/matschreiner/neuralneb
https://gitlab.com/matschreiner/neuralneb


Mach. Learn.: Sci. Technol. 3 (2022) 045022 M Schreiner et al

Table A1. Test results of PaiNN models trained on ANI1x, QM9x, Transition1x. We report RMSE and MAE on energy and forces. Force
error is the Euclidian distance between the predicted and true force vector.

Trained on Tested on

Energy (eV) Forces (eV Å–1)

MAE RMSE MAE RMSE

ANI1x 0.02(0) 0.04(1) 0.04(0) 0.06(0)
Transition1x ANI1x 0.22(1) 0.35(2) 0.18(0) 0.42(3)
QM9x 2.32(1) 3.03(2) 1.28(1) 2.0(0)
ANI1x 0.28(2) 0.61(7) 0.16(6) 0.6(1)
Transition1x Transition1x 0.10(0) 0.15(1) 0.05(1) 0.12(0)
QMx 1.42(1) 2.61(2) 0.23(2) 0.48(5)
ANI1x 0.12(0) 0.13(0) 0.03(0) 0.06(0)
Transition1x QM9x 0.07(1) 0.12(0) 0.05(0) 0.08(0)
QM9x 0.02(1) 0.04(2) 0.01(0) 0.01(0)

Figure B1. Histogram of barrier errors. The figure is equivalent to figure 2, but without a truncated x-axis. The x-axis shows
errors between reaction barriers calculated using Density Functional Theory (DFT) and surrogate potentials for Nudged Elastic
Band (NEB). The y-axis shows the frequency of each bin. Green, red and blue display results from PaiNN models trained on
Transition1x, QM9x and ANI1x, respectively. Yellow displays results from Density Functional based Tight Binding (DFTB).

Appendix B. Additional figures

Figure B1 is an unbounded version of figure 2. Figure B2 is a scatter plot equivalent to figure 3, but without
subsampling reactions. Figures B3–B6 are plots of MEPs and PESs comparing PaiNN trained on Transition1x
with DFT for various reactions.
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Figure B2. Comparison of reaction barriers found with Nudged Elastic Band (NEB) using Density Functional Theory (DFT) as
potential on the x-axis vs. various surrogate potentials on the y-axis. Green, red and blue markers are PaiNN models trained on
The Transition1x, QM9x, and ANI1x datasets respectively. Yellow is Density Functional based Tight Binding (DFTB). Points on
the dashed line have been calculated perfectly.

Figure B3. Reaction involving C5OH8. The reaction can be seen as a GIF by following this link.
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Figure B4. Reaction involving C3NCOH7. The reaction can be seen as a GIF by following this link.

Figure B5. Reaction involving C3NCNH8. The reaction can be seen as a GIF by following this link.
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Figure B6. Reaction involving C3NC2OH9. The reaction can be seen as a GIF by following this link.
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